JP3789667B2 - Vacuum arc evaporation source and vacuum arc evaporation apparatus - Google Patents

Vacuum arc evaporation source and vacuum arc evaporation apparatus Download PDF

Info

Publication number
JP3789667B2
JP3789667B2 JP00804599A JP804599A JP3789667B2 JP 3789667 B2 JP3789667 B2 JP 3789667B2 JP 00804599 A JP00804599 A JP 00804599A JP 804599 A JP804599 A JP 804599A JP 3789667 B2 JP3789667 B2 JP 3789667B2
Authority
JP
Japan
Prior art keywords
magnetic field
evaporation
source
magnetic
annular magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00804599A
Other languages
Japanese (ja)
Other versions
JP2000204466A (en
Inventor
博文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP00804599A priority Critical patent/JP3789667B2/en
Priority to TW088122579A priority patent/TWI242049B/en
Priority to KR1020000000591A priority patent/KR100343033B1/en
Priority to US09/480,164 priority patent/US6334405B1/en
Priority to DE60019821T priority patent/DE60019821T2/en
Priority to EP00100656A priority patent/EP1020541B1/en
Publication of JP2000204466A publication Critical patent/JP2000204466A/en
Application granted granted Critical
Publication of JP3789667B2 publication Critical patent/JP3789667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空アーク蒸発源及び当該真空アーク蒸発源を備えた真空アーク蒸着装置に関するものである。
【0002】
【従来の技術】
従来より、真空室内で蒸発物質を陰極とするアーク放電を発生させ、アーク電流のエネルギーにより陰極材料を蒸発・イオン化させ、基板上に皮膜を堆積させる真空アーク蒸着装置が知られている。
このような真空アーク蒸着装置では、蒸発粒子・イオン化粒子に比べてはるかに大きい数μm以上の径をもつ溶融粒子が発生することが避けられず、これが皮膜中に混入することによって皮膜面粗度の悪化や皮膜組成の不均一性をもたらすことが欠点となっている。
【0003】
このような溶融粒子による問題を、磁場の発生によって解決しようとするものが提案されている。例えば、特開平2−194167号公報には、蒸発面と基板との間に蒸発面と同軸状の空心コイルを設けたものが開示されている(従来技術1)。この構成によれば、空心コイルによる磁場にプラズマ中の電子が巻き付いて旋回運動しながら磁力線に沿って流れプラズマが基板に到達する。一方、中性の溶融粒子には、この誘導効果が作用せず、イオンは、選択的に基板に導かれるから、相対的に基板に向かう溶融粒子の数を減少させることができるとされている。
【0004】
また、特公5−48298号公報には、陰極表面に平行な成分の磁界を発生させる永久磁石が陰極背面に配置され、この永久磁石を回転させることによってアーク運動の経路を円軌道にするものが開示されている。そして、この永久磁石による磁界は、陰極を取り囲むようなソレノイドコイルが発生する磁界によって、水平成分が大きくなるようにされている(従来技術2)。
【0005】
【発明が解決しようとする課題】
しかしながら、従来技術1の場合、コイルは、基板と蒸発面との中間位置に設けられており、コイルによる磁場は蒸発面の半径方向内向きに寄るように作用する。この場合、アークスポットが蒸発面の中央に寄りがちとなり、蒸発物質が均一に消耗しない。
一方、従来技術2の場合は、コイルが蒸発面を取り囲むように配置されており、一見、その磁力線が蒸発面に対して垂直に作用するとも考えられる。しかし、このコイルは蒸発物質の背面に配置された永久磁石による磁力線の蒸発面に対する平行成分を大きくさせるためのものであって、前記永久磁石によって発生した磁力線の垂直成分を打ち消すためのものである。
【0006】
すなわち、このコイルは前記永久磁石に対して補助的に設けられたものであって、従来技術2においては、前記コイルは蒸発面に対して垂直な磁力線を作用させるものではない。
本発明は、このような事情に鑑みてなされたものであって、磁場によって基板に到達する溶融粒子の数を減少できると共に、アークスポットの発生の偏りを減少させることができる蒸発源を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、前記目的を達成するために、以下の技術的手段を講じた。すなわち、本発明に係る真空アーク蒸発源の特徴は、当該蒸発物質の蒸発面と略垂直に交差する磁力線のみを発生するように前記蒸発物質を取り囲む磁場発生源とを備え、
前記磁場発生源は、環状の磁極を軸方向両端に有して前記蒸発物質を取り囲む環状磁石からなり、前記磁場発生源のN,S両磁極の中間位置に、前記蒸発面が位置するように前記磁場発生源が配置され、
前記磁場発生源による磁力線が、環状磁石の一方の端面から前記蒸発面と交差して他方の端面まで伸びる分布を示すしている点にある。
【0008】
かかる構成によれば、蒸発面と交差する磁力線により従来技術1と同様に溶融粒子を減少させることができる。そして、従来技術1と異なり、磁力線は蒸発面と略垂直に交差するので、アークスポットが蒸発面で偏在し難くなり、蒸発物質が均一に消耗する。
ここで、磁力線は、蒸発面と完全に垂直に交差するものである必要はなく、蒸発面と略垂直な磁力線とは、蒸発面の法線に対し±30度以内のものも含むものである。この範囲であれば、蒸発物質の均一な消耗がある程度達成でき許容範囲内である。したがって、前記磁場発生源は磁力線がそのような方向になる位置に配置すれば良い。
【0009】
更に、前記磁力線の蒸発面における方向が、蒸発面の法線に対し±10度以内となるように前記磁場発生源が配置されているのが好適である。この場合、蒸発物質をさらに均一に消耗させることができる。
ところで、従来技術1のように、空心コイルで磁場を発生させる場合、広い範囲で磁場が発生することが避けられない。特に、コイルの軸方向に長く伸びた磁場が発生する。このように長く伸びた磁場は、基板が配置されている位置にまで作用し、基板における皮膜形成過程においてこの磁場が皮膜構造に影響を及ぼすという問題がある。
【0010】
