JPH02194167A - Vacuum arc evaporation device - Google Patents

Vacuum arc evaporation device

Info

Publication number
JPH02194167A
JPH02194167A JP24869689A JP24869689A JPH02194167A JP H02194167 A JPH02194167 A JP H02194167A JP 24869689 A JP24869689 A JP 24869689A JP 24869689 A JP24869689 A JP 24869689A JP H02194167 A JPH02194167 A JP H02194167A
Authority
JP
Japan
Prior art keywords
evaporation
arc
magnetic field
coil
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24869689A
Other languages
Japanese (ja)
Other versions
JP2851320B2 (en
Inventor
Hiroshi Tamagaki
浩 玉垣
Kouichirou Akari
孝一郎 赤理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26534710&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02194167(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24869689A priority Critical patent/JP2851320B2/en
Publication of JPH02194167A publication Critical patent/JPH02194167A/en
Application granted granted Critical
Publication of JP2851320B2 publication Critical patent/JP2851320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an excellent film in an industrial scale wherein mixing of molten particles from an evaporation face is regulated to the lower limit by arranging a coaxial air core coil at the position between an arc evaporation source and a base plate in the front of the central axial line of the evaporation face of the arc evaporation source and exciting this air core coil. CONSTITUTION:A film is formed on a base plate 6 in a vacuum chamber 2 by leading plasma of film forming material generated from a vacuum arc evaporation source 4. A coaxial air core coil 1 is arranged to the outside of the tubular part 3 of the chamber at the position between the evaporation source and the base plate 6 in the front of the central axial line X of the evaporation face 5 of the evaporation source 4 of a vacuum arc vapor deposition device. The evaporation source 4 is placed at such position that the lines 7 of magnetic force of a magnetic field diverge outward in the radial direction from the end of the coil by excitation of the coil 1. The magnetic field directed to the outside has a component parallel to the evaporation face 5 and orthogonally crosses ions and electrons emitted from the arc spot of the evaporation source 4. Since the arc spot is forcedly moved by electromagnetic mutual repulsive action, the arc spot is rounded and moved on the evaporation face 5 at high velocity. Therefore generation of a molten part is inhibited around the arc spot.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、切削工具、ベアリング、ギヤ等の耐摩耗性コ
ーチイブ、電子部品、プリント回路、光学、磁気装置等
の分野での被膜形成に使用される真空アーク蒸着装置の
改良に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is used for forming coatings in the fields of wear-resistant coatings for cutting tools, bearings, gears, etc., electronic components, printed circuits, optics, magnetic devices, etc. This invention relates to improvements in vacuum arc evaporation equipment.

(従来の技術) 真空アーク蒸着法は、基本的には、真空室内で蒸発源(
陰極)からアーク放電により被膜材料粒子を発生させ、
これをマイナスのバイアス電圧を印加した基板上に堆積
させる方法であり、蒸発源である陰極からは高アーク電
流により高エネルギーのカソード材料原子がプラズマビ
ームとなって放出され、陰極と基板との間にかけられた
電圧により加速され、基板上に被膜が形成されるように
するものである。この真空アーク蒸着法の特長の1つは
、入射粒子のエネルギーが高いため、被膜の密度が高く
、強度および耐久性に優れた膜が得られる点であり、そ
れにもまして工業的に注目されるのは、成膜速度が速く
生産性が高い点である。
(Prior art) The vacuum arc evaporation method basically uses an evaporation source (
Coating material particles are generated by arc discharge from the cathode,
This is a method in which this is deposited on a substrate to which a negative bias voltage is applied, and high-energy cathode material atoms are emitted as a plasma beam from the cathode, which is the evaporation source, due to a high arc current, and between the cathode and the substrate. It is accelerated by the applied voltage and forms a film on the substrate. One of the features of this vacuum arc evaporation method is that because the energy of the incident particles is high, it is possible to obtain a film with high density, excellent strength and durability, and it is attracting industrial attention. The main points are that the film formation rate is fast and the productivity is high.

真空アーク蒸着法の進歩した従来技術を代表例により補
足説明する。
The advanced conventional technology of vacuum arc evaporation will be supplemented with representative examples.

従来技術例(I)、特公昭58−3033号。Prior art example (I), Japanese Patent Publication No. 58-3033.

要約して「真空室内で蒸発源物質とアーク電極との間に
アーク放電を発生させ、蒸発源物質の原子およびイオン
よりなる粒子のビームを射出し、この際100ボルト以
下の低電圧で約50〜300アンペアのアーク放電電流
を供給して各粒子に約10〜100電子ボルトの運動エ
ネルギーを与え、上記粒子を基板の表面上に堆積させる
」ことを要旨とし、この方法を実施する装置として、ビ
ームの指向性を高めるために、陽極を円錐台筒状に形成
してビーム指向方向を決定し、その開口度および拡径角
度を制御することによってビーム幅を規制することが開
示され、さらに指向性を高めるために磁界の利用が有効
の旨記載されている。
In summary, ``an arc discharge is generated between an evaporation source material and an arc electrode in a vacuum chamber, and a beam of particles consisting of atoms and ions of the evaporation source material is ejected at a low voltage of 100 volts or less. 300 amperes of arc discharge current imparting a kinetic energy of about 10 to 100 electron volts to each particle to deposit said particles on the surface of a substrate, and an apparatus for carrying out this method includes: In order to improve the beam directivity, it is disclosed that the anode is formed into a truncated conical tube shape to determine the beam directivity direction, and the beam width is controlled by controlling its aperture degree and diameter expansion angle. It is stated that the use of magnetic fields is effective in improving the properties.

従来技術例(■)、特公昭52−14690号。Prior art example (■), Japanese Patent Publication No. 52-14690.

要約して「冷却床に配置した蒸発源金属陰極、陰極の蒸
発面に放電の陰極点を発生させ゛るトリガ電極、排気室
およびアーク電極を備える真空金属被覆装置において陽
極が外囲器であり、陰極の蒸発面は外囲器内空間に面し
、かつ陰極点保持装置が陰極の蒸発面を制御しかつ陰極
点が陰極の蒸発面から非蒸発面へ転移するのを妨げるよ
うに陰極の近くに配置される」ことを要旨とするもので
、この構造によりアークの安定性、陰極材料利用率を向
上させている。
In summary, ``In a vacuum metal coating system that includes an evaporation source metal cathode placed on a cooling bed, a trigger electrode that generates a cathode point of discharge on the evaporation surface of the cathode, an exhaust chamber, and an arc electrode, the anode is an envelope. , the evaporation surface of the cathode faces the inner space of the envelope, and the cathode spot holding device controls the evaporation surface of the cathode and prevents the cathode spot from transferring from the evaporation surface to the non-evaporation surface of the cathode. This structure improves arc stability and cathode material utilization.

従来技術例′(■) 前記2特公の開示を含めて従来の真空アーク蒸着技術に
は、陰極蒸発面から発生するイオンや中性子からなるプ
ラズマ粒子の他に、陰極材料の溶融粒子、すなわちプラ
ズマ粒子に較べて大きいマクロパーティクル、マクロド
ロップレフト等が発生し、これが基板上の堆積膜中に混
入して膜表面粗度の悪化、密着力の低下を起こし、また
反応性コーテイング膜の場合には溶融粒子が未反応のま
ま膜中にとり込まれるという問題がある。
Prior art example' (■) Conventional vacuum arc evaporation techniques, including those disclosed in the above-mentioned two patent publications, have the disadvantage that, in addition to plasma particles consisting of ions and neutrons generated from the cathode evaporation surface, molten particles of the cathode material, that is, plasma Macro particles, macro drop left, etc., which are larger than particles, are generated, and these are mixed into the deposited film on the substrate, causing deterioration of the film surface roughness and reduction of adhesion, and in the case of reactive coating films. There is a problem that molten particles are incorporated into the film without reacting.

