JPS5920468A - Vapor deposition method - Google Patents

Vapor deposition method

Info

Publication number
JPS5920468A
JPS5920468A JP13082282A JP13082282A JPS5920468A JP S5920468 A JPS5920468 A JP S5920468A JP 13082282 A JP13082282 A JP 13082282A JP 13082282 A JP13082282 A JP 13082282A JP S5920468 A JPS5920468 A JP S5920468A
Authority
JP
Japan
Prior art keywords
electron beam
vapor deposition
vessel
acceleration voltage
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13082282A
Other languages
Japanese (ja)
Other versions
JPS6147221B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13082282A priority Critical patent/JPS5920468A/en
Publication of JPS5920468A publication Critical patent/JPS5920468A/en
Publication of JPS6147221B2 publication Critical patent/JPS6147221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enable inexpensively the production of a vapor-deposited thin film which is stable for a long time, by maintaining the acceleration voltage for electron beams for heating and evaporating higher by a specified value or above than the acceleration voltage of an electron beam for heating and melting a vapor deposition material to be supplied to a vessel for an evaporating source. CONSTITUTION:A vessel 3 of an evaporating source is formed as a vessel having the long axis in parallel with the transverse direction of a substrate 2 under movement, and preventive plates 7, 7 for sticking of splashes are provided in the stage vapor depositing orthogonally a vapor deposition material evaporating from a vessel for an evaporating source 3 onto the substrate 2 while sending the substrate 2 through intermediate rolls 10 along a cylindrical can 1 then moving though a shaft 8 to a take up shaft 9. A wire-like vapor deposition material 4 to be supplied to said vessel 3 is heated and melted with an electron beam 6 for melting, and is further heated and evaporated with an electron beam 5 for evaporation. Said electron beams are so controlled as to satisfy the conditions EV- EM>5kV where the acceleration voltage of the beam 6 for melting is designated as EMkV and the acceleration voltage of the beam 5 for evaporation EVkV.

Description

【発明の詳細な説明】 本発明は、金属薄膜型磁気記録媒体や、他の機能薄膜を
連続して長時間安定に生産するに適した蒸着方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor deposition method suitable for continuously and stably producing metal thin film type magnetic recording media and other functional thin films over a long period of time.

広幅の高分子成形物基板上に、Go 、 Co合金等を
酸素雰囲気中で斜め蒸着して、高密度記録に適した媒体
を製造する技術が、磁気テープの新しい製造技術として
注目されている。
A technique for producing a medium suitable for high-density recording by diagonally depositing Go, Co alloy, etc. on a wide polymer molded substrate in an oxygen atmosphere is attracting attention as a new manufacturing technique for magnetic tape.

これに用いられる蒸発方法としては、耐火物を容器とし
た、電子ビーム加熱式のものが良いとされている。
As the evaporation method used for this purpose, it is said that an electron beam heating type using a refractory container is preferable.

この方法で、連続して長尺ものへの蒸着を行う上で、当
然行われなければならない要件として、蒸発材料の補給
がある。
In order to perform continuous vapor deposition on a long object using this method, it is necessary to replenish the evaporation material.

その場合、電子ビームの制御性の良さに着目して、供給
材料への電子ビームの照射と、蒸発溶湯面への照射とを
、偏向磁界を工夫することでひとつの電子ビーム発生器
で行う方法と、溶解供給専用に別に電子ビーム発生器を
設ける方法の2種類が、当然考えられる。
In this case, focusing on the good controllability of the electron beam, there is a method that irradiates the feed material with the electron beam and the surface of the evaporated molten metal using a single electron beam generator by devising a deflection magnetic field. Naturally, there are two possible methods: 1) and a method in which a separate electron beam generator is provided exclusively for melting and supply.