また、真空用に複数の蒸発源を配置する場合、ある蒸発源から発生する広い範囲の磁場が近隣の蒸発源に対して蒸発特性に影響を与え易いという問題がある。さらに、真空容器に蒸発源が対向して配置される場合には、コイルの軸方向に長く伸びる磁場が対向する蒸発源に対して相互に影響し合うという問題がある。
これに対し、前述のような環状の磁極を有する磁石であれば、空心コイルのように軸方向に長く伸びる磁界が発生することが防止される。
したがって、この真空アーク蒸発源を真空アーク蒸着装置に用いた場合、磁場による基板への悪影響を防止することができる。また真空容器に複数の蒸発源を配置した場合には、一の蒸発源からの磁場が他の蒸発源へ悪影響を及ぼすことを防止できる。
【0011】
なお、ここで、環状の磁極を有する磁石とは、環状に形成された永久磁石であってもよいし、環状の磁極を持つように形成された磁心を有する電磁石であっても良い。
また、前記磁場発生源による磁力線が、前記蒸発物質の前記蒸発面を通過後に前記蒸発物質の径外方向に急速に発散することが好ましい。
また、磁力線を蒸発面と略垂直に交差させるための磁場発生源としては、上述の如く前記磁場発生源のN,S両磁極の中間位置に、前記蒸発面が位置するように前記磁場発生源を配置するのが好適である。
【0012】
ここで、N,S両磁極の中間位置とは、両磁極の中央でなくとも良い。ただし、前記磁場発生源のN,S両磁極の略中央位置に、前記蒸発面が位置するように前記磁場発生源が配置されていれば、磁力線の方向が蒸発面の法線方向とさらに一致し易くなり、更に好適である。
また、前記磁場発生源は、長手方向両端にそれぞれ異なる磁極を有する複数の棒磁石を磁極の向きを揃えて環状に配置して構成するのが好適である。この場合、磁場発生源の軸方向への磁場の広がりが少ないので、基板又は他の蒸発源への影響を効果的に押えることができる。
【0013】
また、前記環状磁石は、前記蒸発物質を取り囲む径内側環状磁石と、当該径内側環状磁石と同軸状かつ同極が同方向を向くように前記径内側環状磁石を取り囲む径外側環状磁石とから構成されているものとするのが好適である。
この場合、蒸発物質を貫く磁力線の本数が増え、すなわち磁場強度が上がり、前記効果をより強く得られる。
また、本発明では、前記磁場発生源は、内周側と外周側に磁極を有する第1環状磁石と、内周側と外周側の磁極がそれぞれ第1環状磁石とは異なる磁極とされていると共に前記第1環状磁石の軸方向に並置された第2環状磁石と、から構成されているものとすることができる。
【0014】
かかる構成によれば、環状磁石の軸方向への磁場の広がりが一層少ないので好適である。この場合、前記第1環状磁石と第2環状磁石の外周側を磁性体によって結合して構成すれば、側方への磁場の広がりが殆どないので、本発明の蒸発源を真空容器に複数設けた場合、隣の蒸発源の影響を排除することができる。
また、同様の効果を得るには、前記磁場発生源を、径内側にN,S両磁極を有する断面U字状の環状磁石として構成してもよい。
さらに、前記蒸発面が、蒸発物質の蒸発に伴って前記磁場発生源の軸方向中心より前方の蒸発開始位置から前記磁場発生源の軸方向中心より後方まで後退するように蒸発物質が配備されていることが好ましい。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1〜図3は、本発明の第1の実施の形態を示している。図1に示すように、本発明に係る真空アーク蒸着装置1は、真空容器2内に陰極である蒸発物質3が設けられ、アーク放電電源4によって図示しない陽極との間でアーク放電を発生させて蒸発物質3を蒸発・イオン化させ、コーティング処理物(基板)5に皮膜を堆積させるものである。
【0016】
前記蒸発物質3は、当該蒸発物質3の蒸発面とほぼ垂直に交差する磁場を発生させる磁場発生源7と共に1つの蒸発源ユニット9を構成している。図1においては、磁場発生源ユニット9は、真空容器2に1個設けたものが例示されているが、真空容器2の側壁にコーティング処理物5を取り囲むように複数設けるのが好適である。
図3に示すように、前記蒸発物質3は、円板状に形成されており、そのコーティング処理物5側の面がアーク蒸発面11である。蒸発物質3と共に蒸発源9を構成する磁場発生源7は、軸方向(厚さ方向)両端面に環状の磁極を有する環状永久磁石として構成されている。この磁場発生源7は、蒸発物質3と同軸状で当該蒸発物質3を取り囲むように配置されている。また、磁場発生源7は、その軸方向中央位置と蒸発面の位置とがほぼ一致するように配置され、そのコーティング処理物5側の端面(前方側の面)がN極で、他方の端面がS極とされている。なお、磁極は逆であっても良い。
【0017】
かかる配置の磁場発生源7は、図2に示すような磁場を発生する。図4は、比較例として、従来技術のようにコイル13を蒸発物質3の周りに配置した場合の磁場の状態を示している。図4に示すように、コイル13によって発生した磁場の場合、磁力線M2は、コイル13の軸方向に広く拡がるような大きなループとなる。一方、本発明のように磁場発生源7が環状の磁極を有する環状磁石であると、図2に示すように、蒸発面11と交差する磁力線M1は比較的小さなループとなり、環状磁石7の軸方向への磁場の伸びが少ない。
【0018】
したがって、蒸発面11を交差する磁場の強さが同じである場合、図4に示すコイルによって発生した磁場は広がりが大きく他所への影響が大きいのに対し、図2に示す環状磁石7によって発生した磁場は広がりが小さく、他所への影響が小さい。さらに、環状磁石7から発生した磁力線は、蒸発面を通過後、径外方向に急速に発散するため、その磁力線に巻き付いて誘導されるプラズマ流の分布が広くなり、広範囲に均一な膜厚分布を得ることができる。
また、磁場発生源7として、永久磁石を採用しているため、コイルに比べて同体積の磁場発生源としては磁場強度が大きい。したがって、磁場強度の大きいエリアに蒸発面及び蒸発粒子の飛行経路が置かれることになるため、図5に示すように、蒸発物質3から蒸発した荷電粒子が磁力線に巻き付きながら磁力線に沿って飛行する螺旋運動が活発化する。これにより、蒸発物質3から蒸発した成膜粒子及び反応ガスの活性化を促進し、密着力の大きい、緻密な皮膜が得られる。なお、荷電粒子の螺旋運動の半径は、荷電粒子のスピードと磁場強度により決まり、荷電粒子の飛行は様々な半径の螺旋飛行の集まりとなる。
【0019】
図6(a)〜(d)は、本発明における蒸発面11上でのアークスポットの軌跡のイメージを示している。図6(a)〜(d)のパターンは瞬間瞬間でランムに現れる。各パターンは、ともに周回運動であり、各パターンはその周回半径が異なるものである。磁力線が蒸発面11に対してほぼ垂直であると、このようにアークスポットの軌跡が瞬間瞬間で半径の異なった周回運動となるので、周回運動の半径が一定な場合と比較して、蒸発位置が変化し、蒸発面の消耗が均等になる。したがって、蒸発面は、新品時の蒸発面と平行に近い状態を保ちながら消耗し、蒸発物質の利用効率が非常に高い。なお、周回運動の向きは、磁力線の向きによって逆転する。
【0020】
また、アークスポットの周回半径がランダムに変動するので、蒸発物質の局部的な温度上昇が抑えられ、溶融粒子の発生が抑制される。
図7は、比較例として、磁力線が蒸発面11の法線方向から大きく傾いている場合のアークスポットのイメージを示している。図7(A)のように、蒸発物質3の蒸発面11に対し磁場発生源7が前方(コーティング処理物5側)に大きくずれていると、蒸発面11での磁力線が内向きに大きく傾く。したがってアークスポットが蒸発面11の中央部で集中的に放電する。
【0021】
