JPH01263265A - Vacuum arc deposition method - Google Patents

Vacuum arc deposition method

Info

Publication number
JPH01263265A
JPH01263265A JP9074188A JP9074188A JPH01263265A JP H01263265 A JPH01263265 A JP H01263265A JP 9074188 A JP9074188 A JP 9074188A JP 9074188 A JP9074188 A JP 9074188A JP H01263265 A JPH01263265 A JP H01263265A
Authority
JP
Japan
Prior art keywords
cathode
substrate
arc
vacuum arc
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9074188A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamagaki
浩 玉垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9074188A priority Critical patent/JPH01263265A/en
Publication of JPH01263265A publication Critical patent/JPH01263265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a high quality film contg. no molten particles and having superior strength and durability by vacuum arc deposition by specifying the surface temp. of the cathode and the partial pressure of introduced gas and by forming a film on a substrate while forming a compd. having a high m.p. CONSTITUTION:Plasma particles are generated from an evaporating source (cathode) 2 in a vacuum chamber 1 by vacuum arc discharge and deposited on a substrate 8. In this vacuum arc deposition method, the surface of the cathode 2 is kept at 200 deg.C-the m.p. of the cathode material and the partial pressure of introduced gas for forming a compd. having a high m.p. is regulated to >=1X10<-4>Torr. A film is formed on the substrate 8 while forming the compd. on the surface of the cathode 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、混入する溶融粒子の数が少なく、たとえ混入
したとしてもその粒径が小さい良質膜を、基板上に能率
良く形成する真空アーク蒸着法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a vacuum arc method for efficiently forming a high-quality film on a substrate with a small number of molten particles mixed in, and even if they are mixed, the particle size is small. It relates to vapor deposition methods.

[従来の技術] 真空アーク蒸着法とは、真空アーク放電を利用して真空
チャンバー内の蒸発源(陰極)から陰極材料粒子を発生
させ、これをマイナスのバイアス電圧を印加した基板上
に堆積させる方法であり、蒸発源である陰極から高エネ
ルギーの陰極材料原子がプラズマビームとなって放出さ
れ、陰極と基板の間にかけられた電圧を受けて加速され
基板上に皮膜が形成される。この様に真空アーク蒸着法
の特長の1つは入射粒子のエネルギーが高い為、皮膜の
密度が高く、強度及び耐久性に優れた膜が得られる点で
あり、この点についてはCVD法等に比べて基板の強度
が低く抑えられることも寄与している。それにも増して
真空アーク蒸着法が実用的に注目される理由は成膜速度
が速い点であり、切削工具5ベアリング、ギア等の耐摩
耗性コーティングをはじめとして、電子部品、プリント
回路、光学・磁気装置等、種々の分野への利用が検討さ
れている。
[Prior art] Vacuum arc evaporation method uses vacuum arc discharge to generate cathode material particles from an evaporation source (cathode) in a vacuum chamber, and deposits them on a substrate to which a negative bias voltage is applied. In this method, high-energy cathode material atoms are emitted as a plasma beam from the cathode, which is an evaporation source, and are accelerated by the voltage applied between the cathode and the substrate, forming a film on the substrate. As described above, one of the features of the vacuum arc evaporation method is that the energy of the incident particles is high, so it is possible to obtain a film with high density and excellent strength and durability. Another contributing factor is that the strength of the substrate is kept low in comparison. The reason why the vacuum arc evaporation method is attracting attention for practical use is that it has a fast film formation speed, and is used for wear-resistant coatings on cutting tools, bearings, gears, etc., as well as electronic parts, printed circuits, optical equipment, etc. Its use in various fields, such as magnetic devices, is being considered.