しかしこれらは、これまで具体的に実施された例がなく
、そこで本発明者が両者について実施したところ、前者
は、蒸発が不安定になることと、溶解供給位置が蒸発域
と溶解域とをひとつの電子ビームの走査で加熱すること
から、蒸発域の端部と極めて近くなシ、この結果スプラ
ッシュの影響を受け、ピンホールの多数の発生、または
基板に穴があくなど、磁気記録媒体の製造に不都合が生
じやすく、また、後者は設備コストの高くなる点と、溶
解専用の電子ビーム発生器の真空放電が蒸発用の電子ビ
ーム発生器の真空放電全誘発しやすいという欠点が明ら
かになった。
However, there have been no concrete examples of these being implemented to date, so the present inventor conducted experiments on both, and found that in the former case, evaporation becomes unstable and the melting and supplying position is located between the evaporation region and the dissolution region. Since heating is performed by scanning a single electron beam, the area very close to the edge of the evaporation zone is affected by splash, resulting in many pinholes or holes in the substrate. It has become clear that manufacturing is more likely to be inconvenient, the latter increases equipment costs, and the vacuum discharge of the electron beam generator used exclusively for melting is likely to induce a full vacuum discharge of the electron beam generator used for evaporation. Ta.

本発明は、後者の欠点をなくすためになされたもので、
その要旨とするところは、蒸発用の電子ビームの加速電
圧1Ev(KV〕とし、溶解供給用の電子ビームの加速
電圧kEM[:KV〕とすると、Ev−EM)5 (K
V)の関係を満たす条件で蒸発源を加熱し蒸発せしめる
ものである。
The present invention was made to eliminate the latter drawback.
The gist is that if the acceleration voltage of the electron beam for evaporation is 1Ev (KV) and the acceleration voltage of the electron beam for melt supply is kEM[:KV], then Ev-EM)5 (K
The evaporation source is heated and evaporated under conditions that satisfy the relationship V).

以下に具体的に本発明の実施例を図面を用い説明する。Embodiments of the present invention will be specifically described below with reference to the drawings.

〔実施例1〕 図に示すように円筒状キャン1(直径1 m、幅7oc
m)にre ッて6o m/min の速度で移動する
ポリエチレンテレフタレートフィルム基板2(厚さ1o
、ts μm )上に、2XIQTOrrの酸素雰囲気
中で、co s o%、N12o%の磁性層を最小入射
角46°で0.1μmの厚さに形成した。蒸発源容器3
はZrO2製で、内容積は2.54である。蒸着材料と
してGo 80%、Ni2O%からなる直径1.5mm
のワイヤ4を供給することとし、寸だ蒸発用の電子ビー
ム5の加速電圧EvをEv = 30 (KV”J、溶
解用の電子ビーム6の加速電圧EMkEM=20(KV
)とした。
[Example 1] As shown in the figure, a cylindrical can 1 (diameter 1 m, width 7 oc
A polyethylene terephthalate film substrate 2 (thickness 1 o m) moving at a speed of 6 o m/min
, ts μm), a magnetic layer of coso% and N12o% was formed to a thickness of 0.1 μm at a minimum incident angle of 46° in an oxygen atmosphere of 2XIQTOrr. Evaporation source container 3
is made of ZrO2 and has an internal volume of 2.54. 1.5 mm diameter made of 80% Go and Ni2O% as vapor deposition material
The acceleration voltage Ev of the electron beam 5 for short evaporation is Ev = 30 (KV"J, and the acceleration voltage EMkEM of the electron beam 6 for melting is 20 (KV"J).
).

なお図における7はスプラッシュの影響を抑制するだめ
の防着板、8は送り出し軸、9は巻取シ軸、10は中間
ローラーである。
In the figure, 7 is an adhesion prevention plate for suppressing the influence of splash, 8 is a feeding shaft, 9 is a winding shaft, and 10 is an intermediate roller.

蒸着長さは9000 mとし、6回実施した。The deposition length was 9000 m, and the deposition was performed six times.

下表は、以上の実施例における放電状況をまとめて示す
ものである。
The table below summarizes the discharge conditions in the above examples.