一方、図7(B)のように後方に大きくずれていると、蒸発面11での磁力線が外向きに大きく傾く。したがってアークスポットが蒸発面11の辺縁部のみで放電し、アークスポットが蒸発物質3から飛び出してアーク放電が停止し易い。図7(A)(B)いずれの場合であっても蒸発物質3は均一に消耗せず、利用効率が悪い。
このような不都合を防止するには、蒸発面11上での磁力線の方向を、蒸発面の法線に対し±30度以内とするのが好ましく、さらに好ましくは±10度以内となるように蒸発物質3と磁場発生源7を配置する。また、磁力線が蒸発面11に対して垂直になるのが最も好ましいが、蒸発源ユニット9は、磁場発生源7の軸方向中心より蒸発面11がやや前方に位置した状態で製造するのが好ましい。この場合、蒸発物質3がある程度消耗して蒸発面11が後退すると磁場発生源7の軸方向中心と蒸発面11の位置が一致し、さらに蒸発物質3が消耗しても蒸発面11は磁場発生源7の軸方向中心よりやや後方に位置するだけであるから、蒸発物質3の新品時から消耗するまで、常に磁力線が蒸発面とほぼ垂直した状態を得られる。
【0022】
図8は、本発明の第2の実施の形態に係る蒸発源19を示している。この蒸発源19の磁場発生源17は、多数の永久磁石21を環状に並べて、第1の実施の形態の磁場発生源7と同様な磁場を発生するように構成されたものである。すなわち、長手方向両端に磁極を有する複数の棒状磁石21を磁極の向きを揃えて環状に配置して、実質的に第1の実施の形態における磁場発生源7と同様な、軸方向両端面に環状の磁極を有する環状磁石を構成したものである。この磁場発生源17は、第1の実施の形態の磁場発生源7と同様に配置され、蒸発物質3に対して第1の実施の形態と同様に作用する。
【0023】
図9は、本発明の第3の実施の形態に係る蒸発源29を示している。この蒸発源29の磁場発生手段27は、第1の実施の形態の環状磁石7と同様に構成・配置された径内側環状磁石30と、その径外側に配置される径外側環状磁石31とから構成されている。径外側環状磁石31は、径内側環状磁石30と同様に、軸方向両端に磁極を有する環状磁石であって、軸方向の厚さもほぼ同じに構成されている。この径外側環状磁石31は、径内側環状磁石30と同軸状に配置され、同じ磁極が同方向を向くように径内側環状磁石30を取り囲んでいる。
【0024】
図9に示すように、かかる構成の磁場発生手段27によると、両環状磁石30,31の相互作用によって、径内側磁石30のみの場合より蒸発物質3を貫く磁力線の数が増える。すなわち、蒸発面11における磁場強度が上がり、溶融粒子を減少させる効果がより強く得られる。
図10は、本発明の第4の実施の形態に係る蒸発源39を示している。この蒸発源39の磁場発生源37は、内周側と外周側に磁極を有する第1環状磁石40と、内周側と外周側に磁極を有すると共に内周側と外周側の磁極がそれぞれ第1環状磁石40とは異なる第2環状磁石41とを有している。第1環状磁石40と第2環状磁石41とは、同軸状でかつそれらの軸方向に並置されている。
【0025】
具体的には、第1環状磁石40は、内周側がN極、外周側がS極とされている。また第2環状磁石41は、内周側がS極、外周側がN極とされている。両環状磁石40,41の外周側は、磁性体42によって接続されている。両環状磁石40,41の外周側は異極であるので、磁性体42は両磁石40,41の磁力によって結合される。
このように、環状に磁極を有する環状磁石は、上記構成によっても実現できる。すなわち、両環状磁石40,41の内周側から発生する磁場は、第1の実施の形態における磁場発生源7とほぼ同様なものとなり、両環状磁石40,41の内周側磁極の中間位置に蒸発物質3の蒸発面11を位置させると、磁場が蒸発面1をほぼ垂直に貫く。
【0026】
また、本実施の形態によれば、両磁石40,41の外周側が磁性体42によって接続されているから、外周側へ磁場が発生しない。したがって、この蒸発源39をユニットとして真空容器2に多数隣接させて配置した場合、隣接する蒸発源39への磁場の影響を効果的に排除することができる。
図11は、本発明の第5の実施の形態に係る蒸発源49を示している。この蒸発源49の磁場発生源47は、径内側にN,S両磁極を有する断面U字状の環状磁石によって構成されている。本実施の形態においても、蒸発物質3は、その蒸発面11が両磁極の中間位置に位置するように配置されており、第4の実施の形態と同様な作用効果が得られる。
【0027】
なお、本発明は、前記各実施の形態に限定されるものではない。例えば、磁場発生源である環状磁石は円環状に蒸発物質を取り囲むものである必要はなく、多角形状に蒸発物質を取り囲むものであってもよい。
【0028】
【発明の効果】
以上、本発明によれば、蒸発面と交差する磁力線により溶融粒子の数を減少させることができる。そして、磁力線は蒸発面と略垂直に交差するので、アークスポットが蒸発面で偏在し難くなり、蒸発物質が均一に消耗する。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る真空アーク蒸着装置の概略構成図である。
【図2】 本発明の第1の実施の形態に係る蒸発源を示す断面側面図である。
【図3】 本発明の第1の実施の形態に係る蒸発源の正面図である。
【図4】 本発明に対する比較例としての蒸発源を示す断面側面図である。
【図5】 本発明における蒸発源からの電子の飛行経路を示す図である。
【図6】 本発明における蒸発面上のアークスポットの軌跡を示すイメージ図である。
【図7】 本発明に対する比較例としての蒸発源を示す断面側面図及び正面図であって、(A)は磁力線が内向きのもの、(B)は磁力線が外向きのものを示している。
【図8】 本発明の第2の実施の形態に係る蒸発源を示しており、(a)は側面図、(b)は正面図である。
【図9】 本発明の第3の実施の形態に係る蒸発源を示す断面側面図である。
【図10】 本発明の第4の実施の形態に係る蒸発源を示しており、(a)は断面側面図、(b)は正面図である。
【図11】 本発明の第5の実施の形態に係る蒸発源を示しており、(a)は断面側面図、(b)は正面図である。
【符号の説明】
1 真空アーク蒸着装置
2 真空容器
3 蒸発物質
7 磁場発生源
9 蒸発源(ユニット)
11 アーク蒸発面
17 磁場発生源
19 蒸発源
21 棒状磁石
27 磁場発生源
29 蒸発源
30 径内側環状磁石
31 径外側環状磁石
37 磁場発生源
29 蒸発源
40 第1環状磁石
41 第2環状磁石
42 磁性体
47 磁場発生源
49 蒸発源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum arc evaporation source and a vacuum arc evaporation apparatus provided with the vacuum arc evaporation source.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a vacuum arc vapor deposition apparatus is known that generates arc discharge using a vaporized substance as a cathode in a vacuum chamber, vaporizes and ionizes the cathode material by the energy of arc current, and deposits a film on a substrate.
