JP3818719B2 - Vapor deposition method on flexible support - Google Patents

Vapor deposition method on flexible support Download PDF

Info

Publication number
JP3818719B2
JP3818719B2 JP04010397A JP4010397A JP3818719B2 JP 3818719 B2 JP3818719 B2 JP 3818719B2 JP 04010397 A JP04010397 A JP 04010397A JP 4010397 A JP4010397 A JP 4010397A JP 3818719 B2 JP3818719 B2 JP 3818719B2
Authority
JP
Japan
Prior art keywords
metal
vapor deposition
flexible support
shielding plate
cooling drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04010397A
Other languages
Japanese (ja)
Other versions
JPH10219433A (en
Inventor
俊幸 大塚
俊一 山中
充 高井
信雄 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP04010397A priority Critical patent/JP3818719B2/en
Publication of JPH10219433A publication Critical patent/JPH10219433A/en
Application granted granted Critical
Publication of JP3818719B2 publication Critical patent/JP3818719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は可撓性支持体への蒸着方法に関し、特に磁気記録媒体などの製造において、可撓性支持体(ベースフィルム)への強磁性金属の蒸着に際し、電子ビームの加速電圧を高めた場合においても、ベースフィルムの破断等を簡便に防止し得る可撓性支持体への蒸着方法に関する。
【0002】
【従来の技術】
従来、磁気記録媒体などの製造においては、例えば磁気記録層の形成に際し、長尺状の可撓性支持体(ベースフィルム)に、Co、Co−Ni合金、その他のCo合金等の強磁性金属を蒸着法により被着して金属薄膜(磁気記録層)を形成することが行われている。
【0003】
このような金属蒸着法においては、例えば、真空槽内において、繰出しロールから繰出されたベースフィルムを冷却ドラム表面を沿って搬送させ、この冷却ドラム表面搬送時に、蒸着させる金属を所定の圧力下に高エネルギーの電子ビームを照射し、ベースフィルム上に所定角度で金属を蒸着させて金属薄膜を形成し、これを巻取りロールで巻取っている。
【0004】
従来、このような蒸着方法においては、例えば蒸着用金属を入れたるつぼ等の容器を、前記冷却ドラムと開閉自在な遮蔽板を隔てて真空槽内に離隔配置し、この蒸着用金属に電子ビームを照射し、蒸着可能となるまでの間、すなわち金属の蒸発量が所望の量になるまでの間、遮蔽板を完全に閉じた状態とし、所望の金属蒸発量に達した後に初めて遮蔽板を蒸着用に開口し、この開口部から金属蒸気をベースフィルム上に蒸着していた。
【0005】
ところで近年、磁気記録媒体の高機能化、高精度化、高生産性が要求されるようになり、電子ビームの加速電圧をより高めて、例えば従来20〜30kV程度のパワーから、40〜50kV程度のパワーの電子ビームで蒸着を行うようになってきている。
【0006】
しかしながら、電子ビームの加速電圧を高めた場合、従来のように蒸着用金属に電子ビームを照射し、金属の蒸発量が所望の量になるまでの間、遮蔽板を閉じていて、金属蒸発量が所望の量となった後に初めて遮蔽板を開口し、この開口部より金属蒸気を可撓性支持体上に蒸着すると、電子ビームの2次電子等の影響で可撓性支持体の帯電量が増大し、冷却ドラムから離れる際に放電し、可撓性支持体の端面にキズが入り、可撓性支持体が破断してしまうという不具合が生じていた。そこで帯電を防止するために、例えば冷却ドラム前後に帯電防止・除電装置等を設ける、あるいは可撓性支持体に振動を与えて除電する、等の方法が行われているが、いずれの場合も十分に満足し得る効果を得るに至っていない。