この問題を解決する従来技術としては、第11図の磁界
利用装置があり、すなわち真空アーク蒸発源(a)と基
板(b)との間を直角に曲げられソレノイド(C)が配
置された真空に維持される管路(d)が連結し、発生源
から発生したプラズマはソレノイド(C)の磁場の作用
のもとに曲がり管路(d)内を曲進して基板(b)まで
導かれるが、溶融粒子は磁場の影響を受けずに直進して
光学的に影となる位置にある基板ら)には到達できず、
こうして溶融粒子を含まぬ良質な被膜の形成が可能であ
るとしている。
As a conventional technique for solving this problem, there is a magnetic field utilizing device shown in FIG. The plasma generated from the source is guided through the pipe (d) by bending under the action of the magnetic field of the solenoid (C) and leading to the substrate (b). However, the molten particles are not affected by the magnetic field and cannot reach the substrate (which is located in an optically shadowed position).
In this way, it is possible to form a high-quality film that does not contain molten particles.

従来技術例(■)、特公昭60−36468号。Prior art example (■), Japanese Patent Publication No. 60-36468.

この装置は、磁場を利用する真空アーク蒸着装置の他の
1例であって、第12図に示すように、陰極蒸発面(e
)の前方に管状陽極(f)とその外側にソレノイド(g
)を配し、ソレノイドの蒸発面まわりの部分の単位長さ
当たりの巻数を他の部分の2倍以上とした点に特徴を有
するもので、点線で示すように磁場は陰極に向かって収
束する。
This device is another example of a vacuum arc evaporation device that uses a magnetic field, and as shown in FIG.
) in front of the tubular anode (f) and the solenoid (g
), and the feature is that the number of turns per unit length of the part around the evaporation surface of the solenoid is more than twice that of other parts, and the magnetic field converges toward the cathode, as shown by the dotted line. .

この磁場の大きさおよび形状からする作用によって、ア
ークの安定性と磁場がプラズマを導く効果により効率的
な蒸発物質の利用が実現できるとされている。
It is said that the effect of the size and shape of this magnetic field makes it possible to achieve efficient use of evaporated materials due to the stability of the arc and the effect of the magnetic field guiding plasma.

(発明が解決しようとする問題点) 従来技術例(III)の真空蒸発装置は、前記の溶融粒
子が被膜中に混入する問題は避けられるが、図示のよう
に装置が大掛かりで、利用空間が狭く、実施制御に困難
があり、有効なコーティングエリアが小さいために、工
業的規模での実施には不向きである。
(Problems to be Solved by the Invention) The vacuum evaporator of the prior art example (III) can avoid the problem of molten particles getting mixed into the film, but as shown in the figure, the device is large-scale and the usable space is limited. The narrowness, difficulties in implementation control, and small effective coating area make it unsuitable for implementation on an industrial scale.

従来技術例(IV)は(III)より実用的になり得る
と思われるが、公告公報81I!ll記載のように、蒸
発物の中性成分の基板への到達は従来技術と同じ七して
おり、従って溶融粒子が被膜中に混入する問題は、従来
技術例(1)(II)と同様に、未解決で残されたまま
である。
Prior art example (IV) may be more practical than (III), but Publication No. 81I! As described in 1.1, the neutral components of the evaporated material reach the substrate in the same way as in the prior art, and therefore the problem of molten particles getting mixed into the coating is the same as in the prior art examples (1) and (II). remains unresolved.

(問題点を解決するための手段) 本発明は、従来技術の真空アーク蒸着装置の上記問題点
を解決し、蒸発面からの溶融粒子の混入による被膜の不
良化の問題を最小限にすることが可能であり、しかも工
業的、経済的な装置としての条件を具備し、真空アーク
蒸着技術の特質を支障なく実現するところの改良真空ア
ーク蒸着装置を提供することを目的とする。
(Means for Solving the Problems) The present invention solves the above-mentioned problems of the vacuum arc evaporation apparatus of the prior art, and minimizes the problem of defective coatings due to the contamination of molten particles from the evaporation surface. It is an object of the present invention to provide an improved vacuum arc evaporation apparatus that is capable of performing the following steps, meets the requirements for an industrial and economical apparatus, and realizes the characteristics of vacuum arc evaporation technology without any problems.

この目的に対応する解決手段として、本発明の真空アー
ク蒸着装置は、構成上、真空下においてアーク蒸発源か
ら発生させた被膜形成材料のプラズマを基板に導いて被
膜を形成する真空アーク蒸発法の装置として、アーク蒸
発源の蒸発面の中心軸線上の前方に基板との間の位置に
少なくとも1つの同軸の空心コイルを配備して、コイル
の励磁によりコイル端より漏洩する磁場が中心軸線より
半径方向外向きに発散する距離の位置に前記蒸発面を配
置し、かくして外側へ発散する磁場の半径方向成分によ
って蒸発面上に発生させたアークスポットを高速に周回
させつつ、前記アークスポットにより発生したプラズマ
を磁場の磁力線に沿ってコイル内真空空間を通過させて
基板上に導いて被覆を行うようにしたことを特徴とする
As a solution to this objective, the vacuum arc evaporation apparatus of the present invention uses a vacuum arc evaporation method in which plasma of a film forming material generated from an arc evaporation source under vacuum is guided to a substrate to form a film. As a device, at least one coaxial air-core coil is installed in front of the central axis of the evaporation surface of the arc evaporation source at a position between the substrate and the magnetic field leaking from the end of the coil due to excitation of the coil is radially smaller than the central axis. The evaporation surface is placed at a distance that diverges outward in the direction, and while the arc spot generated on the evaporation surface is orbited at high speed by the radial component of the magnetic field that diverges outward, the arc spot generated by the arc spot is The method is characterized in that the plasma is guided onto the substrate by passing through the vacuum space within the coil along the lines of magnetic force of the magnetic field to perform the coating.

(作 用) 本発明装置の技術的根拠を作用原理により装置構成に即
して説明すると、次のとおりである。
(Function) The technical basis of the device of the present invention is explained as follows based on the principle of operation and in accordance with the configuration of the device.

一般に、第1図に示すように、空心コイル(1)を励磁
すると、周囲に強磁性物体がない場合、形成される磁場
の磁力線は、コイル内位置(B)では中心軸線(X)方
向成分が殆んどとなるが、コイルの両端から離れるに従
って磁力線(7)は軸線(X)より半径方向外向きに発
散するようになりコイルの外側を大きく迂回してコイル
の反対側の磁力線につながる。
Generally, as shown in Figure 1, when an air-core coil (1) is excited and there is no ferromagnetic object around it, the lines of magnetic field that are formed have a component in the direction of the central axis (X) at position (B) inside the coil. However, as it moves away from both ends of the coil, the lines of magnetic force (7) diverge radially outward from the axis (X), making a large detour around the outside of the coil and connecting to the lines of magnetic force on the opposite side of the coil. .

本発明では、真空アーク蒸発源の蒸発面を磁場が外向き
に発散する位置(A)に置き、蒸発したプラズマ流が磁
力線に沿って導かれてコイル内位置(B)を通過し反対
位置(C)に設置した基板に到来してコーティングする
ような構成を与える。
In the present invention, the evaporation surface of the vacuum arc evaporation source is placed at the position (A) where the magnetic field diverges outward, and the evaporated plasma flow is guided along the magnetic lines of force and passes through the coil internal position (B), and the opposite position ( A configuration is provided in which the coating is applied to the substrate installed in C).

第2図はこの構成を真空蒸着装置として模式的に表示し
たもので、非磁性材料の真空チャンバー(2)の管状部
(3)の外側の位置(B)に配置した空心コイル(1)
との関係において、チャンバー(2)内の位置(A)に
真空アーク蒸発源(4)を蒸発面(5)の中心が中心軸
線(X)に合致するようにして配置し、位置(C)に基
板(6)を配置する。(7)は磁力線を示す。(8)は
プラズマ発生アーク閉込めリングである。
Figure 2 schematically shows this configuration as a vacuum evaporation device, in which an air-core coil (1) is placed at a position (B) outside the tubular part (3) of a vacuum chamber (2) made of non-magnetic material.
In relation to this, the vacuum arc evaporation source (4) is placed at position (A) in the chamber (2) so that the center of the evaporation surface (5) coincides with the central axis (X), and at position (C). The substrate (6) is placed on. (7) shows the lines of magnetic force. (8) is a plasma generating arc confinement ring.