In such a vacuum arc vapor deposition apparatus, it is inevitable that molten particles having a diameter of several μm or more, which is much larger than that of evaporated particles / ionized particles, are generated, and this is mixed into the film, whereby the surface roughness of the film is increased. It is a disadvantage that it causes deterioration of the film and nonuniformity of the film composition.
[0003]
There has been proposed a solution to solve such a problem caused by molten particles by generating a magnetic field. For example, Japanese Patent Laid-Open No. 2-194167 discloses a structure in which an air core coil coaxial with the evaporation surface is provided between the evaporation surface and the substrate (prior art 1). According to this configuration, the electrons in the plasma are wound around the magnetic field generated by the air-core coil, and the plasma flows along the magnetic field lines while rotating, so that the plasma reaches the substrate. On the other hand, this induction effect does not act on neutral molten particles, and ions are selectively guided to the substrate, so that the number of molten particles directed toward the substrate can be relatively reduced. .
[0004]
Further, JP Tokuoyake flat 5-48298, a permanent magnet for generating a magnetic field component parallel to the cathode surface is arranged in the cathode back to a circular orbit path of the arc motion by rotating the permanent magnet Are disclosed. Then, the horizontal component of the magnetic field generated by the permanent magnet is increased by the magnetic field generated by the solenoid coil surrounding the cathode (prior art 2).
[0005]
[Problems to be solved by the invention]
However, in the case of the prior art 1, the coil is provided at an intermediate position between the substrate and the evaporation surface, and the magnetic field generated by the coil acts so as to be inward in the radial direction of the evaporation surface. In this case, the arc spot tends to be near the center of the evaporation surface, and the evaporated substance is not consumed uniformly.
On the other hand, in the case of the prior art 2, the coil is disposed so as to surround the evaporation surface, and at first glance, it is considered that the magnetic field lines act perpendicularly to the evaporation surface. However, this coil is for increasing the parallel component of the magnetic field lines generated by the permanent magnet disposed on the back surface of the evaporating material, and for canceling out the vertical component of the magnetic field lines generated by the permanent magnet. .
[0006]
That is, this coil is provided as an auxiliary to the permanent magnet, and in the prior art 2, the coil does not act on a magnetic field line perpendicular to the evaporation surface.
The present invention has been made in view of such circumstances, and provides an evaporation source capable of reducing the number of molten particles reaching the substrate by a magnetic field and reducing the occurrence of arc spots. For the purpose.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention takes the following technical means. That is, the feature of the vacuum arc evaporation source according to the present invention includes a magnetic field generation source that surrounds the evaporation substance so as to generate only magnetic lines that intersect the evaporation surface of the evaporation substance substantially perpendicularly ,
The magnetic field generation source is composed of an annular magnet having annular magnetic poles at both ends in the axial direction and surrounding the evaporating substance, and the evaporation surface is positioned at an intermediate position between the N and S magnetic poles of the magnetic field generation source. The magnetic field source is disposed;
The magnetic field lines generated by the magnetic field generation source lie in a distribution that extends from one end surface of the annular magnet to the other end surface crossing the evaporation surface .
[0008]
According to such a configuration, the molten particles can be reduced by the magnetic field lines intersecting the evaporation surface as in the case of the prior art 1. And unlike the prior art 1, since a magnetic force line cross | intersects an evaporation surface substantially perpendicularly, an arc spot becomes difficult to be unevenly distributed in an evaporation surface, and an evaporation substance is consumed uniformly.
Here, the magnetic field lines do not need to intersect the evaporation surface completely perpendicularly, and the magnetic force lines substantially perpendicular to the evaporation surface include those within ± 30 degrees with respect to the normal line of the evaporation surface. Within this range, uniform consumption of the evaporated substance can be achieved to some extent and is within an acceptable range. Therefore, the magnetic field generation source may be arranged at a position where the magnetic field lines are in such a direction.
[0009]
Furthermore, it is preferable that the magnetic field generation source is arranged so that the direction of the magnetic force lines on the evaporation surface is within ± 10 degrees with respect to the normal line of the evaporation surface. In this case, the evaporated substance can be consumed more uniformly.
By the way, like the prior art 1, when generating a magnetic field with an air-core coil, it is inevitable that a magnetic field is generated in a wide range. In particular, a magnetic field extending long in the axial direction of the coil is generated. Such a long magnetic field acts to the position where the substrate is disposed, and there is a problem that this magnetic field affects the film structure in the film formation process on the substrate.
[0010]
In addition, when a plurality of evaporation sources are arranged for vacuum, there is a problem that a wide range of magnetic fields generated from a certain evaporation source can easily affect the evaporation characteristics of neighboring evaporation sources. Furthermore, when the evaporation source is arranged opposite to the vacuum vessel, there is a problem that a magnetic field extending long in the axial direction of the coil influences the opposite evaporation source.