【0007】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたもので、特に磁気記録媒体などの製造において、可撓性支持体(ベースフィルム)への強磁性金属の蒸着に際し、電子ビームの加速電圧を高めた場合においても、ベースフィルムの破断等を簡便に防止し得る可撓性支持体への蒸着方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、蒸着用金属に電子ビームを照射して蒸着可能とするまでの間、従来のように遮蔽板を完全に閉じて、冷却ドラム上を搬送される被蒸着体である可撓性支持体と、金属蒸気雰囲気との間を完全に遮蔽し、蒸着開始時に初めて遮蔽板を開き、その開口部から金属蒸気を可撓性支持体上へ蒸着するのではなく、金属に電子ビームを照射し、金属の蒸発量が所望の量になるまでの間、遮蔽板を所定の程度開口することにより可撓性支持体を蒸着可能な金属蒸気雰囲気下におき、次いで、本蒸着時、前記遮蔽板の開口部を本蒸着用に所定の程度開口して蒸着を開始することにより、上記課題を解決し得るという知見を得、これに基づき本発明を完成するに至った。
【0009】
すなわち本発明は、可撓性支持体をその表面に沿わせて搬送する冷却ドラムと、開閉自在な遮蔽板と、該遮蔽板を介して前記冷却ドラムと離隔配置された蒸着用金属を収容したるつぼとを備えた真空槽内において、るつぼ内の蒸着用金属に電子ビームを照射して、遮蔽板の開口部から前記冷却ドラムの表面に沿って搬送される可撓性支持体表面に金属を蒸着させる可撓性支持体への蒸着方法において、前記蒸着用金属に電子ビームを照射し、るつぼ内の蒸着用金属の蒸発量が所望量となるまでの間、遮蔽板を開口するとともに、この開口の程度を、該開口部と蒸着用金属とを結ぶ線と冷却ドラムとの接点と、該接点と冷却ドラムの中心とを結ぶ線とがなす最小開口角度(θmin)が65°〜85°となるように保ち、次いで、金属蒸発量が所望量となった後に遮蔽板を所定の程度開口し、この開口部から可撓性支持体表面に金属を蒸着させることを特徴とする、可撓性支持体への蒸着方法に関する。
【0010】
【発明の実施の形態】
以下、本発明について図面を参照して説明する。
【0011】
図1は本発明の蒸着方法の一例を示す説明図である。図1において、真空槽1内には、繰出しロール2、冷却ドラム5、巻取りロール3が配設され、繰出しロール2から繰出された可撓性支持体(ベースフィルム)4は、矢印方向に回転する冷却ドラム5に沿って搬送され、巻取りロール3に巻取られるようになっている。
【0012】
冷却ドラム5の外方所定位置には開閉自在な遮蔽板9が配設され、該遮蔽板9を介して蒸着用金属10を収容した容器(るつぼ)8および該蒸着用金属10に電子ビーム7を照射する電子銃6が配設されている。
【0013】
そして、るつぼ8内に収容された蒸着用金属10を、電子銃6から発生させた電子ビーム7を照射することにより溶融し、発生する金属蒸気が遮蔽板9の開口部から蒸気流11となって、冷却ドラム5上を走行するベースフィルム4上に蒸着されて磁性薄膜を形成する。
【0014】
ここで、遮蔽板9の構成は、開閉自在で、金属蒸着時に所望の程度開口するようになっていれば特に限定されるものではない。図では、前遮蔽板9a、後遮蔽板9bからなる構成のものを例示し、遮蔽時は前遮蔽板9aの後端部と後遮蔽板9bの前端部とが相接して、冷却ドラム5上のベースフィルム4と蒸着用金属10との間を遮断する。そして開口時には、前遮蔽板9aの後端部と後遮蔽板9bの前端部とを離隔させて開口するようになっている。なお、前遮蔽板9a、後遮蔽板9bは、例えば「SUS 304」等の鉄鋼板からなり、遮蔽板の開閉手段は、例えばラック・アンド・ピニオンにより行うことができるが、これに限定されるものでないことはもちろんである。また遮蔽板の材質、開閉手段なども従来より公知のものを使用することができる。
【0015】
このような真空蒸着方法において、従来遮蔽板9はるつぼ8内の蒸着用金属10が溶融し、金属蒸発量が所望量となるまでの間は閉じられて、ベースフィルム4は金属蒸気雰囲気下に曝されることがなかったが、本発明においては、図2に示すように、この金属溶融開始時(電子ビーム照射開始時)から金属蒸発量が所望の程度となるまでの間、遮蔽板9を開口するとともに、この開口の程度を、該開口部と蒸着用金属10とを結ぶ線と冷却ドラム5との接点(S)と、該接点(S)と冷却ドラム5の中心(O)とを結ぶ線とがなす最小開口角度(θmin)が65°〜85°となるように保つ点に特徴がある。このように設定することにより蒸着中の不良品(破断等)の発生を防止することが可能となり、また製造上のロスの低下を図ることができる。
【0016】
ここで上記最小開口角度(θmin)が85°を超えると、従来の遮蔽板を閉じた状態と同様に、冷却ドラムからの剥離時の放電によるベースフィルムの破断などの不具合が発生し、一方、65°未満では開口面積が大きくなるため、輻射熱等による熱負けでベースフィルムの破断が発生することとなる。