一般にプラズマに磁場を印加すると、プラズマは磁力線
に沿った方向に向かい移動しやすく、磁力線に直交する
方向へは移動しにくい性質を持つ。これは、荷電粒子が
磁力のある空間を移動する際、磁力線に巻付く形で運動
するいわゆる「ラーモア旋回運動」の効果による。この
効果で、プラズマを導くには、プラズマ中の電子を磁場
にて導いてやれば、イオンは静電的効果で負電荷の電子
密度の高い部分へと移動するので、電子をトラップ可能
な数十ガウス以上の磁場を印加するとよい。
Generally, when a magnetic field is applied to plasma, the plasma tends to move in a direction along the lines of magnetic force and has a property that it is difficult to move in a direction perpendicular to the lines of magnetic force. This is due to the effect of so-called "Larmor swirling motion," in which charged particles move in a manner that wraps around magnetic lines of force when they move in a space with magnetic force. In order to guide plasma using this effect, if the electrons in the plasma are guided by a magnetic field, the ions will move to areas with high negative charge electron density due to the electrostatic effect, so the number of electrons that can be trapped will be It is preferable to apply a magnetic field of 10 Gauss or more.

この結果として、陰極アーク発生源(4)の蒸発面(5
)にて発生したプラズマは図示の磁力線(7)に沿って
流れ基板(6)に到達する。この現象は従来技術例(I
[)(IV)でも生ずる筈のものである。
As a result of this, the evaporation surface (5) of the cathodic arc source (4)
The plasma generated at ) flows along the illustrated magnetic lines of force (7) and reaches the substrate (6). This phenomenon can be seen in the prior art example (I
[)(IV) should also occur.

この効果には、基板に向かう溶融粒子を相対的に減少さ
せる働きがある。すなわち、中性の溶融粒子には、この
誘導効果が作用しないのに対して、イオンは選択的に基
板まで導かれるからである。
This effect has the function of relatively reducing the number of molten particles directed toward the substrate. That is, this induction effect does not act on neutral molten particles, whereas ions are selectively guided to the substrate.

次に、本発明では、従来技術例(IV)では磁場が収束
する位置にアーク蒸発源が置かれるのとは対照的に、コ
イル端部よりの磁場の磁力線が半径方向外向きに発散す
る位置にアーク蒸発源を置く。この外側へ向かう磁場は
半径方向成分、すなわち蒸発面と平行な成分を持ち、ア
ーク蒸発源のアークスポットから流出するイオン、電子
と直交し、電磁的な相互反発作用によってアークスポッ
トを強制的に動かすので、アークスポットは蒸発面上を
高速で周回運動する。その結果、アークスポットがある
一ケ所に滞留する時間が短くなり、アークスポットの周
囲の溶融部分の発生が抑制され、蒸発面上から発生する
溶融粒子の発生量を減少しまた溶融粒子径を小形化する
作用を生ずる。
Next, in the present invention, in contrast to the prior art example (IV) in which the arc evaporation source is placed at a position where the magnetic field converges, the arc evaporation source is placed at a position where the lines of magnetic force of the magnetic field from the end of the coil diverge radially outward. Place an arc evaporation source on the This outward magnetic field has a radial component, that is, a component parallel to the evaporation surface, and is orthogonal to the ions and electrons flowing out from the arc spot of the arc evaporation source, forcing the arc spot to move due to electromagnetic mutual repulsion. Therefore, the arc spot moves around the evaporation surface at high speed. As a result, the time the arc spot stays in one place is shortened, the generation of molten parts around the arc spot is suppressed, the amount of molten particles generated from the evaporation surface is reduced, and the diameter of the molten particles is reduced. It produces the effect of changing.

以上の2作用の併立により、本発明では、アークスポッ
トの移動を半径方向外向き磁場成分で高速化して蒸発面
から溶融粒子の混在の少ないプラズマを発生させ、さら
に磁場によってイオンのみを選択的に誘導することによ
り、被膜への溶融流粒子の混入の減少を達成する。
By combining the above two effects, the present invention speeds up the movement of the arc spot using the radially outward magnetic field component to generate plasma with less molten particles mixed in from the evaporation surface, and further selectively collects only ions using the magnetic field. By guiding, a reduction in the incorporation of melt flow particles into the coating is achieved.

さらに、本発明では、実施上、有利に利用し得る作用と
してプラズマ流が収束状態で得られるという作用がある
。すなわち、プラズマ流は、磁力線に沿って誘導されて
コイル内側の空間位置で蒸発面より小径に一旦収束され
たのち、再び発散してゆく。このとき、もし基板をコイ
ルに接近させて配置すると、小さな面積に高い密度で収
束したプラズマ流でコーティングすることができる。
Furthermore, the present invention has the effect that a plasma flow can be obtained in a convergent state, which can be advantageously utilized in practice. That is, the plasma flow is guided along the lines of magnetic force, is once converged to a diameter smaller than the evaporation surface at a spatial position inside the coil, and then diverges again. At this time, if the substrate is placed close to the coil, a small area can be coated with a highly concentrated plasma stream.

コーティングする基板は、その形状、大きさ、コーティ
ング個所は限定されない。そこで基板が例えば穴あけド
リルの場合、コーティングが重要なのは刃先のみである
ので、刃先をコイルに接近させて配置して、プラズマ集
束流作用を利用できる。もちろん、広い面積に亘ってコ
ーティングが必要なときは、基板をコイルから相当の距
離を置いて設置して磁場に沿って発散したプラズマ流を
利用すればよい。
The shape, size, and coating location of the substrate to be coated are not limited. If the substrate is, for example, a drilling drill, then only the cutting edge is important to coat, so the cutting edge can be placed close to the coil to take advantage of the plasma focused flow effect. Of course, if a large area needs to be coated, the substrate can be placed at a considerable distance from the coil and the plasma stream diverged along the magnetic field can be used.

プラズマ流の集束性に関しては、先行技術(1)(II
)では蒸発したイオンは必然的に蒸発面より拡がって発
散するし、先行技術例(IV)でもプラズマ流は磁力線
に沿って移動するものの蒸発面より拡がっている。
Regarding the convergence of plasma flow, prior art (1) (II
), the evaporated ions inevitably spread out and diverge from the evaporation surface, and in prior art example (IV), the plasma flow moves along the magnetic lines of force but spreads out from the evaporation surface.

さらに、本発明で同時に得られる実施上有利な別の作用
としては、アークスポットが蒸発面上を高速で周回運動
することで、アークスポットが蒸発面上をくまなく走り
廻ることから蒸発材料を均一に消耗させ得るという作用
がある。
Furthermore, another advantageous effect simultaneously obtained with the present invention is that the arc spot moves around the evaporation surface at high speed, so that the arc spot runs all over the evaporation surface, which spreads the evaporation material uniformly. It has the effect that it can be used up.

先行技術(1)(II)に関しては、特別な制御を加え
ぬ場合、アークスポットが蒸発面の一部分にのみ滞在し
、当該部分の消耗が進む傾向を示すことがあり、これを
修正するため蒸発材の背面にコイルを配しプレーナマグ
ネトロンスパッタ装置と類似の磁場を形成することで、
アークスポットを強制移動させる方法が知られている。
Regarding prior art (1) and (II), if no special control is applied, the arc spot may stay only in a part of the evaporation surface, and the wear of that part tends to progress. By placing a coil on the back of the material and creating a magnetic field similar to that of a planar magnetron sputtering device,
A method of forcibly moving the arc spot is known.

本発明では、この様な特別な機構を設けなくても、蒸発
材料は均一に消耗される。
In the present invention, the evaporated material is consumed uniformly without providing such a special mechanism.

(実施例) 以下、本発明を添付図を参照し実施例に即してさらに具
体的に説明する。
(Examples) Hereinafter, the present invention will be described in more detail based on examples with reference to the accompanying drawings.

第3図は、本発明の真空アーク蒸着装置の1例の要部を
示す。第2図の模式図に準するものであるから、均等部
分に同一符号を記入して指摘し、その説明を援用する。
FIG. 3 shows essential parts of an example of the vacuum arc evaporation apparatus of the present invention. Since this is similar to the schematic diagram in FIG. 2, equivalent parts will be indicated by the same reference numerals and the explanation thereof will be referred to.