On the other hand, a magnet having an annular magnetic pole as described above can prevent a magnetic field extending in the axial direction from being generated like an air-core coil.
Therefore, when this vacuum arc evaporation source is used in a vacuum arc vapor deposition apparatus, adverse effects on the substrate due to a magnetic field can be prevented. Further, when a plurality of evaporation sources are arranged in the vacuum vessel, it is possible to prevent a magnetic field from one evaporation source from adversely affecting other evaporation sources.
[0011]
Here, the magnet having an annular magnetic pole may be a permanent magnet formed in an annular shape or an electromagnet having a magnetic core formed so as to have an annular magnetic pole.
In addition, it is preferable that the magnetic field lines generated by the magnetic field generation source rapidly diverge in the outer diameter direction of the evaporated substance after passing through the evaporation surface of the evaporated substance.
In addition, as a magnetic field generation source for causing the magnetic field lines to intersect the evaporation surface substantially perpendicularly, as described above, the magnetic field generation source is arranged so that the evaporation surface is positioned at an intermediate position between the N and S magnetic poles of the magnetic field generation source. Is preferably arranged.
[0012]
Here, the intermediate position between the N and S magnetic poles may not be the center of both magnetic poles. However, if the magnetic field generation source is arranged so that the evaporation surface is positioned at approximately the center position of both the N and S magnetic poles of the magnetic field generation source, the direction of the magnetic force line is further equal to the normal direction of the evaporation surface. It becomes easy to do and is more suitable.
Moreover, it is preferable that the magnetic field generation source is configured by arranging a plurality of bar magnets having different magnetic poles at both ends in the longitudinal direction so that the magnetic poles are aligned in an annular shape . In this case, since the spread of the magnetic field in the axial direction of the magnetic field generation source is small, the influence on the substrate or other evaporation source can be effectively suppressed.
[0013]
The annular magnet includes a radially inner annular magnet that surrounds the evaporating substance, and a radially outer annular magnet that is coaxial with the radially inner annular magnet and surrounds the radially inner annular magnet so that the same pole faces in the same direction. It is preferable to be assumed to be.
In this case, the number of lines of magnetic force penetrating the evaporating substance is increased, that is, the magnetic field strength is increased, and the effect can be obtained more strongly.
In the present invention, the magnetic field generating source is a first annular magnet having magnetic poles on the inner and outer peripheral sides, and the inner and outer magnetic poles are different from the first annular magnet. And a second annular magnet juxtaposed in the axial direction of the first annular magnet.
[0014]
Such a configuration is preferable because the magnetic field spreads in the axial direction of the annular magnet is further reduced. In this case, if the outer peripheral sides of the first annular magnet and the second annular magnet are combined with a magnetic body, the magnetic field does not almost spread laterally, so a plurality of evaporation sources according to the present invention are provided in the vacuum vessel. In this case, the influence of the adjacent evaporation source can be eliminated.
In order to obtain the same effect, the magnetic field generation source may be configured as an annular magnet having a U-shaped cross section having both N and S magnetic poles inside the diameter.
Further, the evaporating substance is arranged so that the evaporating surface recedes from the evaporation start position ahead of the axial center of the magnetic field generation source to the rear of the axial direction center of the magnetic field generation source as the evaporating substance evaporates. Preferably it is.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 3 show a first embodiment of the present invention. As shown in FIG. 1, a vacuum arc vapor deposition apparatus 1 according to the present invention is provided with an evaporation substance 3 as a cathode in a vacuum vessel 2, and an arc discharge is generated between an anode (not shown) by an arc discharge power source 4. Thus, the evaporation substance 3 is evaporated and ionized, and a film is deposited on the coating processed product (substrate) 5.
[0016]
The evaporating material 3 constitutes one evaporating source unit 9 together with a magnetic field generating source 7 that generates a magnetic field that intersects the evaporating surface of the evaporating material 3 almost perpendicularly. In FIG. 1, one magnetic field generation source unit 9 is provided in the vacuum vessel 2, but it is preferable to provide a plurality of magnetic field generation source units 9 so as to surround the coating product 5 on the side wall of the vacuum vessel 2.
As shown in FIG. 3, the evaporating material 3 is formed in a disk shape, and the surface on the side of the coating processed product 5 is an arc evaporating surface 11. The magnetic field generation source 7 that constitutes the evaporation source 9 together with the evaporation substance 3 is configured as an annular permanent magnet having annular magnetic poles on both end surfaces in the axial direction (thickness direction). The magnetic field generation source 7 is arranged coaxially with the evaporating substance 3 so as to surround the evaporating substance 3. Further, the magnetic field generation source 7 is arranged so that the axial center position thereof and the position of the evaporation surface substantially coincide with each other, the end surface (front surface) on the coated material 5 side is the N pole, and the other end surface. Is the S pole. Note that the magnetic poles may be reversed.
[0017]
The magnetic field generation source 7 having such an arrangement generates a magnetic field as shown in FIG. FIG. 4 shows, as a comparative example, the state of the magnetic field when the coil 13 is arranged around the evaporating substance 3 as in the prior art. As shown in FIG. 4, in the case of the magnetic field generated by the coil 13, the magnetic force line M <b> 2 becomes a large loop that spreads widely in the axial direction of the coil 13. On the other hand, when the magnetic field generation source 7 is an annular magnet having an annular magnetic pole as in the present invention, the magnetic field lines M1 intersecting the evaporation surface 11 form a relatively small loop as shown in FIG. There is little extension of the magnetic field in the direction.
[0018]
Therefore, when the strength of the magnetic field crossing the evaporation surface 11 is the same, the magnetic field generated by the coil shown in FIG. 4 has a large spread and has a great influence on other places, but is generated by the annular magnet 7 shown in FIG. The applied magnetic field has a small spread and little influence on other places. Furthermore, since the magnetic field lines generated from the annular magnet 7 diverge rapidly in the radial direction after passing through the evaporation surface, the distribution of the plasma flow that is wound around the magnetic field lines is widened and the film thickness distribution is uniform over a wide range. Can be obtained.