【0017】
本発明において「蒸着用金属に電子ビームを照射し、るつぼ内の蒸着用金属の蒸発量が所望量となるまでの間」とは、以下のように定義される。すなわち、電子ビームを照射して蒸着用金属の溶融を開始すると、るつぼ内の溶融された金属部分の蒸発が行われる一方、残りの未溶融金属部分の溶融が並行して進行する。このように溶融された金属の蒸発と未溶融金属の溶融とが並行して行われている間は、金属の蒸発速度は一定ではなく徐々に増大するが、一般にるつぼ内の金属がすべて完全に溶融すれば、電子ビームの投入パワーによりある量の蒸発量が得られ、金属の蒸発速度は一定速度となる。「蒸着用金属に電子ビームを照射し、るつぼ内の蒸着用金属の蒸発量が所望量となるまでの間」とは、具体的には、電子ビーム照射開始からこの金属蒸発の一定速度が得られるまでの間をいう。なお、この一定の金属蒸発速度は、必要とする金属蒸着膜厚に応じて、ベースフィルムの走行速度、真空槽の大きさ、るつぼ内に収める金属量など、種々の要件を勘案して設定することができる。この一定速度は一般に1m2あたり5000/sec以上であれば好ましい生産スケールとなるが、これに限定されるものではない。
【0018】
上記最小開口角度(θmin)が65°〜85°となるように保つ間、ベースフィルム4の走行速度は、製品のロスを招かず、また遮蔽板9が所定程度開口されていることによる輻射熱の影響を受けない範囲で設定すればよく、通常は蒸着時の搬送速度(100〜200m/min)の数分の一から十数分の一程度の、3〜50m/min程度の値とすればよい。またこの速度は、遮蔽板開放中、一定としたり、あるいは金属の溶融程度(金属の蒸発量の変化)に応じて順次速度を上げるなど、適宜変更し得る。
【0019】
次いで、金属蒸発量が所望の量となった後に遮蔽板を所定の程度開口して、この開口部から可撓性支持体表面に金属を本蒸着させる。ただし、本蒸着時における遮蔽板の開口量は、金属溶融時の上記最小開口角度(θmin)と同程度開いてもよく、あるいは狭めたり広めたりするなどしてもよい。
【0020】
本発明において、蒸着装置、蒸着用金属あるいは合金、ベースフィルム等は、従来より公知のものを使用することができる。
【0021】
ベースフィルム(可撓性支持体)としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、ポリイミド等のプラスチックフィルム、紙や金属箔等からなる長尺の可撓性支持体等を挙げることができ、特に制限はない。また、ベースフィルムはあらかじめ種々の処理層が形成されたものであってもよい。
【0022】
蒸着用金属としては、特に限定されるものでないが、強磁性金属等が挙げられる。なかでもコバルト、コバルト合金、Fe、Crが含有されている金属等が好ましく用いられ、特にはコバルト、コバルト合金が好ましく用いられるが、これらに限定されるものでない。
【0023】
【実施例】
次に、実施例を挙げて本発明をより詳細に説明する。
【0024】
実施例1
図1における真空槽1の圧力を1×10-4Torr以下とした後、遮蔽板9を図2に示す最小開口角度(θmin)85°となるように設定してマグネシアるつぼ内8のコバルト(Co)に電子銃6により40kVのパワーの電子ビーム7を照射して溶解を開始するとともに、直径1mの冷却ドラム5上にベースフィルム4としてポリエステルベースフィルム(厚さ7μm)を10m/分の速度で走行させてコバルトの溶解を行い、金属の蒸発量が1m2あたり5000/secに達したらベースフィルム4の走行速度を100m/分に上げて蒸着を行い、金属薄膜(膜厚0.2μm)を形成した。
【0025】
実施例2
実施例1において、最小開口角度(θmin)を70°とした以外は、実施例1の場合と同様の方法により蒸着を行った。
【0026】
実施例3
実施例1において、最小開口角度(θmin)を65°とした以外は、実施例1の場合と同様の方法により蒸着を行った。
【0027】
比較例1
実施例1において、最小開口角度(θmin)を90°(図3)とした以外は、実施例1の場合と同様の方法により蒸着を行った。
【0028】
比較例2
実施例1において、最小開口角度(θmin)を60°とした以外は、実施例1の場合と同様の方法により蒸着を行った。
【0029】
蒸気実施例1〜3、比較例1、2につき、ベースフィルムの帯電と、ベースフィルムの損傷について、下記の評価基準により評価した。結果を表1に示す。
[ベースフィルムの帯電による破断]
蒸着中のベースフィルムの状態を目視で確認し、帯電による破断について評価した。
[ベースフィルムの熱負け]
蒸着中のベースフィルムの状態を目視で確認し、熱負けについて評価した。
【0030】
【表1】