[発明が解決しようとする課題] こうした真空アーク蒸着技術に関する公知技術としては
、特公昭58−3033や特公昭52−14690等の
公知の方法が提案されている。即ち特公昭58−303
3は、この分野における基本的な発明の1つであり、「
ソース物質と陽極との間にアーク放電を発生させ、ソー
ス物質の原子およびイオンよりなる粒子のビームを射出
し、この際各粒子にアーク放電用電流を供給して10〜
100電子ボルトの運動エネルギーを与え、上記粒子を
物体の表面上に堆積する」ことを要旨とするものがある
。又該特許公報においてはビームの指向性を高める為に
、陽極を円錐台筒状に形成してビーム指向方向を決定す
ると共に、その開口度及び拡径角度を制御することによ
ってビーム幅を規制した装置が開示され、さらに指向性
を高める為に磁界の利用が有効である旨記載している。
[Problems to be Solved by the Invention] As publicly known techniques related to such vacuum arc evaporation technology, known methods such as Japanese Patent Publication No. 58-3033 and Japanese Patent Publication No. 52-14690 have been proposed. Namely, Special Public Interest Publication No. 58-303
3 is one of the fundamental inventions in this field.
An arc discharge is generated between the source material and the anode, and a beam of particles consisting of atoms and ions of the source material is ejected, and an arc discharge current is supplied to each particle.
There is a method that provides kinetic energy of 100 electron volts to deposit the particles on the surface of an object. In addition, in this patent publication, in order to improve beam directivity, the anode was formed into a truncated conical tube shape to determine the beam direction, and the beam width was regulated by controlling its aperture and diameter expansion angle. A device is disclosed, and it is stated that the use of a magnetic field is effective in further increasing directivity.

又特公昭52−14690は、「冷却床に配置した金属
陰極、陰極の蒸発面に陰極点を発生させるトリガ電極、
排気チャンバー及びアーク電源を備える真空金属被覆装
置において、陽極が外囲器であり、陰極の蒸発面は外囲
器空間に面し、且つ陰極点保持装置が陰極の蒸発面を制
限しかつ陰極点かの蒸発面から非蒸発面へ転移するのを
妨げるように陰極の近くに配置されてなる」点に要旨を
有する真空金属被覆装置であり、上記構成を採用するこ
とにより(殊に陰極点保持装置のシールド部材を陰極の
非蒸発面を囲むように形成することにより)、非蒸発面
へのアークの転移を防止して陰極形成材料の利用率を向
上させている。
In addition, Japanese Patent Publication No. 52-14690 describes ``a metal cathode placed on a cooling bed, a trigger electrode that generates a cathode spot on the evaporation surface of the cathode,
In a vacuum metal coating apparatus equipped with an exhaust chamber and an arc power source, the anode is an envelope, the evaporation surface of the cathode faces the envelope space, and the cathode spot holding device limits the evaporation surface of the cathode and the cathode spot. This is a vacuum metal coating device that is arranged near the cathode so as to prevent the transition from the evaporation surface to the non-evaporation surface. By forming the shield member of the device to surround the non-evaporation surface of the cathode), transfer of the arc to the non-evaporation surface is prevented and the utilization rate of the cathode forming material is improved.

しかるに上記2つの公知技術を含めた従来の真空アーク
蒸着法においては、陰極蒸発面から発生するイオンや中
性子からなるプラズマ粒子の他に、陰極材料の溶融粒子
(マクロパーティクル。
However, in conventional vacuum arc evaporation methods including the above two known techniques, in addition to plasma particles consisting of ions and neutrons generated from the cathode evaporation surface, molten particles (macro particles) of the cathode material are produced.

マクロドロップレット等)が発生し、これが基板堆積膜
中に混入して膜表面粗度の悪化、密着力の低下を起し、
又反応性コーテイング膜の場合には溶融粒子が反応しな
いまま膜中にとり込まれるという事態が避けられない。
Macro droplets, etc.) are generated and mixed into the deposited film on the substrate, causing deterioration of the film surface roughness and reduction of adhesion.
Furthermore, in the case of a reactive coating film, it is unavoidable that molten particles are incorporated into the film without reacting.

この様な溶融粒子の発生はアークの安定性に大きく依存
するものであり、アーク安定性を高めることによってそ
の発生をかなり減少させることができるとされている。
The generation of such molten particles is largely dependent on the stability of the arc, and it is said that the generation can be significantly reduced by increasing the arc stability.