In addition, since a permanent magnet is employed as the magnetic field generation source 7, the magnetic field strength of the same volume magnetic field generation source is larger than that of the coil. Therefore, since the evaporation surface and the flight path of the evaporated particles are placed in an area where the magnetic field strength is large, as shown in FIG. 5, the charged particles evaporated from the evaporating substance 3 fly along the magnetic field lines while wrapping around the magnetic field lines. Spiral movement is activated. As a result, activation of the film-forming particles evaporated from the evaporating substance 3 and the reaction gas is promoted, and a dense film having a high adhesion is obtained. The radius of the spiral motion of the charged particles is determined by the speed of the charged particles and the magnetic field strength, and the flight of charged particles is a collection of spiral flights of various radii.
[0019]
6A to 6D show images of the locus of the arc spot on the evaporation surface 11 in the present invention. Pattern of FIG. 6 (a) ~ (d) appears to run dam at every moment. Each pattern is a circular motion, and each pattern has a different circular radius. When the lines of magnetic force are substantially perpendicular to the evaporation surface 11, the locus of the arc spot becomes a revolving motion with a different radius at the moment in this way. Therefore, the evaporation position is compared with the case where the radius of the revolving motion is constant. Changes, and the evaporation surface is evenly consumed. Therefore, the evaporation surface is consumed while maintaining a state almost parallel to the evaporation surface at the time of a new article, and the use efficiency of the evaporation substance is very high. Note that the direction of the circular motion is reversed depending on the direction of the magnetic field lines.
[0020]
In addition, since the arc radius of the arc spot fluctuates randomly, the local temperature rise of the evaporated substance is suppressed, and the generation of molten particles is suppressed.
FIG. 7 shows, as a comparative example, an image of an arc spot when the lines of magnetic force are greatly inclined from the normal direction of the evaporation surface 11. As shown in FIG. 7A, when the magnetic field generation source 7 is largely shifted forward (on the side of the coated product 5) with respect to the evaporation surface 11 of the evaporation material 3, the magnetic lines of force on the evaporation surface 11 are greatly inclined inward. . Therefore, the arc spot is intensively discharged at the center of the evaporation surface 11.
[0021]
On the other hand, when it is largely displaced backward as shown in FIG. 7B, the magnetic lines of force on the evaporation surface 11 are greatly inclined outward. Therefore, the arc spot is discharged only at the edge of the evaporation surface 11, and the arc spot jumps out of the evaporating substance 3 and the arc discharge is likely to stop. In either case of FIGS. 7A and 7B, the evaporating substance 3 is not consumed uniformly, and the utilization efficiency is poor.
In order to prevent such an inconvenience, the direction of the magnetic force line on the evaporation surface 11 is preferably within ± 30 degrees with respect to the normal line of the evaporation surface, and more preferably within ± 10 degrees. The substance 3 and the magnetic field generation source 7 are arranged. The magnetic field lines are most preferably perpendicular to the evaporation surface 11, but the evaporation source unit 9 is preferably manufactured with the evaporation surface 11 positioned slightly forward from the axial center of the magnetic field generation source 7. . In this case, when the evaporation material 3 is consumed to some extent and the evaporation surface 11 is retracted, the axial center of the magnetic field generating source 7 and the position of the evaporation surface 11 coincide with each other. Since it is located slightly behind the axial center of the source 7, it is always possible to obtain a state in which the magnetic field lines are almost perpendicular to the evaporation surface until the evaporation material 3 is consumed from the new time.
[0022]
FIG. 8 shows an evaporation source 19 according to the second embodiment of the present invention. The magnetic field generation source 17 of the evaporation source 19 is configured to generate a magnetic field similar to the magnetic field generation source 7 of the first embodiment by arranging a large number of permanent magnets 21 in a ring shape. That is, a plurality of rod-shaped magnets 21 having magnetic poles at both ends in the longitudinal direction are arranged in an annular shape with the magnetic poles aligned, and substantially the same as the magnetic field generation source 7 in the first embodiment on both end faces in the axial direction. An annular magnet having an annular magnetic pole is configured. This magnetic field generation source 17 is disposed in the same manner as the magnetic field generation source 7 of the first embodiment, and acts on the evaporating substance 3 in the same manner as in the first embodiment.
[0023]
FIG. 9 shows an evaporation source 29 according to the third embodiment of the present invention. The magnetic field generating means 27 of the evaporation source 29 includes a radially inner annular magnet 30 configured and arranged in the same manner as the annular magnet 7 of the first embodiment, and a radially outer annular magnet 31 disposed on the radially outer side. It is configured. The radially outer annular magnet 31 is an annular magnet having magnetic poles at both ends in the axial direction, similarly to the radially inner annular magnet 30, and is configured to have substantially the same axial thickness. The radially outer annular magnet 31 is arranged coaxially with the radially inner annular magnet 30 and surrounds the radially inner annular magnet 30 so that the same magnetic pole faces in the same direction.
[0024]
As shown in FIG. 9, according to the magnetic field generating means 27 having such a configuration, the number of magnetic force lines penetrating the evaporating substance 3 is increased by the interaction between the annular magnets 30 and 31 as compared with the case of the inner diameter magnet 30 alone. That is, the magnetic field strength at the evaporation surface 11 is increased, and the effect of reducing the molten particles is obtained more strongly.
FIG. 10 shows an evaporation source 39 according to the fourth embodiment of the present invention. The magnetic field generating source 37 of the evaporation source 39 includes a first annular magnet 40 having magnetic poles on the inner peripheral side and the outer peripheral side, magnetic poles on the inner peripheral side and the outer peripheral side, and magnetic poles on the inner peripheral side and the outer peripheral side respectively. The second annular magnet 41 is different from the first annular magnet 40. The first annular magnet 40 and the second annular magnet 41 are coaxial and juxtaposed in the axial direction thereof.
[0025]
Specifically, the first annular magnet 40 has an N pole on the inner peripheral side and an S pole on the outer peripheral side. The second annular magnet 41 has an S pole on the inner peripheral side and an N pole on the outer peripheral side. The outer peripheral sides of the annular magnets 40 and 41 are connected by a magnetic body 42. Since the outer peripheral sides of both annular magnets 40 and 41 have different polarities, the magnetic body 42 is coupled by the magnetic force of both magnets 40 and 41.
As described above, an annular magnet having an annular magnetic pole can also be realized by the above configuration. That is, the magnetic field generated from the inner peripheral side of both annular magnets 40 and 41 is substantially the same as the magnetic field generating source 7 in the first embodiment, and the intermediate position of the inner peripheral magnetic poles of both annular magnets 40 and 41. When the evaporating surface 11 of the evaporating substance 3 is positioned on the surface, the magnetic field penetrates the evaporating surface 1 almost vertically.