(以下余白) この表より、溶解用の放電頻度がスプラッシュの影響を
主として受けて多いのにもかかわらず、その放電の影響
を蒸発用の電子ビーム発生器は、殆んど受けてないこと
が理解される。
(Left below) This table shows that although the frequency of discharge for melting is mainly affected by splash, the electron beam generator for evaporation is hardly affected by the discharge. be understood.

これに対して、Ev=3oKV 、EM=30KVで実
施しだ場合は、80%近い影響を受けた。
On the other hand, when the test was carried out at Ev=3oKV and EM=30KV, the effect was nearly 80%.

〔実施例2〕 実施例1におけるワイヤの代わりに、棒(直径、! 32mm)を供給材として用い、EV=40KV 。[Example 2] Instead of the wire in Example 1, a rod (diameter, ! 32mm) as the feed material, EV=40KV.

ξ−3QKVで他の条件は実施例1と同じ条件と ゛し
実施した。その結果を下の表に示す。
The experiment was carried out using ξ-3QKV with the other conditions being the same as in Example 1. The results are shown in the table below.

一方Ev =401CV 、 ’Kw =40K V 
f実施スルト影響受けた放電は9o%あった。他の多く
の組み合わせで、影響を受ける率をまとめたところEV
−E、の値と強い相関性をもち、他の条件とはほとんど
相関性がなかった。
On the other hand, Ev = 401CV, 'Kw = 40K V
The discharge affected by f-implementation was 90%. A summary of the affected rates for many other combinations shows EV
There was a strong correlation with the value of -E, and almost no correlation with other conditions.

なお以上のことは、基本的な条件として、スプラッシュ
の少ない材料を用いることが当然性われた上でのことで
ある。
Note that the above is based on the basic condition that a material with little splash should be used.

さて以上のことから、Ev−EMが5KV以上あれば、
蒸発側の放電のうち溶解側の影響を受けた放電の割合が
、10%以下に抑えられる。そして好1しくは10KV
以上の差をもたせることで、相互干渉をより抑制できる
といえる。
Now, from the above, if Ev-EM is 5KV or more,
The proportion of discharges affected by the dissolution side among the discharges on the evaporation side is suppressed to 10% or less. And preferably 10KV
By providing the above difference, it can be said that mutual interference can be further suppressed.

なおここで、蒸発用にしても、溶解用にしてもエネルギ
ー効率を良くするために、ビームを集束しやすい条件を
選択することになり、そこで勢い高い加速電圧を選ぶこ
とになり、結果的に放電が起った時には逆に放電のエネ
ルギーが大きくなシ、以上のことから複数台の電子ビー
ム発生器を隣接して用いると、相互干渉を誘発しやすい
ことに上述の条件範囲が存在しているものと考えられる
Here, in order to improve energy efficiency whether for evaporation or melting, conditions are selected that make it easy to focus the beam, and a high acceleration voltage is selected, resulting in Conversely, when a discharge occurs, the energy of the discharge is large.For this reason, when multiple electron beam generators are used adjacently, mutual interference is likely to occur within the range of conditions described above. It is thought that there are.

以上のように本発明によると蒸着を安定に行うことが可
能となる。
As described above, according to the present invention, it is possible to perform vapor deposition stably.

なお本発明は1例えばSlの蒸着、イオンブレーティン
グ等と組み合わせた他の材料の蒸着等においても充分そ
の効果を発揮するものである。
Note that the present invention is sufficiently effective in the vapor deposition of other materials in combination with, for example, evaporation of Sl, ion blating, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例において用いられた蒸着装置の要部
の斜視図である。 1・・・・・・円筒状キャン、2・・・・・・基板、3
・・・・・蒸発源容器、5・・・・・・蒸発用電子ビー
ム、6・・・・・・溶解用電子ビーム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ン ) 315 グ(O )
The figure is a perspective view of the main parts of a vapor deposition apparatus used in an example of the present invention. 1... Cylindrical can, 2... Substrate, 3
... Evaporation source container, 5 ... Electron beam for evaporation, 6 ... Electron beam for dissolution. Name of agent: Patent attorney Toshio Nakao and one other person) 315 (O)