ところで上記特許公報にも記載される様に、l!l極と
陰極の間に発生するアークは、陰極上を動く小さなスポ
ットを流れる電流によって発生し、このアークスポット
は陰極上を迅速に移動する。一方アークスポットからの
プラズマ粒子放出機構は、溶融プールを伴なうようなも
のではないが、アークスポットには小さな溶融点が形成
され、アークスポットが8行するまでの瞬間的な時間の
間に溶融物質が蒸発及びイオン化してプラズマ粒子が形
成される。そして上記溶融点が増大し、且つ拡大すると
溶融粒子の発生が著しくなることから、皮膜への溶融粒
子の混入を減らそうとすると陰極面に生成する溶融点を
できる限り減少させることが望ましく、かかる観点から
陰極を冷却床の上に投首して裏面側から強制冷却し、陰
極面の溶融を制限する手段が一般に採用されている。し
かしながらこうした手段を採用するにもかかわらず従来
技術においては溶融粒子の発生並びに膜中への混入が避
けられず、膜表面粗度を悪化させると共に膜の密着力を
低下させ、膜質の悪化を招いていた。
By the way, as stated in the above patent publication, l! The arc that occurs between the l pole and the cathode is caused by a current flowing through a small spot moving over the cathode, and this arc spot moves quickly over the cathode. On the other hand, the plasma particle ejection mechanism from the arc spot does not involve a molten pool, but a small melting point is formed in the arc spot, and during the instantaneous time until the arc spot reaches 8 lines. The molten material evaporates and ionizes to form plasma particles. As the melting point increases and expands, the generation of molten particles becomes significant. Therefore, in order to reduce the incorporation of molten particles into the film, it is desirable to reduce the melting point generated on the cathode surface as much as possible. From this point of view, a method is generally adopted in which the cathode is hung on a cooling bed and forcedly cooled from the back side to limit melting of the cathode surface. However, in spite of adopting these measures, in the conventional technology, the generation of molten particles and their incorporation into the film cannot be avoided, which worsens the film surface roughness and reduces the adhesion of the film, leading to deterioration of the film quality. was.

本発明はこうした事情に着目してなされたものであって
、混入する溶融粒子の数が少なく、たとえ混入したとし
てもその粒径が小さい良質蒸着膜を、基板上に能率良く
形成し得る様な真空アーク蒸着法を提供することを目的
とするものである。
The present invention has been made in view of these circumstances, and it is possible to efficiently form a high-quality vapor deposited film on a substrate with a small number of mixed molten particles and, even if mixed, the particle size is small. The purpose is to provide a vacuum arc evaporation method.

[課題を解決するための手段] しかして本発明の真空アーク蒸着法は、真空チャンバー
内に配置した陽極と陰極の間にアークを発生させ、陰極
面から発生したプラズマ粒子を基板上に堆積させる真空
アーク蒸着法において、陰極表面温度を200℃以上、
陰極材料の融点未満に保持すると共に、真空チャンバー
内に陰極材料と反応して高融点化合物を形成するガスを
1 x 10”4Torr以上の分圧となる様に導入し
て陰極表面に高融点化合物層を形成しつつ、基板への成
膜を行なう点に要旨を有するものである。
[Means for Solving the Problems] According to the vacuum arc evaporation method of the present invention, an arc is generated between an anode and a cathode placed in a vacuum chamber, and plasma particles generated from the cathode surface are deposited on a substrate. In the vacuum arc evaporation method, the cathode surface temperature is set to 200°C or higher,
While keeping the temperature below the melting point of the cathode material, a gas that reacts with the cathode material to form a high melting point compound is introduced into the vacuum chamber at a partial pressure of 1 x 10''4 Torr or higher to form a high melting point compound on the cathode surface. The gist is that the film is deposited on the substrate while forming the layer.