Figure 0003818719
表1の結果から明らかなように、本発明の蒸着方法により蒸着されたベースフィルムは、いずれも熱負け、破断等の発生がなく、良好な結果が得られた。一方、遮蔽板の最小開口角度(θmin)が85°を上回る場合、走行するベースフィルムへ蒸着される金属量が少ないため2次電子による帯電の防止効果がほとんどなく、ベースフィルム走行中破断を防ぐことができなかった。また遮蔽板の最小開口角度(θmin)が65°を下回る場合、蒸発源からの輻射熱によりベースフィルムが熱的ダメージを受け、熱負けを発生した。
【0031】
【発明の効果】
以上詳述したように、本発明によれば、可撓性支持体(ベースフィルム)への強磁性金属の蒸着に際し、電子ビームの加速電圧を高めた場合においても、ベースフィルムの破断等を簡便に防止することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の蒸着方法に用いられる真空蒸着装置の一例を示す概略構成図である。
【図2】発明の最小開口角度(θmin)の説明図である。
【図3】比較1における最小開口角度(θmin)の態様を示す図である。
【符号の説明】
1 真空槽
2 繰出しロール
3 巻取りロール
4 可撓性支持体(ベースフィルム)
5 冷却ドラム
6 電子銃
7 電子ビーム
8 るつぼ
9 遮蔽板
9a 前遮蔽板
9b 後遮蔽板
10 蒸着用金属
11 蒸気金属の蒸気流[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor deposition method on a flexible support, and particularly in the case of increasing the acceleration voltage of an electron beam during the deposition of a ferromagnetic metal on a flexible support (base film) in the production of a magnetic recording medium or the like. The present invention also relates to a vapor deposition method on a flexible support that can easily prevent breakage of the base film.
[0002]
[Prior art]
Conventionally, in the production of magnetic recording media and the like, for example, when forming a magnetic recording layer, a long flexible support (base film) is coated with a ferromagnetic metal such as Co, Co-Ni alloy, and other Co alloys. Is deposited by vapor deposition to form a metal thin film (magnetic recording layer).
[0003]
In such a metal vapor deposition method, for example, in a vacuum chamber, a base film fed from a feed roll is transported along the surface of the cooling drum, and the metal to be deposited is kept under a predetermined pressure when transporting the surface of the cooling drum. A high energy electron beam is irradiated, a metal film is deposited on the base film at a predetermined angle to form a metal thin film, and this is wound up by a winding roll.
[0004]
Conventionally, in such a vapor deposition method, for example, a container such as a crucible in which a metal for vapor deposition is placed is spaced apart from the cooling drum and an openable / closable shielding plate in a vacuum chamber, and an electron beam is applied to the metal for vapor deposition. Until the vapor deposition is possible, that is, until the amount of evaporation of the metal reaches a desired amount, the shielding plate is completely closed, and the shielding plate is not opened until the desired amount of metal evaporation is reached. It opened for vapor deposition and the metal vapor was vapor-deposited on the base film from this opening part.
[0005]
By the way, in recent years, higher performance, higher accuracy, and higher productivity of magnetic recording media have been required, and the acceleration voltage of the electron beam has been further increased. For example, from the conventional power of about 20-30 kV to about 40-50 kV. Vapor deposition is being carried out with an electron beam of the power of.
[0006]
However, when the acceleration voltage of the electron beam is increased, the shielding plate is closed until the evaporation amount of the metal reaches a desired amount by irradiating the evaporation metal with the electron beam as in the conventional case, and the evaporation amount of the metal. When the shielding plate is opened for the first time after the desired amount is reached and metal vapor is deposited on the flexible support through this opening, the amount of charge on the flexible support is affected by the secondary electrons of the electron beam. Increases, discharge occurs when leaving the cooling drum, scratches enter the end face of the flexible support, and the flexible support breaks. Therefore, in order to prevent charging, methods such as providing an antistatic / static discharge device before and after the cooling drum, or removing static electricity by applying vibration to the flexible support have been performed. The effect which can be fully satisfied has not been obtained yet.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and particularly in the case of increasing the acceleration voltage of an electron beam during the deposition of a ferromagnetic metal on a flexible support (base film) in the manufacture of a magnetic recording medium or the like. Another object of the present invention is to provide a vapor deposition method on a flexible support that can easily prevent breakage of the base film.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors completely closed the shielding plate as in the prior art until the deposition metal can be deposited by irradiating an electron beam, It completely shields between the metal substrate vapor atmosphere and the flexible support that is the substrate to be vapor-deposited on the cooling drum, opens the shielding plate for the first time at the start of vapor deposition, and flexes the metal vapor from the opening. Rather than depositing on the support, the flexible support can be deposited by irradiating the metal with an electron beam and opening the shielding plate to a certain extent until the metal evaporation reaches the desired amount. In a metal vapor atmosphere, and then, during the main vapor deposition, the opening of the shielding plate was opened to a predetermined extent for the main vapor deposition, and the vapor deposition was started to obtain the knowledge that the above problem could be solved. Based on this, the present invention has been completed.
[0009]