説明を補足すると、Ti製の真空アーク蒸発源(4)は
アーク電源(9)のマイナス側に接続され、周囲にBN
製のアーク閉込めリング(8)を配し、電源(9)のプ
ラス側に接続される真空チャンバー(2)と絶縁物00
)を介し絶縁し、水冷機構を有するカソードホルダOD
に取付け、蒸発面を真空チャンバ(2)側の前面に向け
て配置される。0りはアーク点火機構を示す。この図で
は外れて図示されない基板(6)との間にチャンバの管
状部(3)の外側に同じ中心軸線(X)のちとに配置さ
れる空心電磁コイル(1)はこの例で単一であるが、複
数コイルを配置してもよい。蒸発面で発生したプラズマ
は、コイルの内側の陽極を兼ねる管状部(3)を通りチ
ャンバー内の基板(6)に導かれる。
To supplement the explanation, the vacuum arc evaporation source (4) made of Ti is connected to the negative side of the arc power source (9), and there is BN around it.
A vacuum chamber (2) and an insulator 00 are equipped with an arc confinement ring (8) made of
) and has a water cooling mechanism.
The evaporation surface faces the front of the vacuum chamber (2). 0 indicates an arc ignition mechanism. The air-core electromagnetic coil (1), which is arranged after the same central axis (X) on the outside of the tubular part (3) of the chamber between the substrate (6), which is not shown separately in this figure, is in this example single. However, multiple coils may be arranged. The plasma generated on the evaporation surface is guided to the substrate (6) in the chamber through a tubular part (3) that also serves as an anode inside the coil.

本例の数値を示せば、蒸発源カソードの蒸発面(5)は
φ100、コイル(1)の中心径はφ184、コイル端
よりカソード蒸発面までの距離は80mmである。
In this example, the evaporation surface (5) of the evaporation source cathode is φ100, the center diameter of the coil (1) is φ184, and the distance from the end of the coil to the cathode evaporation surface is 80 mm.

コイルを3000ATで励磁した際の磁場形状を第4図
に示し、各部での磁場強度を第1表に単位ガウスで示す
The shape of the magnetic field when the coil is excited at 3000 AT is shown in FIG. 4, and the magnetic field strength at each part is shown in Table 1 in units of Gauss.

第1表 各部磁場強度(単位、ガウス) 第1表から知られるように、カソード蒸発面(5)上で
の磁場の半径方向成分は一様ではない。
Table 1 Magnetic field strength at each part (unit, Gauss) As is known from Table 1, the radial component of the magnetic field on the cathode evaporation surface (5) is not uniform.

すなわち、中心軸線(X)上では、形状の対称性により
当然0であり周囲に到るに従って大きくなる。ここでは
、蒸発面外径の70%の35mm半径の位置(内外面積
のほぼ等しい)を代表点と見做して作動状況を説明する
That is, on the central axis (X), it is naturally 0 due to the symmetry of the shape, and increases toward the periphery. Here, the operating situation will be explained by regarding a position at a radius of 35 mm that is 70% of the outer diameter of the evaporation surface (inner and outer areas are approximately equal) as a representative point.

第4図および第1表から、コイルで励磁された磁力線は
中心軸線(X)から離れるに従い発散して、カソード蒸
発面では半径方向成分を有することが知られる。
From FIG. 4 and Table 1, it is known that the magnetic lines of force excited by the coil diverge as they move away from the central axis (X) and have a radial component at the cathode evaporation surface.

上記の装置で、アーク電源(9)より電力を供給しつつ
アーク点火機構θカにより真空アーク放電を発生させる
と、蒸発面(5)からのプラズマ流が磁力線に沿って導
かれる状況を目視により観察できる。すなわち、蒸発面
より発生したプラズマ流の発光部がコイルの内側で、磁
場に沿った形で、蒸発面の約60%の径にまで収束した
のち、真空チャンバーの反対側内へと発散する。この時
の蒸発面(5)のアークスポットは高速で円周運動して
いた。
In the above device, when a vacuum arc discharge is generated by the arc ignition mechanism θ while supplying electric power from the arc power source (9), it can be visually observed that the plasma flow from the evaporation surface (5) is guided along the magnetic field lines. It can be observed. That is, the light emitting part of the plasma flow generated from the evaporation surface converges inside the coil along the magnetic field to a diameter of about 60% of the evaporation surface, and then diverges into the opposite side of the vacuum chamber. At this time, the arc spot on the evaporation surface (5) was moving circumferentially at high speed.

この装置で、SOS 304ステンレス鋼製の基板(6
)を蒸発面(5)より350mmの位置に正対して置き
、作動条件をコイル(1)の励13000At、アーク
電流100A、基板バイアス電圧−50V、真空チャン
バー(2)内Ntガス圧力10mTorrとしてTiN
被膜の反応性真空アーク蒸着を実施したところ、被膜厚
約2.5μ−で第5図の被膜の走査型電子顕微鏡(SE
M)写真に示すように溶融粒子の混入の少ない良好なコ
ーティングを行うことができた。第6図の被膜のSEM
写真は、比較のため、先行技術例(1)([3に相当す
る従来法に準じ、基板を上記とほぼ同じ蒸着レートが得
られる蒸発面より200mmの位置に置き、他は同一条
件でコーティングした被膜を示し、これと較べると本発
明によれば顕著に良好な結果が得られることが知られる
With this device, a substrate made of SOS 304 stainless steel (6
) at a position 350 mm from the evaporation surface (5), and the operating conditions were: excitation of the coil (1) at 13,000 At, arc current at 100 A, substrate bias voltage at -50 V, and Nt gas pressure in the vacuum chamber (2) at 10 mTorr.
Reactive vacuum arc deposition of the coating was performed and the coating thickness was approximately 2.5 μm, as shown in FIG.
M) As shown in the photograph, a good coating with less contamination of molten particles could be achieved. SEM of the coating in Figure 6
For comparison, the photograph shows prior art example (1) (according to the conventional method corresponding to [3), the substrate was placed at a position 200 mm from the evaporation surface where almost the same evaporation rate as above was obtained, and the other conditions were the same. It is known that the present invention provides significantly better results when compared with the coatings shown in Figure 1.

さらに本発明による被膜と比較例の被膜について、表面
粗さ(Ra値)とSEM像に基づく画像処理によって直
径0.6μm以上の大きさの溶融粒子密度を計数した結
果を第2表に示す。
Furthermore, Table 2 shows the results of counting the surface roughness (Ra value) and the density of molten particles with a diameter of 0.6 μm or more by image processing based on SEM images for the coating according to the present invention and the coating of the comparative example.

第2表 □ これから、数量的なデータの上からも、表面粗さの大幅
な改善と溶融粒子数の1710近い減少を本発明により
実現できることが知られる。
Table 2 □ From the quantitative data, it is known that the present invention can significantly improve the surface roughness and reduce the number of fused particles by nearly 1710.

被膜への溶融粒子の混入を防止し得る先行技術例(I[
[)と較べれば、本発明の装置は、構造が筒車で小形化
され工業的実施が容易である。
Prior art example (I[
Compared to [), the device of the present invention has a compact hour wheel structure and is easy to implement industrially.

次に、被膜への溶融粒子の混入量と磁場強度との関係を
調べるため、コイルの励磁をOAT、1000^Tおよ
び2000ATに変化させてコーティングを行ったとこ
ろ、励磁を増すに伴って蒸発面のアークスポットの旋回
運動が高速化することが観察され、またそれぞれ第7図
、第8図および第9図の被膜のSEM写真の結果が得ら
れた。
Next, in order to investigate the relationship between the amount of molten particles mixed into the coating and the magnetic field strength, coating was performed while changing the excitation of the coil to OAT, 1000^T, and 2000AT.As the excitation increased, the evaporation surface It was observed that the swirling motion of the arc spot became faster, and the results of the SEM photographs of the coatings were obtained in FIGS. 7, 8, and 9, respectively.