[作用コ 萌述の様に陰極に対しては従来アーク安定性の向上等を
目的として水等の冷媒による強制冷却を採用するのが一
般的であり、陰極面温度は50℃程度に(少なくとも2
00℃までの低温に)抑えられていた。即ち陰極面を高
い温度にするとアークエネルギーの集中により陰極材料
が溶融し、多くの溶融物が形成されて溶融粒子が極めて
多く発生するためである。
[As mentioned above, it is common practice to use forced cooling of the cathode with a coolant such as water for the purpose of improving arc stability, and the cathode surface temperature is kept at around 50°C (at least 2
The temperature was kept low (down to 00°C). That is, when the cathode surface is heated to a high temperature, the cathode material melts due to the concentration of arc energy, and a large amount of melt is formed, resulting in an extremely large number of molten particles.

これに対し、本発明では真空チャンバー内に、陰極材料
と反応して陰極材料より高融点を有する化合物を形成す
る様なガスを導入して、陰極材料の蒸発面に高融点化合
物層を形成する。しかも本発明では陰極に対する冷却を
制限することによって陰極表面温度が200℃以上好ま
しくは500℃以上、融点以下に制御して陰極材料と導
入ガスの反応並びに反応生成物の拡散を促進する。特に
本発明では陰極表面温度が高いので反応生成物層の深部
への拡散が十分に進行し、陰極表面に厚さの大きな高融
点化合物層が形成される。この結果アークスポットから
プラズマ粒子を発生させる時の、スポット周辺の溶融部
が減少し、プラズマ粒子の発生を妨げることなく溶融粒
子の発生数を大幅に低減することができると共に、発生
する溶融粒子の粒径も小さくすることができる。
In contrast, in the present invention, a gas that reacts with the cathode material to form a compound having a higher melting point than the cathode material is introduced into the vacuum chamber to form a high melting point compound layer on the evaporation surface of the cathode material. . Moreover, in the present invention, by restricting the cooling of the cathode, the cathode surface temperature is controlled to 200° C. or more, preferably 500° C. or more, and below the melting point, thereby promoting the reaction between the cathode material and the introduced gas and the diffusion of the reaction product. In particular, in the present invention, since the cathode surface temperature is high, diffusion of the reaction product layer to the deep part proceeds sufficiently, and a thick high melting point compound layer is formed on the cathode surface. As a result, when plasma particles are generated from the arc spot, the molten area around the spot is reduced, and the number of molten particles generated can be significantly reduced without hindering the generation of plasma particles. The particle size can also be reduced.

こうした本発明の作用効果を確実に得る為には陰極表面
温度を200℃以上(好ましくは500℃以上)にする
必要があり、2oo℃未満では陰極材料とガスとの反応
並びに反応生成物の拡散が不十分となる。一方陰極表面
温度をあまりに高くすると、陰極材料の溶解あるいは溶
は落ちが発生するので陰極表面温度は陰極材料の融点以
下に制限しなければならない。尚陰極表面温度を制御す
る手段については特に制限を設けるものではないが、ア
ークエネルギーが蓄積して陰極温度は次第に上昇するの
で積極的な加熱は必要ではなく、強制冷却機構等による
陰極冷却度合を調整すればよく、該制御手段としては例
えば間接冷却を採用したり、熱伝導性の良くない材料か
らなる冷却構造体を使用する等の手段を適用することが
できる。
In order to reliably obtain the effects of the present invention, the cathode surface temperature needs to be 200°C or higher (preferably 500°C or higher), and if it is lower than 200°C, the reaction between the cathode material and the gas and the diffusion of the reaction products will occur. becomes insufficient. On the other hand, if the cathode surface temperature is too high, the cathode material may melt or melt, so the cathode surface temperature must be limited to below the melting point of the cathode material. There are no particular restrictions on the means for controlling the cathode surface temperature, but as arc energy accumulates and the cathode temperature gradually rises, active heating is not necessary, and the degree of cathode cooling using a forced cooling mechanism, etc. It is only necessary to make adjustments, and as the control means, for example, means such as indirect cooling or the use of a cooling structure made of a material with poor thermal conductivity can be applied.

さらに陰極の厚さを増加させ、熱流抵抗を大きくするこ
とによっても実現することができる。
This can also be achieved by increasing the thickness of the cathode and increasing the heat flow resistance.