That is, the present invention accommodates a cooling drum that conveys a flexible support along its surface, a shield plate that can be opened and closed, and a metal for vapor deposition that is spaced apart from the cooling drum via the shield plate. In a vacuum chamber equipped with a crucible, the metal for deposition on the crucible is irradiated with an electron beam, and the metal is applied to the surface of the flexible support conveyed along the surface of the cooling drum from the opening of the shielding plate. In the vapor deposition method on the flexible support to be vapor-deposited, an electron beam is irradiated onto the metal for vapor deposition, and the shielding plate is opened until the vaporization amount of the metal for vapor deposition in the crucible reaches a desired amount. The minimum opening angle (θmin) between the line connecting the opening and the metal for vapor deposition and the contact between the cooling drum and the line connecting the contact and the center of the cooling drum is 65 ° to 85 °. And then the amount of metal evaporation is Predetermined extent opening the shielding plate after reaching the amount, and wherein the depositing a metal on the flexible support surface through the opening, the method relates to the deposition of the flexible support.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings.
[0011]
FIG. 1 is an explanatory view showing an example of the vapor deposition method of the present invention. In FIG. 1, a feed roll 2, a cooling drum 5, and a take-up roll 3 are disposed in a vacuum chamber 1, and a flexible support (base film) 4 fed from the feed roll 2 is arranged in the direction of the arrow. It is conveyed along the rotating cooling drum 5 and is wound around the winding roll 3.
[0012]
A shield plate 9 that can be freely opened and closed is disposed outside the cooling drum 5 at a predetermined position. A container (crucible) 8 containing the metal 10 for vapor deposition and the electron beam 7 are applied to the metal 10 for vapor deposition via the shield plate 9. Is disposed.
[0013]
Then, the evaporation metal 10 accommodated in the crucible 8 is melted by irradiating the electron beam 7 generated from the electron gun 6, and the generated metal vapor becomes a vapor flow 11 from the opening of the shielding plate 9. Then, it is deposited on the base film 4 running on the cooling drum 5 to form a magnetic thin film.
[0014]
Here, the configuration of the shielding plate 9 is not particularly limited as long as it is openable and closable and opens to a desired extent during metal deposition. In the figure, a configuration including a front shielding plate 9a and a rear shielding plate 9b is illustrated, and at the time of shielding, the rear end portion of the front shielding plate 9a and the front end portion of the rear shielding plate 9b are in contact with each other, and the cooling drum 5 The upper base film 4 and the deposition metal 10 are blocked. At the time of opening, the rear end portion of the front shielding plate 9a and the front end portion of the rear shielding plate 9b are spaced apart and opened. The front shielding plate 9a and the rear shielding plate 9b are made of, for example, a steel plate such as “SUS 304”, and the opening / closing means of the shielding plate can be performed by, for example, a rack and pinion, but is not limited thereto. Of course, it is not a thing. Further, conventionally known materials can be used for the material of the shielding plate and the opening / closing means.
[0015]
In such a vacuum deposition method, the conventional shielding plate 9 is closed until the deposition metal 10 in the crucible 8 is melted and the metal evaporation amount reaches a desired amount, and the base film 4 is placed in a metal vapor atmosphere. Although not exposed, in the present invention, as shown in FIG. 2, during the period from the start of metal melting (at the start of electron beam irradiation) until the amount of metal evaporation reaches a desired level, the shielding plate 9 is used. And the degree of the opening is determined by the contact (S) between the line connecting the opening and the metal for vapor deposition 10 and the cooling drum 5, the contact (S) and the center (O) of the cooling drum 5. It is characterized in that the minimum opening angle (θmin) formed by the line connecting the lines is maintained at 65 ° to 85 °. By setting in this way, it is possible to prevent the occurrence of defective products (breakage or the like) during vapor deposition, and it is possible to reduce the manufacturing loss.
[0016]
Here, when the minimum opening angle (θmin) exceeds 85 °, problems such as breakage of the base film due to discharge at the time of peeling from the cooling drum occur, as in the state where the conventional shielding plate is closed, If it is less than 65 °, the opening area becomes large, so that the base film breaks due to heat loss due to radiant heat or the like.
[0017]
In the present invention, “until the evaporation metal is irradiated with an electron beam and the evaporation amount of the evaporation metal in the crucible reaches a desired amount” is defined as follows. That is, when the melting of the metal for vapor deposition is started by irradiating the electron beam, the melted metal portion in the crucible is evaporated, while the remaining unmelted metal portion proceeds in parallel. While the evaporation of the molten metal and the melting of the unmelted metal are performed in parallel, the evaporation rate of the metal is not constant but gradually increases, but generally all the metal in the crucible is completely When melted, a certain amount of evaporation is obtained by the input power of the electron beam, and the metal evaporation rate becomes a constant rate. Specifically, “until the deposition metal is irradiated with an electron beam and the evaporation amount of the deposition metal in the crucible reaches a desired amount” means that a constant rate of this metal evaporation is obtained from the start of the electron beam irradiation. It means until it is done. This constant metal evaporation rate is set in consideration of various requirements such as the traveling speed of the base film, the size of the vacuum chamber, and the amount of metal contained in the crucible according to the required metal deposition thickness. be able to. This constant speed is generally the preferred production scale if 1 m 2 per 5000 Na / sec or more, but is not limited thereto.