コイルの励磁なしの場合、第7図の写真のように、溶融
粒子の混入は多いが、2000^T励磁の場合は第9図
の写真のように、溶融粒子の混入が少なく、3000A
T励磁の第5図と殆んど変わらぬ結果が得られる。励磁
1000ATの場合は、第8図の写真のように、第7図
無励磁の場合より溶融粒子の混入は少なくなるものの相
当数残っており、また粒子サイズも大きい、これから励
磁1000ATと2000ATとの間で溶融粒子の低減
化が進むことが知られる。 100OATと2000A
Tでの蒸発面上の半径方向成分は、それぞれ約7ガウス
と13ガウスであるので、この磁場半径方向成分が約1
0ガウスを越えると溶融粒子の低減化が進むものと判断
される。
When the coil is not excited, there is a lot of molten particles mixed in, as shown in the photo in Figure 7, but when the coil is excited at 2000^T, as shown in the photo in Figure 9, there is less molten particles mixed in, and at 3000A.
The results obtained are almost the same as those shown in FIG. 5 for T excitation. In the case of excitation 1000AT, as shown in the photograph in Figure 8, although there are fewer molten particles mixed in than in the case of non-excitation in Figure 7, a considerable number remain, and the particle size is also large. It is known that the reduction of molten particles progresses between 100OAT and 2000A
The radial components on the evaporation surface at T are about 7 Gauss and 13 Gauss, respectively, so the radial component of this magnetic field is about 1
When it exceeds 0 Gauss, it is judged that the reduction of molten particles progresses.

また本発明においてプラズマを効率よく基板に誘導する
という観点から、励磁電流が成膜レートに及ぼす影響を
調べた結果を第10図に示す。
Furthermore, from the viewpoint of efficiently guiding plasma to the substrate in the present invention, FIG. 10 shows the results of investigating the influence of the excitation current on the film formation rate.

第10図より、励磁強度を増加させるに従って成膜レー
トが増加するが、3000AT以上で飽和する傾向があ
ることが知られる。
From FIG. 10, it is known that the film formation rate increases as the excitation intensity increases, but tends to be saturated at 3000 AT or more.

この現象は、次の物理現象によって傾向を説明できる。This phenomenon can be explained by the following physical phenomenon.

すなわち、磁場の印加によって、電子が磁力線にラーモ
ア運動でトラップされ、磁力線に平行な動きに限定され
るが、この現象が利用できるためには上記のラーモア運
動の半径が実際の装置の大きさ、例えば蒸発面の径に較
べ充分に小さい必要がある。このラーモア半径は式、m
V上/eB(ただし、m:電子質量、V工:電子の速度
、e:電気素量、B;磁場強度)にて与えられる。すな
わち、ラーモア半径は磁場強度に逆比例するため、励磁
により磁場が強くなれば、ラーモア半径は小さくなり、
電子はより強く磁場にトラップされることとなる。
That is, when a magnetic field is applied, electrons are trapped by the magnetic field lines by Larmor motion, and are limited to motion parallel to the magnetic field lines. In order to be able to utilize this phenomenon, the radius of the Larmor motion described above must be the size of the actual device, For example, it needs to be sufficiently small compared to the diameter of the evaporation surface. This Larmor radius is expressed by the formula, m
It is given by V/eB (m: electron mass, V: electron velocity, e: elementary charge, B: magnetic field strength). In other words, the Larmor radius is inversely proportional to the magnetic field strength, so if the magnetic field becomes stronger due to excitation, the Larmor radius will become smaller.
Electrons will be more strongly trapped in the magnetic field.

ここに、例としアークスポットより放出された直後の電
子が放電電圧に相当する約20eVのエネルギーを持っ
ていたとして、3000ATで励磁した際の蒸発面近く
での磁場60ガウスにおいて計算すると、ラーモア半径
は約2.5 mである。このラーモア運動の直径を蒸発
面の径と比較するとl/20程度であり、この磁場にお
いては電子は充分にトラップされていると言い得る。
As an example, assuming that the electrons immediately after being emitted from the arc spot have an energy of about 20 eV, which corresponds to the discharge voltage, the Larmor radius is calculated in a magnetic field of 60 Gauss near the evaporation surface when excited at 3000 AT. is approximately 2.5 m. Comparing the diameter of this Larmor motion with the diameter of the evaporation surface, it is about 1/20, and it can be said that electrons are sufficiently trapped in this magnetic field.

どの程度の磁場を印加すればよいかは、他の実施条件と
の関係により一概に断定するすることは困難であるが、
第10図から、成膜レートが3000ATで飽和し、0
〜100OATで急激に向上する傾向があることから判
断すると、少くとも1000AT以上の励磁が必要で、
3QOOATが好適と判断される。本発明では、蒸発面
近辺で磁場が発散により最も弱くなり、ラーモア半径が
最大となるので、この位置での磁場強度で示せば、効率
的な磁場プラズマ誘導を行うには、少なくとも20ガウ
ス、より好適には60ガウスの磁場が必要と判断される
Although it is difficult to definitively determine how much magnetic field should be applied depending on the relationship with other implementation conditions,
From Fig. 10, the film formation rate is saturated at 3000 AT, and 0
Judging from the fact that it tends to improve rapidly at ~100 OAT, excitation of at least 1000 AT or more is required.
3QOOAT is determined to be suitable. In the present invention, the magnetic field is the weakest near the evaporation surface due to divergence, and the Larmor radius is maximum, so the magnetic field strength at this position is at least 20 Gauss or more in order to efficiently induce magnetic plasma. It has been determined that a magnetic field of 60 Gauss is preferably required.

以上の実施例では蒸発面、コイルは円形として説明して
いるが、各図は断面形と見做して蒸発面およびコイル等
を他の形状、例えば長方形に構成して実施することもで
きる。またコイルの長さ、数によって本発明は限定され
るものではない。
In the above embodiments, the evaporation surface and the coil are described as circular, but each figure is considered to be a cross-sectional shape, and the evaporation surface and the coil may be configured in other shapes, for example, rectangular. Further, the present invention is not limited by the length or number of coils.

例えば、工業的実用性を失わない範囲で、第3a図の管
状部(3)を軸方向に延長し、コイル(1)を軸方向に
長くしたり、あるいはコイルを2個以上並べることも好
ましい。これは第3a図の実施例と比べ本質的にかわる
所はないが、プラズマを導く距離が長くなるため、幾何
学的な効果で溶融粒子をさらに減少できる。
For example, it is preferable to extend the tubular part (3) in FIG. 3a in the axial direction, to make the coil (1) longer in the axial direction, or to arrange two or more coils in a row, within a range that does not impede industrial practicality. . This is essentially the same as the embodiment shown in FIG. 3a, but since the plasma is guided over a longer distance, the number of molten particles can be further reduced due to the geometrical effect.

また、上記と同様な理由で収束したプラズマビームが得
られるという作用を利用して、コイル(1)の内側の部
分に磁場に沿ってしぼられたプラズマ流の径よりもわず
かに大きな開口を有するオリフィスを設置することも好
ましい。このオリフィスは磁場に導かれたイオンは通過
させ得るのに対し、その幾何学的形状によって誘導効果
の働かぬ中性の溶融粒子に対し大きな遮断効果を有する
からである。
In addition, by utilizing the effect of obtaining a converged plasma beam for the same reason as above, an aperture slightly larger than the diameter of the plasma stream squeezed along the magnetic field is provided in the inner part of the coil (1). It is also preferable to install an orifice. This is because, while this orifice allows ions guided by the magnetic field to pass through, its geometric shape has a large blocking effect on neutral molten particles that do not have an induction effect.

さらに、経済性の観点から好ましい実施の一形態として
、磁場を形成する空心コイルの少なくとも一部分をマー
ク放電電流によって励磁した装置が挙げられる。
Furthermore, from the viewpoint of economy, a preferred embodiment is a device in which at least a portion of an air-core coil that forms a magnetic field is excited by a mark discharge current.

第3b図は、この実施形態を模式的に示したものである
。図示番号を第3a図と共通にして重複する説明は省略
する。ここでは、空心コイルは(1a)と(1b)に分
割されており、空心コイル(1a)は図示の通りマーク
電源(9)から供給されるアーク放電電流によって励磁
される。例えばコイルとして30ターンのものを用意し
、アーク電流100Aで真空アーク放電を発生させると
、3000ATの励磁が可能であり、明らかに第3a図
を引用して先に述べた物理現象と同一の作用を有する。
Figure 3b schematically depicts this embodiment. The illustration numbers are the same as those in FIG. 3a, and redundant explanation will be omitted. Here, the air-core coil is divided into (1a) and (1b), and the air-core coil (1a) is excited by the arc discharge current supplied from the mark power source (9) as shown. For example, if a coil with 30 turns is prepared and a vacuum arc discharge is generated with an arc current of 100 A, excitation of 3000 AT is possible, which clearly has the same effect as the physical phenomenon described earlier with reference to Figure 3a. has.