又真空チャンバー内へ導入する高融点化合物形成用ガス
の導入圧力については、真空チャンバー内に残存する空
気や別途導入することのある不活性ガスの圧力を除いた
分圧でI X 10−4Torr以上、より好ましくは
1 x 1O−3Torr以上に設定する必要があり、
これよりガス分圧が低い場合には反応性ガスの不足によ
って高融点化合物を十分に形成することができない。
The pressure of the high melting point compound forming gas introduced into the vacuum chamber must be I x 10-4 Torr or more, excluding the air remaining in the vacuum chamber and the pressure of inert gas that may be introduced separately. , more preferably set to 1 x 1O-3Torr or more,
If the gas partial pressure is lower than this, a high melting point compound cannot be sufficiently formed due to the lack of reactive gas.

[実施例] 実施例1 第1図は本発明方法を実施する為の真空アーク蒸着装置
を示す模式図で、真空チャンバー1内に真空アーク蒸発
源Aを設置し、これに対向して基板8を設けている。真
空アーク蒸発源Aは、有効蒸発面の直径が50mmすの
Tiからなる陰極2の裏面にステンレス板からなる伝熱
制御板5を介して水冷構造冷却床6を付設してなり、陰
極2の基板側の近傍に陽極3を配設している。尚4はア
ーク閉じ込めリング、10は絶縁物を示す。
[Example] Example 1 Fig. 1 is a schematic diagram showing a vacuum arc evaporation apparatus for implementing the method of the present invention, in which a vacuum arc evaporation source A is installed in a vacuum chamber 1, and a substrate 8 is placed opposite to it. has been established. The vacuum arc evaporation source A consists of a cathode 2 made of Ti with an effective evaporation surface diameter of 50 mm, and a water-cooled cooling bed 6 attached to the back side of the cathode 2 through a heat transfer control plate 5 made of a stainless steel plate. An anode 3 is arranged near the substrate side. Note that 4 represents an arc confinement ring and 10 represents an insulator.

真空アーク蒸着を実施するに当たっては、真空チャンバ
ー1内を1 x 10−4Torrまで図示しない排気
手段により減圧した後、ガスボンベ11からN2を1 
x 1O−2Torrまで導入し、陽極3と陰極2の間
でアークを発生させた。この状態でアーク電流を18O
Aに保持すると陰極表面は数分で赤熱し、表面温度は5
00t:以上になった。そして陰極2から発生したTi
のプラズマ粒子が基板に照射されて反応性ガスであるN
2と反応して約2μmのTiNのコーテイング膜が形成
された。
To perform vacuum arc deposition, after reducing the pressure in the vacuum chamber 1 to 1 x 10-4 Torr by an exhaust means (not shown), 1 ton of N2 is pumped from the gas cylinder 11.
x 10-2 Torr, and an arc was generated between the anode 3 and the cathode 2. In this state, increase the arc current to 18O
When held at A, the cathode surface becomes red hot in a few minutes, and the surface temperature reaches 5
00t: It has become more than that. And Ti generated from cathode 2
plasma particles are irradiated onto the substrate and the reactive gas N
2 to form a TiN coating film with a thickness of about 2 μm.

比較の為陰極2の背面を直接冷却する従来方法を用いて
基板上に約2μmのTiNコーテイング膜を形成し、両
者の膜質を走査型電子顕微鏡(SEM)によって観察し
たところ第1表に示す結果が得られた。
For comparison, a TiN coating film of approximately 2 μm was formed on the substrate using the conventional method of directly cooling the back surface of the cathode 2, and the quality of both films was observed using a scanning electron microscope (SEM). The results are shown in Table 1. was gotten.

第   1   表 第1表に示す様に実施例では大幅な溶融粒子の数及びサ
イズの減少を観察することができた。
Table 1 As shown in Table 1, a significant reduction in the number and size of molten particles could be observed in the examples.