[0018]
While the minimum opening angle (θmin) is kept at 65 ° to 85 °, the traveling speed of the base film 4 does not cause a loss of product, and radiant heat due to the shielding plate 9 being opened to a certain extent. What is necessary is just to set in the range which is not influenced, Usually, if it is set to the value of about 3-50 m / min about 1/10 of the conveyance speed (100-200 m / min) at the time of vapor deposition. Good. Further, this speed can be appropriately changed, for example, constant while the shielding plate is opened, or by sequentially increasing the speed in accordance with the degree of metal melting (change in the amount of metal evaporation).
[0019]
Next, after the metal evaporation amount reaches a desired amount, the shielding plate is opened to a predetermined extent, and the metal is vapor-deposited from the opening portion onto the surface of the flexible support. However, the opening amount of the shielding plate during the main vapor deposition may be as large as the minimum opening angle (θmin) when the metal is melted, or may be narrowed or widened.
[0020]
In the present invention, conventionally known vapor deposition apparatuses, vapor deposition metals or alloys, base films, and the like can be used.
[0021]
Examples of the base film (flexible support) include a plastic film such as polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamideimide, polyimide, and a long flexible support made of paper or metal foil. There are no particular restrictions. Further, the base film may be one in which various treatment layers are formed in advance.
[0022]
Although it does not specifically limit as a metal for vapor deposition, A ferromagnetic metal etc. are mentioned. Of these, metals containing cobalt, cobalt alloys, Fe, and Cr are preferably used. In particular, cobalt and cobalt alloys are preferably used, but are not limited thereto.
[0023]
【Example】
Next, an Example is given and this invention is demonstrated in detail.
[0024]
Example 1
After the pressure in the vacuum chamber 1 in FIG. 1 is set to 1 × 10 −4 Torr or less, the shielding plate 9 is set to have a minimum opening angle (θmin) of 85 ° shown in FIG. 2 and cobalt (8) in the magnesia crucible ( Co) is irradiated with an electron beam 7 having a power of 40 kV by an electron gun 6 to start melting, and a polyester base film (thickness 7 μm) is formed as a base film 4 on a cooling drum 5 having a diameter of 1 m at a speed of 10 m / min. When the metal evaporation amount reaches 5000 na / sec per 1 m 2, the base film 4 is increased in traveling speed to 100 m / min for vapor deposition to form a metal thin film (film thickness 0.2 μm). ) Was formed.
[0025]
Example 2
In Example 1, vapor deposition was performed in the same manner as in Example 1 except that the minimum opening angle (θmin) was set to 70 °.
[0026]
Example 3
In Example 1, vapor deposition was performed in the same manner as in Example 1 except that the minimum opening angle (θmin) was 65 °.
[0027]
Comparative Example 1
In Example 1, vapor deposition was performed in the same manner as in Example 1 except that the minimum opening angle (θmin) was 90 ° (FIG. 3).
[0028]
Comparative Example 2
In Example 1, vapor deposition was performed in the same manner as in Example 1 except that the minimum opening angle (θmin) was 60 °.
[0029]
The steam examples 1 to 3 and comparative examples 1 and 2 were evaluated for the charging of the base film and the damage to the base film according to the following evaluation criteria. The results are shown in Table 1.
[Breakage due to electrification of base film]
The state of the base film during vapor deposition was visually confirmed and evaluated for breakage due to charging.
[Heat loss of base film]
The state of the base film during vapor deposition was visually confirmed and evaluated for heat loss.
[0030]
[Table 1]
Figure 0003818719
As is clear from the results in Table 1, all the base films deposited by the vapor deposition method of the present invention did not lose heat and did not break, and good results were obtained. On the other hand, when the minimum opening angle (θmin) of the shielding plate exceeds 85 °, the amount of metal deposited on the traveling base film is small, so there is almost no effect of preventing charging by secondary electrons, and breakage during traveling of the base film is prevented. I couldn't. Further, when the minimum opening angle (θmin) of the shielding plate was less than 65 °, the base film was thermally damaged by the radiant heat from the evaporation source, and heat loss was generated.
[0031]
【The invention's effect】
As described above in detail, according to the present invention, when a ferromagnetic metal is deposited on a flexible support (base film), the base film can be easily broken even when the acceleration voltage of the electron beam is increased. There is an effect that it can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a vacuum vapor deposition apparatus used in a vapor deposition method of the present invention.
FIG. 2 is an explanatory diagram of a minimum opening angle (θmin) of the invention.
FIG. 3 is a diagram showing an aspect of a minimum opening angle (θmin) in comparison 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Feeding roll 3 Winding roll 4 Flexible support body (base film)
5 Cooling drum 6 Electron gun 7 Electron beam 8 Crucible 9 Shielding plate 9a Front shielding plate 9b Rear shielding plate 10 Metal for vapor deposition 11 Vapor flow of vapor metal