[0026]
Moreover, according to this Embodiment, since the outer peripheral side of both the magnets 40 and 41 is connected by the magnetic body 42, a magnetic field does not generate | occur | produce on the outer peripheral side. Therefore, when a large number of the evaporation sources 39 are arranged adjacent to the vacuum vessel 2 as a unit, the influence of the magnetic field on the adjacent evaporation sources 39 can be effectively eliminated.
FIG. 11 shows an evaporation source 49 according to the fifth embodiment of the present invention. The magnetic field generation source 47 of the evaporation source 49 is constituted by an annular magnet having a U-shaped cross section having both N and S magnetic poles inside the diameter. Also in the present embodiment, the evaporating substance 3 is arranged so that the evaporation surface 11 is located at an intermediate position between the two magnetic poles, and the same effect as the fourth embodiment can be obtained.
[0027]
The present invention is not limited to the above embodiments. For example, the annular magnet as the magnetic field generation source does not need to surround the evaporating substance in an annular shape, and may enclose the evaporating substance in a polygonal shape.
[0028]
【The invention's effect】
As described above, according to the present invention, the number of molten particles can be reduced by the lines of magnetic force intersecting the evaporation surface. Since the lines of magnetic force intersect the evaporation surface substantially perpendicularly, the arc spot is less likely to be unevenly distributed on the evaporation surface, and the evaporated material is consumed uniformly.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a vacuum arc deposition apparatus according to a first embodiment of the present invention.
FIG. 2 is a sectional side view showing an evaporation source according to the first embodiment of the present invention.
FIG. 3 is a front view of an evaporation source according to the first embodiment of the present invention.
FIG. 4 is a sectional side view showing an evaporation source as a comparative example to the present invention.
FIG. 5 is a diagram showing a flight path of electrons from an evaporation source in the present invention.
FIG. 6 is an image diagram showing a locus of an arc spot on the evaporation surface in the present invention.
FIGS. 7A and 7B are a cross-sectional side view and a front view showing an evaporation source as a comparative example for the present invention, where FIG. 7A shows a magnetic field line facing inward and FIG. 7B shows a magnetic field line facing outward. .
8A and 8B show an evaporation source according to a second embodiment of the present invention, where FIG. 8A is a side view and FIG. 8B is a front view.
FIG. 9 is a sectional side view showing an evaporation source according to a third embodiment of the present invention.
FIGS. 10A and 10B show an evaporation source according to a fourth embodiment of the present invention, where FIG. 10A is a sectional side view, and FIG. 10B is a front view.
11A and 11B show an evaporation source according to a fifth embodiment of the present invention, in which FIG. 11A is a sectional side view, and FIG. 11B is a front view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum arc evaporation apparatus 2 Vacuum container 3 Evaporation substance 7 Magnetic field generation source 9 Evaporation source (unit)
11 Arc evaporation surface 17 Magnetic field generation source 19 Evaporation source 21 Bar magnet 27 Magnetic field generation source 29 Evaporation source 30 Radial inner ring magnet 31 Radial outer ring magnet 37 Magnetic field generation source 29 Evaporation source 40 First annular magnet 41 Second annular magnet 42 Magnetic Body 47 Magnetic field source 49 Evaporation source

Claims (11)

アーク放電の陰極となる蒸発物質と、
当該蒸発物質の蒸発面と略垂直に交差する磁力線のみを発生するように前記蒸発物質を取り囲む磁場発生源とを備え、
前記磁場発生源は、環状の磁極を軸方向両端に有して前記蒸発物質を取り囲む環状磁石からなり、前記磁場発生源のN,S両磁極の中間位置に、前記蒸発面が位置するように前記磁場発生源が配置され、
前記磁場発生源による磁力線が、環状磁石の一方の端面から前記蒸発面と交差して他方の端面まで伸びる分布を示すことを特徴とする真空アーク蒸発源。
An evaporating substance that serves as a cathode for arc discharge;
A magnetic field generation source that surrounds the evaporating material so as to generate only magnetic lines that intersect the evaporating surface of the evaporating material substantially perpendicularly ,
The magnetic field generation source is composed of an annular magnet having annular magnetic poles at both ends in the axial direction and surrounding the evaporating substance, and the evaporation surface is positioned at an intermediate position between the N and S magnetic poles of the magnetic field generation source. The magnetic field source is disposed;
A vacuum arc evaporation source characterized in that a magnetic field line generated by the magnetic field generation source has a distribution extending from one end face of an annular magnet to the other end face crossing the evaporation face .
前記磁力線の蒸発面における方向が、蒸発面の法線に対し±30度以内となるように前記磁場発生源が配置されていることを特徴とする請求項1記載の真空アーク蒸発源。  2. The vacuum arc evaporation source according to claim 1, wherein the magnetic field generating source is arranged so that the direction of the magnetic force lines on the evaporation surface is within ± 30 degrees with respect to the normal line of the evaporation surface. 前記磁力線の蒸発面における方向が、蒸発面の法線に対し±10度以内となるように前記磁場発生源が配置されていることを特徴とする請求項2記載の真空アーク蒸発源。  3. The vacuum arc evaporation source according to claim 2, wherein the magnetic field generation source is arranged so that the direction of the magnetic force lines on the evaporation surface is within ± 10 degrees with respect to the normal line of the evaporation surface. 前記磁場発生源による磁力線が、前記蒸発物質の前記蒸発面を通過後に前記蒸発物質の径外方向に急速に発散することを特徴とする請求項1〜3のいずれかに記載の真空アーク蒸着 Magnetic lines by the magnetic field generating source, vacuum arc vapor deposition according to any one of claims 1 to 3, characterized that you rapidly diverge in the radially outward direction of the evaporated substance after passing through the evaporation surface of the evaporation material Source . 前記磁場発生源は、長手方向両端にそれぞれ異なる磁極を有する複数の棒磁石を磁極の向きを揃えて環状に配置して構成されていることを特徴とする請求項1〜4のいずれかに記載の真空アーク蒸発源。Wherein the magnetic field generating source, according to any one of claims 1 to 4, characterized in that a plurality of bar magnets having different magnetic poles at both ends in the longitudinal direction aligning the orientation of the magnetic pole is formed by arranging the annular Vacuum arc evaporation source. 前記環状磁石は、前記蒸発物質を取り囲む径内側環状磁石と、当該径内側環状磁石と同軸状かつ同極が同方向を向くように前記径内側環状磁石を取り囲む径外側環状磁石とから構成されていることを特徴とする請求項1〜4のいずれかに記載の真空アーク蒸発源。 The annular magnet is composed of a radially inner annular magnet that surrounds the evaporating substance, and a radially outer annular magnet that is coaxial with the radially inner annular magnet and surrounds the radially inner annular magnet so that the same pole faces in the same direction. The vacuum arc evaporation source according to any one of claims 1 to 4, wherein: 前記磁場発生源は、内周側と外周側に磁極を有する第1環状磁石と、内周側と外周側の磁極がそれぞれ第1環状磁石とは異なる磁極とされていると共に前記第1環状磁石の軸方向に並置された第2環状磁石と、
から構成されていることを特徴とする請求項1〜4のいずれかに記載の真空アーク蒸発源。
The magnetic field generation source includes a first annular magnet having magnetic poles on the inner peripheral side and the outer peripheral side, and a magnetic pole on the inner peripheral side and the outer peripheral side that is different from the first annular magnet, and the first annular magnet. A second annular magnet juxtaposed in the axial direction of
Vacuum arc evaporation source according to any one of claims 1 to 4, characterized that you have been composed.