さらにコーティング処理終了後の陰極面の状態を観察す
ると従来方法を用いた陰極面は金属色でありTi素地が
現れていると思われるのに対し、実施例の陰極面は金色
を呈し、陰極表面にTiN層が形成されていることを確
認することができた。又、コーティング処理終了後の陰
極面をSEMにて300倍に拡大して観察したところ、
従来法による陰極面はアークスポットにて溶融した跡と
思われる領域が20〜50μm程度の直径を持つのに対
して、本発明による陰極面は、溶融領域の跡は大幅に微
細化されており、直径で10μm程度、最大のもので2
5μm程度となっていることが判った。これは本発明の
効果にてアークスポットで溶融する領域が小さくなった
ためと考えられる。
Furthermore, when observing the state of the cathode surface after the coating process was completed, the cathode surface obtained using the conventional method was metallic in color and appeared to show the Ti substrate, whereas the cathode surface in the example was golden in color and the cathode surface It was confirmed that a TiN layer was formed on the surface. In addition, when the cathode surface was observed with an SEM at 300 times magnification after the coating process was completed, it was found that
On the cathode surface produced by the conventional method, the area that appears to be the trace of melting in the arc spot has a diameter of approximately 20 to 50 μm, whereas on the cathode surface produced by the present invention, the trace of the melted region is significantly miniaturized. , the diameter is about 10 μm, the largest one is 2
It was found that the thickness was about 5 μm. This is considered to be because the area melted by the arc spot became smaller due to the effect of the present invention.

尚導入N2圧力を種々変化させてみると1×10−4T
orr以上で明らかに上記と同様の効果を得ることがで
きた。又アーク電流値については120〜200Aの範
囲で十分な陰極表面温度の上昇を確認することができ、
皮膜中の溶融粒子数の減少を見たのでアーク電流値を上
記範囲に調整することが望ましいと言えるが、これに限
定する訳ではない。
By varying the introduced N2 pressure, the result was 1 x 10-4T.
It was clearly possible to obtain the same effect as above above orr. Also, regarding the arc current value, it was confirmed that the cathode surface temperature increased sufficiently within the range of 120 to 200 A.
Since a decrease in the number of molten particles in the film was observed, it can be said that it is desirable to adjust the arc current value within the above range, but the present invention is not limited thereto.

上記の様に優れた効果が得られる理由については前記し
た通り陰極材料と反応性ガスの反応生成物である高融点
化合物層が陰極表面に形成されるからであるが、車に反
応性ガスを導入するだけでは高融点化合物層の形成は不
十分で溶融粒子の発生をそれ程抑えることができない。
The reason why such excellent effects can be obtained is that, as mentioned above, a high melting point compound layer, which is a reaction product of the cathode material and the reactive gas, is formed on the surface of the cathode. Mere introduction of the compound does not sufficiently form a high melting point compound layer, and the generation of molten particles cannot be significantly suppressed.

しかるに上記実施例にも示す様に陰極表面温度を200
℃以上に高めると拡散現象が活発となって浸透深さの大
きい高融点化合物層が形成され、溶融粒子の発生は格段
に少なくなる。
However, as shown in the above example, the cathode surface temperature was set to 200
When the temperature is raised above 0.degree. C., the diffusion phenomenon becomes active and a high melting point compound layer with a large penetration depth is formed, and the generation of molten particles is significantly reduced.

尚上記実施例では陰極の冷却制限手段として陰極と冷却
床の間にステンレス板を挟んだが、これ以外の方法でも
勿論同様の効果を得ることができる。
In the above embodiment, a stainless steel plate was sandwiched between the cathode and the cooling bed as means for limiting cooling of the cathode, but the same effect can of course be obtained by other methods.

例えば冷却床をステンレス鋼等の熱伝達係数の小さい材
料で作製することが有効である他、第2図に示す様に陰
極と冷却床の接触面積を小さくした構造の真空アーク蒸
発源を使用することも有効である。また陰極自身の厚み
を大きくしたり、陰極を熱伝導の悪い材料で製作し、陰
極自身の中で温度差を大きくして陰極表面温度を上昇さ
せるのも有効である。
For example, it is effective to make the cooling bed from a material with a small heat transfer coefficient, such as stainless steel, or to use a vacuum arc evaporation source with a structure that reduces the contact area between the cathode and the cooling bed, as shown in Figure 2. It is also effective. It is also effective to increase the cathode surface temperature by increasing the thickness of the cathode itself or by making the cathode from a material with poor thermal conductivity to increase the temperature difference within the cathode itself.