Claims (1)

可撓性支持体をその表面に沿わせて搬送する冷却ドラムと、開閉自在な遮蔽板と、該遮蔽板を介して前記冷却ドラムと離隔配置された蒸着用金属を収容したるつぼとを備えた真空槽内において、るつぼ内の蒸着用金属に電子ビームを照射して、遮蔽板の開口部から前記冷却ドラムの表面に沿って搬送される可撓性支持体表面に金属を蒸着させる可撓性支持体への蒸着方法において、前記蒸着用金属に電子ビームを照射し、るつぼ内の蒸着用金属の蒸発量が所望量となるまでの間、遮蔽板を開口するとともに、この開口の程度を、該開口部と蒸着用金属とを結ぶ線と冷却ドラムとの接点と、該接点と冷却ドラムの中心とを結ぶ線とがなす最小開口角度(θmin)が65°〜85°となるように保ち、次いで、金属蒸発量が所望量となった後に遮蔽板を所定の程度開口し、この開口部から可撓性支持体表面に金属を蒸着させることを特徴とする、可撓性支持体への蒸着方法。A cooling drum that conveys the flexible support along the surface thereof, a shield plate that can be freely opened and closed, and a crucible containing a metal for vapor deposition that is spaced apart from the cooling drum via the shield plate. In a vacuum chamber, the metal for vapor deposition is deposited on the surface of the flexible support that is conveyed along the surface of the cooling drum from the opening of the shielding plate by irradiating the metal for vapor deposition in the crucible with an electron beam. In the vapor deposition method on the support, an electron beam is applied to the metal for vapor deposition, and the shielding plate is opened until the evaporation amount of the metal for vapor deposition in the crucible reaches a desired amount. The minimum opening angle (θmin) formed by the line connecting the opening and the metal for vapor deposition and the contact point between the cooling drum and the line connecting the contact point and the center of the cooling drum is kept at 65 ° to 85 °. Then, after the amount of metal evaporation reaches the desired amount, The plate was given degree opening, and wherein the depositing a metal on the flexible support surface through the opening, depositing method to the flexible support.
JP04010397A 1997-02-07 1997-02-07 Vapor deposition method on flexible support Expired - Fee Related JP3818719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04010397A JP3818719B2 (en) 1997-02-07 1997-02-07 Vapor deposition method on flexible support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04010397A JP3818719B2 (en) 1997-02-07 1997-02-07 Vapor deposition method on flexible support