Claims (1)

【特許請求の範囲】 移動中の基板の幅方向と平行な方向に長軸を有する容器
中に供給された蒸着材料を溶解用の電子ビームの照射に
より加熱溶解し、さらに、溶解した蒸着材料を蒸発用の
電子ビームの照射により加熱蒸発せしめて上記基板上に
蒸着膜を形成するに際し、上記溶解用の電子ビームの加
速電圧iEM〔Kv〕、上記蒸発用の電子ビームの加速
電圧をEvCKv〕とすると、Ev−EM>5 (KV
:]の条件を満たすようにすることを特徴とする蒸着方
法。
[Claims] A vapor deposition material supplied in a container having a long axis in a direction parallel to the width direction of a moving substrate is heated and melted by irradiation with a melting electron beam, and further the melted vapor deposition material is When forming a deposited film on the substrate by heating and evaporating it by irradiation with an evaporation electron beam, the acceleration voltage of the melting electron beam is iEM [Kv], and the acceleration voltage of the evaporation electron beam is EvCKv]. Then, Ev-EM>5 (KV
A vapor deposition method characterized by satisfying the following conditions:
JP13082282A 1982-07-27 1982-07-27 Vapor deposition method Granted JPS5920468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13082282A JPS5920468A (en) 1982-07-27 1982-07-27 Vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13082282A JPS5920468A (en) 1982-07-27 1982-07-27 Vapor deposition method

Publications (2)

Publication Number Publication Date
JPS5920468A true JPS5920468A (en) 1984-02-02
JPS6147221B2 JPS6147221B2 (en) 1986-10-17

Family

ID=15043520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13082282A Granted JPS5920468A (en) 1982-07-27 1982-07-27 Vapor deposition method

Country Status (1)

Country Link
JP (1) JPS5920468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214424A (en) * 1988-06-30 1990-01-18 Sony Corp Production of magnetic recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100581A (en) * 2011-11-09 2013-05-23 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214424A (en) * 1988-06-30 1990-01-18 Sony Corp Production of magnetic recording medium

Also Published As

Publication number Publication date
JPS6147221B2 (en) 1986-10-17

Similar Documents

Publication Publication Date Title
EP0041850B1 (en) A method of vacuum depositing a layer on a plastics film substrate
EP0046090B1 (en) Process fpr producing a magnetic recording medium
CN100487156C (en) Metal plate belt vacuum film coating equipment
JPH02194167A (en) Vacuum arc evaporation device
JPS5920468A (en) Vapor deposition method
JPS6312939B2 (en)
JPH04198474A (en) Ion plating method and device
JP4019457B2 (en) Arc type evaporation source
CN2934268Y (en) Metal plate belt vacuum film coating equipment
JP3409874B2 (en) Ion plating equipment
JPH01263265A (en) Vacuum arc deposition method
JPH0798861A (en) Production of magnetic recording medium
JP2898652B2 (en) Evaporator for ion plating
JP4019464B2 (en) Arc type evaporation source
JPH0798868A (en) Production of magnetic recording medium
JP3818719B2 (en) Vapor deposition method on flexible support
JPH02137126A (en) Production of magnetic recording medium
JPH01275747A (en) Manufacture of thin metallic film
JPH0757260A (en) Device for producing magnetic recording medium
JPS60184674A (en) Vacuum device for forming continuous thin film
JPH0668839B2 (en) Magnetic recording medium manufacturing equipment
JPH11335837A (en) Magnetic medium producing device
JPH02239428A (en) Production of metal thin film
JPH01286119A (en) Manufacture of magnetic recording medium
JPH09143688A (en) Crucible for vacuum deposition