実施例2 実施例1では陰極にTi、反応性ガスとしてN2を使用
したが、本発明は真空アーク蒸発法で蒸発可能な陰極材
料のすべて及びこれと反応して高融点化合物を形成する
全てのガスについて通用可能であり、陰極材料としては
例えばTi(融点1953”K、以下同じ) 、 Z 
r (2123°K)、Hf(2495°K) 、 T
 a (3273’K) 、 N b (2693°K
)。
Example 2 In Example 1, Ti was used for the cathode and N2 was used as the reactive gas, but the present invention uses all the cathode materials that can be evaporated by the vacuum arc evaporation method and all the cathode materials that can react with this to form a high melting point compound. It can be used for gases, and examples of cathode materials include Ti (melting point: 1953"K, the same applies hereinafter), Z
r (2123°K), Hf (2495°K), T
a (3273'K), N b (2693°K
).

V (2193’K) ノl Vb、 Vb属の金属が
挙げられ、これとN2 、CH4、C2H2,02等の
反応性ガスを反応させると、T i N (3220°
K)。
Vb (2193'K) Nol Vb, a metal of the Vb group, and when reacted with a reactive gas such as N2, CH4, C2H2,02, TiN (3220°
K).

T i C(3340”K) 、  ZrN (325
0’K) 、  Z rC(3690”K) 、 Hf
 N (3580’K)、Hf C(4220”K)。
T i C (3340”K), ZrN (325
0'K), Z rC (3690"K), Hf
N (3580'K), Hf C (4220'K).

T a N  (3360@K)、T a C(427
0°K)、NbC(3870°K) 、  V N (
2450’K)、V C(2921@K) 。
T a N (3360@K), T a C (427
0°K), NbC (3870°K), V N (
2450'K), V C (2921@K).

T i 02(2113’K) 、  Z r 02 
 (2950’K) 。
T i 02 (2113'K), Z r 02
(2950'K).

T1CN、HfCN等の高融点化合物を形成することが
できるので、上記組み合せにおいて、本発明方法の適用
が可能である。
Since high melting point compounds such as T1CN and HfCN can be formed, the method of the present invention can be applied to the above combinations.

[発明の効果] 本発明は以上の様に構成されており、溶融粒子の混入が
少ない良質の皮膜を基板上に能率良く成膜することがで
きる。
[Effects of the Invention] The present invention is configured as described above, and it is possible to efficiently form a high-quality film on a substrate with less contamination of molten particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する為の装置を示す模式図、
第2図は真空アーク蒸発源の他の実施例を示す模式図で
ある。 1・・・真空チャンバー 2・・・陰極3・・・陽極 
     4・・・アーク封込めリング5・・・冷却制
御板   6・・・冷却床7・・・冷却水     8
・・・基板9・・・アーク電源   10・・・絶縁物
11・・・ガスボンベ 第1図 第2図
FIG. 1 is a schematic diagram showing an apparatus for carrying out the method of the present invention;
FIG. 2 is a schematic diagram showing another embodiment of the vacuum arc evaporation source. 1...Vacuum chamber 2...Cathode 3...Anode
4...Arc confinement ring 5...Cooling control board 6...Cooling bed 7...Cooling water 8
... Substrate 9 ... Arc power supply 10 ... Insulator 11 ... Gas cylinder Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 真空チャンバー内に配置した陽極と陰極の間にアークを
発生させ、陰極面から飛び出したプラズマ粒子を基板上
に堆積させる真空アーク蒸着法において、陰極表面温度
を200℃以上、陰極材料の融点未満に保持すると共に
、真空チャンバー内に陰極材料と反応して高融点化合物
を形成するガスを1×10^−^4Torr以上の分圧
となる様に導入して陰極表面に高融点化合物層を形成し
つつ、基板への成膜を行なうことを特徴とする真空アー
ク蒸着法。
In the vacuum arc evaporation method, in which an arc is generated between an anode and a cathode placed in a vacuum chamber, and plasma particles ejected from the cathode surface are deposited on a substrate, the cathode surface temperature is kept at 200°C or higher and below the melting point of the cathode material. At the same time, a gas that reacts with the cathode material to form a high melting point compound is introduced into the vacuum chamber at a partial pressure of 1 x 10^-^4 Torr or more to form a high melting point compound layer on the cathode surface. A vacuum arc evaporation method characterized by forming a film on a substrate.
JP9074188A 1988-04-13 1988-04-13 Vacuum arc deposition method Pending JPH01263265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9074188A JPH01263265A (en) 1988-04-13 1988-04-13 Vacuum arc deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9074188A JPH01263265A (en) 1988-04-13 1988-04-13 Vacuum arc deposition method