しかも、コイル励磁に特別な電源を必要とせず、システ
ムの簡素化に役立ち経済的である。
Moreover, no special power source is required for coil excitation, which helps simplify the system and is economical.

コイル(1b)は、必須のものではないがコイル(1a
)のみでは放電電流と磁場を独立に制御したい場合に不
便が生じる為これを補うことができる。すなわち、放電
電流で磁場のある割合を励磁しておき、コイル(lb)
によってこれを補って所定の強度を得る方法をとること
で、制御の独立性を保てる一方で、コイル(1b)の励
磁電源は先の実施例に比べて大幅に小型化でき経済性も
実現できる。
Although the coil (1b) is not essential, the coil (1a)
) alone causes inconvenience when it is desired to control the discharge current and magnetic field independently, so this can be compensated for. In other words, a certain proportion of the magnetic field is excited by the discharge current, and the coil (lb)
By compensating for this and obtaining a predetermined strength, control independence can be maintained, while the excitation power source for the coil (1b) can be significantly smaller and more economical than in the previous embodiment. .

本発明の要点は、溶融粒子の割合を減少させることにあ
るので、もともと溶融粒子が多く発生するA1等低融点
の物質を蒸発の材料として選ぶより、TiをはじめZr
5If、 V 、 Nb、 Ta、 Cr。
The key point of the present invention is to reduce the proportion of molten particles, so rather than selecting a material with a low melting point such as A1, which originally generates a large number of molten particles, as the evaporation material, Ti and Zr.
5If, V, Nb, Ta, Cr.

Mo、 W等の比較的高融点の金属やこれらを主成分と
した合金を蒸発の材料として選ぶことでより好ましい結
果が得られる。すなわち、もともと溶融粒子が非常に多
い低融点金属の場合、本発明によって溶融粒子を低減さ
せたとしてもなお混入が多゛く、被膜としての実用性に
欠ける一方で、高融点金属の場合もともと溶融粒子の発
生が少ないことに加え、磁場の効果の作用するイオンの
割合が多くなり、全蒸発量のうち基板近くまで導かれる
蒸気の割合が増加するからである。
More preferable results can be obtained by selecting metals with relatively high melting points such as Mo and W, or alloys containing these as main components, as the evaporation material. In other words, in the case of a low-melting point metal that originally has a large number of molten particles, even if the molten particles are reduced by the present invention, there will still be a large amount of contamination, making it impractical as a coating. This is because, in addition to fewer particles being generated, the proportion of ions affected by the magnetic field increases, and the proportion of vapor guided close to the substrate out of the total evaporation amount increases.

さらに、上記高融点金属の場合多くはN5C10の各元
素と結合して高硬度などの高い機能を有する化合物を形
成するので、多くの場合上記高融点金属は窒素、炭化水
素、酸素等の反応性ガスの存在下で蒸着される。蒸発時
に存在する反応ガスは蒸発面に薄いさらに高融点の化合
物層を形成し、溶融粒子の発生を抑制することが当業者
には周知である。このことから、上記高融点金属を蒸発
材料として、反応性ガスを導入しながら行う反応性のコ
ーティングは本発明の実施の最も好適な形態と言える。
Furthermore, in the case of the above-mentioned high-melting point metals, in many cases, they combine with each element of N5C10 to form compounds with high functions such as high hardness, so in many cases, the above-mentioned high-melting point metals are reactive with nitrogen, hydrocarbons, oxygen, etc. Deposited in the presence of gas. It is well known to those skilled in the art that the reactant gases present during evaporation form a thin layer of higher melting compounds on the evaporation surface, suppressing the generation of molten particles. From this, it can be said that reactive coating, which is performed using the above-mentioned high melting point metal as an evaporation material while introducing a reactive gas, is the most suitable mode for carrying out the present invention.

発明者がTi、 Zrと窒素ガスとの組合わせにおいて
行った実験では、窒素ガスを徐々に増加させた場合、本
発明と窒素ガスの効果によって、l ya Torrの
窒素分圧をさかいに、大幅に被膜に混入する溶融粒子の
減少を観察した。
In experiments conducted by the inventor using a combination of Ti, Zr, and nitrogen gas, when the nitrogen gas was gradually increased, due to the effects of the present invention and the nitrogen gas, the nitrogen partial pressure of l ya Torr was significantly increased. A decrease in molten particles mixed into the coating was observed.

さらに、本発明の方法によると、好適な基板バイアス電
圧条件のもとで、溶融粒子が減少しているのみでなく、
被膜の性質そのものも良好なコーティングが可能である
Furthermore, according to the method of the present invention, under suitable substrate bias voltage conditions, not only the number of molten particles is reduced;
The properties of the film itself also allow for good coating.

すなわち、本発明の実験の過程で本発明によって形成し
た高融点金属の化合物の被膜は、基板バイアス電圧によ
ってその性質を大幅に変化させ、基板バイアス電圧の制
御によって従来得られていた被膜性能の最高水準のもの
が容易に実現できることが判った。
In other words, the properties of the high melting point metal compound film formed according to the present invention in the course of the experiments of the present invention were significantly changed by the substrate bias voltage, and the film performance was the highest that was previously obtained by controlling the substrate bias voltage. It turns out that something of this standard can be easily achieved.

例えば、先に述べた実施例の装置において、基板を蒸発
面から350 ff1fflの位置に正対して置き、コ
イル励磁3000AT、アーク電流100A 、 N、
ガス圧力10mTorr 、基板温度300〜350℃
で形成した2、0〜2.5μmのTiN被膜の硬度とX
線回折による分析結果を第3表に示す。この結果より知
れる様に、バルク硬度1800〜2100kg/m11
+”のTiNに対し、基板バイアス電圧−50V〜−1
50vの範囲で2600〜3100kg/mm”という
非常に硬い真空蒸着法によるTiN被膜としては最高水
準のものが得られている。さらにX線回折結果からも上
記の基板バイアス電圧範囲で、耐摩耗性にすぐれ、切削
工具等の用途に向(とされる(111)面に配向した被
膜が得られている。また、特許出願公表昭63−502
123号には、TiNの耐摩耗性についての性能を示す
指標として、(111)面と(200)面からのX線回
折強度比1 (111)/ I (200)が提案され
、I (111)/ I (200) >75で良好と
されるが、第3表より知られる通り上記バイアス電圧範
囲は、この評価基準からも良好と判断される。この好適
な基板バイアス電圧範囲は、基板の温度条件や被膜の種
類によって若干変動する性質のものであるが、硬質被膜
用の条件としては一30V 〜−200Vが適切であり
、特C−50V〜150vで好適な結果が得られる。
For example, in the apparatus of the embodiment described above, the substrate is placed directly facing the evaporation surface at a position of 350 ff1ffl, the coil excitation is 3000 AT, the arc current is 100 A, N,
Gas pressure 10mTorr, substrate temperature 300-350℃
The hardness of the 2.0-2.5 μm TiN film formed by
Table 3 shows the analysis results by line diffraction. As can be seen from this result, the bulk hardness is 1800 to 2100 kg/m11
+'' TiN, substrate bias voltage -50V to -1
In the range of 50V, the TiN film has a very hard coating of 2,600 to 3,100 kg/mm", which is the highest standard for a TiN film made by vacuum evaporation.Furthermore, the X-ray diffraction results also show that it has excellent wear resistance in the above substrate bias voltage range. A film oriented in the (111) plane, which has excellent properties and is suitable for applications such as cutting tools, has been obtained.
No. 123 proposes the X-ray diffraction intensity ratio 1 (111)/I (200) from the (111) plane and the (200) plane as an index showing the wear resistance performance of TiN, and I (111) )/I (200)>75 is considered good, and as is known from Table 3, the above bias voltage range is also judged to be good based on this evaluation standard. This suitable substrate bias voltage range varies slightly depending on the temperature conditions of the substrate and the type of coating, but -30V to -200V is suitable for hard coatings, and especially C-50V to -200V. Suitable results are obtained at 150v.

また、別の例では装飾用途の被膜を形成した。In another example, a coating for decorative purposes was formed.

装飾用途では溶融粒子の混入による表面性状の悪化は美
しい外観にくもりを与えるため、本発明の効果が最も発
揮される用途であるが、さらに加えて、本発明の装置で
コーティングを実施すると、基板バイアス電圧により色
調のコントロールが可能とわかった。例として、前記の
装置で基板を蒸発面から400〜450固の位置に回転
させながら、コイル励磁3000^T、アーク電流60
A 、 Hz圧力10mTorrで0.5 pmのTi
N膜を各種基板バイアス電圧で成膜した際の色調を第4
表に示す。この表から知れる様に、本発明の装置では、
−10V〜−100vの基板電圧で色調が変化し、容易
に制御可能であった。一方で一150vを越えると、イ
オンの基板のボンバードメント効果によって、外観のく
もりが発生することもあるため、この例からは、本発明
によって装飾用被膜を形成するには、−10V〜150
vの基板バイアス電圧範囲内で求める色調に合わせ制御
を行うと好ましい結果が得られることが知られる。
In decorative applications, deterioration of the surface quality due to the contamination of molten particles clouds the beautiful appearance, so this is the application in which the effects of the present invention are most demonstrated. It was found that the color tone can be controlled by bias voltage. As an example, while rotating the substrate to a position of 400 to 450 degrees from the evaporation surface using the above device, the coil excitation is 3000^T and the arc current is 60 degrees.
A, 0.5 pm Ti at Hz pressure 10 mTorr
The color tone when the N film was formed at various substrate bias voltages was
Shown in the table. As can be seen from this table, in the device of the present invention,
The color tone changed with a substrate voltage of -10V to -100V and was easily controllable. On the other hand, if the voltage exceeds -150V, cloudy appearance may occur due to the bombardment effect of the ion substrate, so from this example, it is clear that -10V to 150V is required to form a decorative film according to the present invention.
It is known that preferable results can be obtained if control is performed in accordance with the desired color tone within the substrate bias voltage range of v.

第3表 第4表 (発明の効果) 以上のように、本発明によると、真空アーク蒸着におい
て蒸発面からの溶融粒子の混入が最小限のしかも性能面
の良好な被膜を高い成膜レートで形成することができ、
機能、生産性が優れ、また装置が直線軸線のもとで構成
され構造が簡単で経済的な装置とすることができる。
Table 3 Table 4 (Effects of the Invention) As described above, according to the present invention, in vacuum arc evaporation, a film with minimal contamination of molten particles from the evaporation surface and with good performance can be produced at a high deposition rate. can be formed,
It has excellent functionality and productivity, and since the device is constructed along a linear axis, it can be made into a simple and economical device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明のための空心コイルによる磁
場の形成状況を示す図、32図は本発明の真空アーク蒸
着装置の構成を模式的に示す図、第3a図は本発明の真
空アーク蒸着装置の1例の要部を示す部分拡大縦断側面
図、第3b図は本発明の真空アーク蒸着装置の他側の要
部を示す部分拡大縦断側面図、第4図は本発明において
コイルを励磁した際の磁場分布形状を示す図、第5図は
本発明装置により3000AT励磁で形成した被膜の走
査型電子顕微鏡(SEM)写真、第6図は比較のための
先行技術例により形成した被膜の38M写真、第7図は
無励磁の場合の被膜の38M写真、第8図は100OA
T励磁の場合の被膜の38M写真、第9図は200OA
’T励磁の場合の被膜の38M写真、第1O図は実施例
における横軸の励磁強度と縦軸の成膜レートとの関係を
示す図表、第11図は従来技術例■の装置の縦断側面図
、第12図は従来技術例■の装置の縦断側面図である。 (1) (la) (lb)・・・空心コイル、(2)
・・・真空チャンバー、(3)・・・管状部、(4)・
・・真空アーク蒸発源、(5)・・・蒸発面、(6)・
・・基板、(7)・・・磁力線、(8)・・・アーク閉
込めリング、(9)・・・アーク電源、0(1)・・・
絶縁物、(II)・・・カソードホルダ、02)・・・
アーク点火機構、(×)・・・中心軸線、(A)・・・
磁場発散位置、(B)・・・コイル内位置、(C)・・
・反対側磁場発散位置、(a)・・・真空アーク蒸発源
、ω)・・・基板、(C)・・・ソレノイド、(d)・
・・管路、(e)・・・陰極蒸発面、(f)・・・管状
陽極、((2)・・・ソレノイド。 邦1 図 T’−7Fr’jihめlルウ 突、Gコイル 真空すfンベー 第9図 箪10図 βl佑、@、I(AT)
Fig. 1 is a diagram showing the formation of a magnetic field by an air-core coil for explaining the principle of the present invention, Fig. 32 is a diagram schematically showing the configuration of the vacuum arc evaporation apparatus of the present invention, and Fig. 3a is a diagram showing the formation of a magnetic field by an air-core coil according to the present invention. FIG. 3B is a partially enlarged vertical side view showing the main parts of an example of the vacuum arc evaporation apparatus of the present invention, and FIG. Fig. 5 is a scanning electron microscope (SEM) photograph of a film formed by the device of the present invention at 3000 AT excitation, and Fig. 6 is a film formed by a prior art example for comparison. 38M photograph of the coating, Figure 7 is a 38M photograph of the coating in the case of no excitation, Figure 8 is 100OA
38M photograph of the coating in case of T excitation, Figure 9 is 200OA
A 38M photograph of the film in the case of T excitation, Figure 1O is a chart showing the relationship between the excitation intensity on the horizontal axis and the film formation rate on the vertical axis in the example, and Figure 11 is a vertical cross-sectional side view of the device of conventional technology example 12 are longitudinal sectional side views of the device of prior art example (2). (1) (la) (lb)...Air core coil, (2)
... Vacuum chamber, (3) ... Tubular part, (4)
・・Vacuum arc evaporation source, (5) ・・Evaporation surface, (6)・
...Substrate, (7)...Magnetic field lines, (8)...Arc confinement ring, (9)...Arc power supply, 0(1)...
Insulator, (II)...Cathode holder, 02)...
Arc ignition mechanism, (×)...center axis, (A)...
Magnetic field divergence position, (B)...Position inside the coil, (C)...
・Opposite magnetic field divergence position, (a)...Vacuum arc evaporation source, ω)...Substrate, (C)...Solenoid, (d)...
... Pipeline, (e) ... Cathode evaporation surface, (f) ... Tubular anode, ((2) ... Solenoid. Figure 9, Figure 10 βl Yu, @, I (AT)

Claims (3)

【特許請求の範囲】[Claims] (1)真空下においてアーク蒸発源から発生させた被膜
形成材料のプラズマを基板に導いて被膜を形成する真空
アーク蒸着法の装置として、ケーク蒸発源の蒸発面の中
心軸線上の前方に基板との間の位置に少なくとも1つの
同軸線の空心コイルを配備して、コイルの励磁によりコ
イル端より漏洩する磁場が中心軸線より半径方向外向き
に発散する距離の位置に前記蒸発面を配置し、かくして
外側へ発散する磁場の半径方向成分によって蒸発面上に
発生させたアークスポットを高速に周回運動させつつ、
前記アークスポットにより発生したプラズマを磁場の磁
力線に沿ってコイル内真空空間を通過させて基板に導い
て被覆を行うようにしたことを特徴とする真空アーク蒸
着装置。
(1) As a device for the vacuum arc evaporation method, which forms a film by guiding the plasma of the film-forming material generated from the arc evaporation source to the substrate under vacuum, the substrate is placed in front of the central axis of the evaporation surface of the cake evaporation source. disposing at least one coaxial air-core coil at a position between the two, and disposing the evaporation surface at a distance at which a magnetic field leaking from the end of the coil due to excitation of the coil diverges radially outward from the central axis; In this way, the arc spot generated on the evaporation surface is caused to orbit at high speed by the radial component of the magnetic field that diverges outward.
A vacuum arc evaporation apparatus characterized in that the plasma generated by the arc spot is passed through a vacuum space within the coil along the lines of magnetic force of the magnetic field and guided to the substrate to coat the substrate.
(2)前記蒸発面上での発散する磁場の半径方向成分が
約10ガウス以上であり、かつ蒸発面上での誘導用磁場
が20ガウス以上である特許請求の範囲第1項記載の真
空アーク蒸着装置。
(2) The vacuum arc according to claim 1, wherein the radial component of the diverging magnetic field on the evaporation surface is about 10 Gauss or more, and the inducing magnetic field on the evaporation surface is 20 Gauss or more. Vapor deposition equipment.
(3)前記蒸発面上での誘導用磁場が約60ガウスであ
る特許請求の範囲第2項記載の真空アーク蒸着装置。
(3) The vacuum arc evaporation apparatus according to claim 2, wherein the guiding magnetic field on the evaporation surface is about 60 Gauss.
JP24869689A 1988-09-26 1989-09-25 Vacuum arc deposition apparatus and method Expired - Lifetime JP2851320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24869689A JP2851320B2 (en) 1988-09-26 1989-09-25 Vacuum arc deposition apparatus and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24038988 1988-09-26
JP63-240389 1988-09-26
JP24869689A JP2851320B2 (en) 1988-09-26 1989-09-25 Vacuum arc deposition apparatus and method

Publications (2)

Publication Number Publication Date
JPH02194167A true JPH02194167A (en) 1990-07-31
JP2851320B2 JP2851320B2 (en) 1999-01-27

Family

ID=26534710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24869689A Expired - Lifetime JP2851320B2 (en) 1988-09-26 1989-09-25 Vacuum arc deposition apparatus and method

Country Status (1)

Country Link
JP (1) JP2851320B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0511153A1 (en) * 1991-04-22 1992-10-28 Multi-Arc Scientific Coatings Plasma enhancement apparatus and method for physical vapor deposition
JPH06287749A (en) * 1993-03-31 1994-10-11 Niigata Eng Co Ltd Arc plasma plating equipment
US6334405B1 (en) 1999-01-14 2002-01-01 Kobe Steel, Ltd. Vacuum arc evaporation source and vacuum arc vapor deposition apparatus
JP2005271155A (en) * 2004-03-25 2005-10-06 Sumitomo Electric Hardmetal Corp Coated cutting tool
JP2007077494A (en) * 2005-08-08 2007-03-29 Nanofilm Technologies Internatl Pte Ltd Metal coating
WO2008038700A1 (en) * 2006-09-30 2008-04-03 Ferrotec Corporation Radially enlarged type plasma generating apparatus
GB2446593A (en) * 2007-02-16 2008-08-20 Diamond Hard Surfaces Ltd Coating apparatus utilising linear magnetic field.
WO2010072850A1 (en) 2008-12-26 2010-07-01 Fundacion Tekniker Arc evaporator amd method for operating the evaporator
CN102939404A (en) * 2010-04-22 2013-02-20 日本磁性技术株式会社 Method for producing plasma flow, method for plasma processing, apparatus for producing plasma, and apparatus for plasma processing
EP2720249A2 (en) 2007-04-17 2014-04-16 Sulzer Metaplas GmbH Arc evaporation chamber with a vacuum arc evaporation source
WO2018097263A1 (en) * 2016-11-28 2018-05-31 株式会社神戸製鋼所 Arc vaporization source
CN116145089A (en) * 2023-03-21 2023-05-23 纳狮新材料有限公司杭州分公司 Arc evaporation device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0511153A1 (en) * 1991-04-22 1992-10-28 Multi-Arc Scientific Coatings Plasma enhancement apparatus and method for physical vapor deposition
JPH06287749A (en) * 1993-03-31 1994-10-11 Niigata Eng Co Ltd Arc plasma plating equipment
US6334405B1 (en) 1999-01-14 2002-01-01 Kobe Steel, Ltd. Vacuum arc evaporation source and vacuum arc vapor deposition apparatus
JP2005271155A (en) * 2004-03-25 2005-10-06 Sumitomo Electric Hardmetal Corp Coated cutting tool
JP2007077494A (en) * 2005-08-08 2007-03-29 Nanofilm Technologies Internatl Pte Ltd Metal coating
EP2068602A1 (en) * 2006-09-30 2009-06-10 Ferrotec Corporation Radially enlarged type plasma generating apparatus
WO2008038700A1 (en) * 2006-09-30 2008-04-03 Ferrotec Corporation Radially enlarged type plasma generating apparatus
EP2068602A4 (en) * 2006-09-30 2009-11-25 Ferrotec Corp Radially enlarged type plasma generating apparatus
JP2008091184A (en) * 2006-09-30 2008-04-17 Ferrotec Corp Radially enlarged tube type plasma generating apparatus
US8691063B2 (en) 2007-02-16 2014-04-08 Diamond Hard Surfaces Ltd. Methods and apparatus for forming diamond-like coatings
GB2446593A (en) * 2007-02-16 2008-08-20 Diamond Hard Surfaces Ltd Coating apparatus utilising linear magnetic field.
GB2446593B (en) * 2007-02-16 2009-07-22 Diamond Hard Surfaces Ltd Methods and apparatus for forming diamond-like coatings
EP2720249A2 (en) 2007-04-17 2014-04-16 Sulzer Metaplas GmbH Arc evaporation chamber with a vacuum arc evaporation source
EP2720248A2 (en) 2007-04-17 2014-04-16 Sulzer Metaplas GmbH Vacuum arc evaporation source, and arc evaporation chamber with a vacuum arc evaporation source
DE112008004247T5 (en) 2008-12-26 2012-04-12 Fundación Tekniker Arc evaporator and method for operating the evaporator
WO2010072850A1 (en) 2008-12-26 2010-07-01 Fundacion Tekniker Arc evaporator amd method for operating the evaporator
CN102939404A (en) * 2010-04-22 2013-02-20 日本磁性技术株式会社 Method for producing plasma flow, method for plasma processing, apparatus for producing plasma, and apparatus for plasma processing
WO2018097263A1 (en) * 2016-11-28 2018-05-31 株式会社神戸製鋼所 Arc vaporization source
CN116145089A (en) * 2023-03-21 2023-05-23 纳狮新材料有限公司杭州分公司 Arc evaporation device

Also Published As

Publication number Publication date
JP2851320B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US5126030A (en) Apparatus and method of cathodic arc deposition
EP0495447B1 (en) Method of controlling an arc spot in vacuum arc vapor deposition and an evaporation source
US9127354B2 (en) Filtered cathodic arc deposition apparatus and method
JP4003448B2 (en) Vacuum arc deposition method and apparatus
US9200360B2 (en) Arc evaporation source and film forming method using the same
CZ290081B6 (en) Process for producing razor blade
JPH10280135A (en) Thin coating vapor depositing device using cathode arc discharge
JP2002509988A (en) Method and apparatus for depositing a biaxially textured coating
JPH02194167A (en) Vacuum arc evaporation device
JP4989026B2 (en) Vacuum arc source with magnetic field generator
CA2801629C (en) Arc evaporation source having fast film-forming speed, coating film manufacturing method and film formation apparatus using the arc evaporation source
JP2007529633A (en) Sputtering apparatus for producing thin films
CN111748777B (en) Variable-angle variable-diameter magnetic filtration cathode arc film deposition equipment and method
US5976636A (en) Magnetic apparatus for arc ion plating
JPH11269634A (en) Vacuum arc evaporation source
EP3692184B1 (en) Arc source
KR20010021341A (en) Arc type ion plating apparatus
JP3409874B2 (en) Ion plating equipment
JP4019457B2 (en) Arc type evaporation source
JP3464998B2 (en) Ion plating apparatus and method for controlling thickness and composition distribution of deposited film by ion plating
JP3744467B2 (en) Vacuum arc deposition method and apparatus
JP2012246529A (en) Arc ion plating apparatus and film deposition method
JP3789667B2 (en) Vacuum arc evaporation source and vacuum arc evaporation apparatus
JPH1180940A (en) Arc type evaporation source
JP2005213604A (en) Ion plating equipment by arc discharge system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

EXPY Cancellation because of completion of term