前記磁場発生源は、前記第1環状磁石と第2環状磁石の外周側を磁性体によって結合して構成されていることを特徴とする請求項7記載の真空アーク蒸発源。 8. The vacuum arc evaporation source according to claim 7 , wherein the magnetic field generation source is configured by coupling outer peripheral sides of the first annular magnet and the second annular magnet with a magnetic material . 前記磁場発生源は、径内側にN,S両磁極を有する断面U字状の環状磁石であることを特徴とする請求項1〜4のいずれかに記載の真空アーク蒸発源。Wherein the magnetic field generating source, vacuum arc evaporation source according to claim 1 in the radially inward side N, and wherein the U-shaped cross section of the annular magnet der Rukoto having S magnetic poles. 前記蒸発面は、蒸発物質の蒸発に伴って前記磁場発生源の軸方向中心より前方の蒸発開始位置から前記磁場発生源の軸方向中心より後方まで後退することを特徴とする請求項1〜9のいずれかに記載の真空アーク蒸発源。 The evaporation surface is claim 1, characterized that you retreat from the front of the evaporation start position than the axial center of the magnetic source with the evaporation of the evaporation material to the rear than the axial center of the magnetic field generating source The vacuum arc evaporation source according to any one of 9 . 請求項1〜10のいずれかに記載の真空アーク蒸発源を備えていることを特徴とする真空アーク蒸着装置。 A vacuum arc vapor deposition apparatus comprising the vacuum arc evaporation source according to claim 1 .
JP00804599A 1999-01-14 1999-01-14 Vacuum arc evaporation source and vacuum arc evaporation apparatus Expired - Lifetime JP3789667B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP00804599A JP3789667B2 (en) 1999-01-14 1999-01-14 Vacuum arc evaporation source and vacuum arc evaporation apparatus
TW088122579A TWI242049B (en) 1999-01-14 1999-12-21 Vacuum arc evaporation source and vacuum arc vapor deposition apparatus
KR1020000000591A KR100343033B1 (en) 1999-01-14 2000-01-07 Vacuum arc evaporation source and vacuum arc deposition apparatus
US09/480,164 US6334405B1 (en) 1999-01-14 2000-01-10 Vacuum arc evaporation source and vacuum arc vapor deposition apparatus
DE60019821T DE60019821T2 (en) 1999-01-14 2000-01-13 Vacuum arc evaporation source and evaporator
EP00100656A EP1020541B1 (en) 1999-01-14 2000-01-13 Vacuum arc evaporation source and deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00804599A JP3789667B2 (en) 1999-01-14 1999-01-14 Vacuum arc evaporation source and vacuum arc evaporation apparatus

Publications (2)

Publication Number Publication Date
JP2000204466A JP2000204466A (en) 2000-07-25
JP3789667B2 true JP3789667B2 (en) 2006-06-28

Family

ID=11682382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00804599A Expired - Lifetime JP3789667B2 (en) 1999-01-14 1999-01-14 Vacuum arc evaporation source and vacuum arc evaporation apparatus

Country Status (1)

Country Link
JP (1) JP3789667B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074554B1 (en) * 2002-12-19 2011-10-17 오를리콘 트레이딩 아크티엔게젤샤프트, 트뤼프바흐 Vacuum arc source comprising a device for generating a magnetic field
DE112008004247T5 (en) 2008-12-26 2012-04-12 Fundación Tekniker Arc evaporator and method for operating the evaporator

Also Published As

Publication number Publication date
JP2000204466A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JP3159949B2 (en) Thin film deposition equipment using cathodic arc discharge
KR100343033B1 (en) Vacuum arc evaporation source and vacuum arc deposition apparatus
KR101175843B1 (en) Sputtering apparatus
KR100396456B1 (en) High target utilization magnetic arrangement for a truncated conical sputtering target
RU2168233C2 (en) Cathode for spraying or electric-arc evaporation (alternatives) and device for coating or ion-beam implantation of substrates
JPS63303065A (en) Surface treatment
WO2013010509A1 (en) Reduced droplet arc target and plasma coating system with same
CN112176292A (en) Magnetic filtration arc coating device
JP2851320B2 (en) Vacuum arc deposition apparatus and method
JP3789667B2 (en) Vacuum arc evaporation source and vacuum arc evaporation apparatus
US5976636A (en) Magnetic apparatus for arc ion plating
JP2006307243A (en) Magnetron sputtering film deposition system with multiplex magnetic poles, and film deposition method therefor
JPH11269634A (en) Vacuum arc evaporation source
MX2013009737A (en) Arc evaporation source.
JP2002069632A (en) Equipment and method for sputtering
JP4019457B2 (en) Arc type evaporation source
KR20010021341A (en) Arc type ion plating apparatus
JP4409015B2 (en) Arc ion plating equipment
JP4684141B2 (en) Vacuum arc evaporation source and vacuum arc evaporation apparatus
JP2877027B2 (en) Arc evaporation source
JPH0583632B2 (en)
JP2755776B2 (en) High-speed deposition sputtering equipment
JPS6046368A (en) Sputtering target
JP4019464B2 (en) Arc type evaporation source
JPH10330935A (en) Sputtering device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

EXPY Cancellation because of completion of term