Publications (1)

Publication Number Publication Date
JPH01263265A true JPH01263265A (en) 1989-10-19

Family

ID=14007007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9074188A Pending JPH01263265A (en) 1988-04-13 1988-04-13 Vacuum arc deposition method

Country Status (1)

Country Link
JP (1) JPH01263265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269896A (en) * 1991-05-29 1993-12-14 Kabushiki Kaisha Kobe Seiko Sho Cathodic arc deposition system
US5730847A (en) * 1993-03-15 1998-03-24 Kabushiki Kaisha Kobeseikosho Arc ion plating device and arc ion plating system
US5843293A (en) * 1995-01-23 1998-12-01 Nissin Electric Co., Ltd. Arc-type evaporator
JP2013525611A (en) * 2010-05-04 2013-06-20 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ Method of spark deposition with ceramic target

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269896A (en) * 1991-05-29 1993-12-14 Kabushiki Kaisha Kobe Seiko Sho Cathodic arc deposition system
US5730847A (en) * 1993-03-15 1998-03-24 Kabushiki Kaisha Kobeseikosho Arc ion plating device and arc ion plating system
US5843293A (en) * 1995-01-23 1998-12-01 Nissin Electric Co., Ltd. Arc-type evaporator
JP2013525611A (en) * 2010-05-04 2013-06-20 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ Method of spark deposition with ceramic target

Similar Documents

Publication Publication Date Title
US10260143B2 (en) Method and apparatus for application of metallic alloy coatings
JPH04236770A (en) Method for controlling arc spot in vacuum arc deposition and vaporization source
US3639151A (en) Vapor randomization in vacuum deposition of coatings
JPH02194167A (en) Vacuum arc evaporation device
JPH01263265A (en) Vacuum arc deposition method
JP2022523357A (en) How to Make a Target for Physical Vapor Deposition (PVD)
JP6896691B2 (en) Low temperature arc discharge ion plating coating
Robinson et al. Characteristics of a dual purpose cathodic arc/magnetron sputtering system
JPH04198474A (en) Ion plating method and device
GB1574677A (en) Method of coating electrically conductive components
JP2857743B2 (en) Thin film forming apparatus and thin film forming method
JP3318595B2 (en) Laser ion plating equipment
JP2014034698A (en) Film deposition method and apparatus
JP2502653B2 (en) Metal thin film manufacturing equipment
JP2000297361A (en) Formation of hyper-fine particle film and device for forming hyper-fine particle film
JPH05239630A (en) Ion plating method and device therefor
JPH04191364A (en) Method and device for ion plating
JP2898652B2 (en) Evaporator for ion plating
JPH01255663A (en) Method and device for vacuum deposition
JP3330159B2 (en) Dynamic mixing device
JPS63125673A (en) Method and device for reaction type film formation at high speed
JPS5920468A (en) Vapor deposition method
JP2634487B2 (en) Abrasion resistant film formation method by ion plating
JPH0196372A (en) Ion plating apparatus
JPS62211368A (en) Apparatus for producing thin compound film