Publications (2)

Publication Number Publication Date
JPH10219433A JPH10219433A (en) 1998-08-18
JP3818719B2 true JP3818719B2 (en) 2006-09-06

Family

ID=12571535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04010397A Expired - Fee Related JP3818719B2 (en) 1997-02-07 1997-02-07 Vapor deposition method on flexible support

Country Status (1)

Country Link
JP (1) JP3818719B2 (en)

Also Published As

Publication number Publication date
JPH10219433A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
US4543275A (en) Method of forming thin vapor deposited film of organic material
EP0041850B1 (en) A method of vacuum depositing a layer on a plastics film substrate
EP0046090B1 (en) Process fpr producing a magnetic recording medium
US6852362B2 (en) Film vapor deposition method
JP3818719B2 (en) Vapor deposition method on flexible support
JPS6312939B2 (en)
JP2003308609A (en) Manufacturing method and manufacturing apparatus for recording medium, and recording medium
JPH04155623A (en) Method and apparatus for manufacturing magnetic recording medium
JPS6112992B2 (en)
JPH0798868A (en) Production of magnetic recording medium
JPH06173003A (en) Vapor-deposition device
JPH02137126A (en) Production of magnetic recording medium
JP2000030964A (en) Device and method for manufacturing magnetic recording medium
JPH0762536A (en) Film forming device
JPH08315359A (en) Production of metal thin film type magnetic recording medium and producing device therefor
JPH0221052B2 (en)
JPS5920468A (en) Vapor deposition method
JP3465354B2 (en) Thin film forming equipment
JPH10112024A (en) Production of magnetic recording medium and producing device therefor
JPH0668839B2 (en) Magnetic recording medium manufacturing equipment
JPH11200044A (en) Substrate discharging device in vacuum device
JPH04321208A (en) Vacuum vapor depositing device and method therefor
JP2000339676A (en) Manufacture and manufacturing device of magnetic recording medium
JPH01275747A (en) Manufacture of thin metallic film
JPH04182933A (en) Production of magnetic recording medium and production of material to be vacuum-deposited

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees