JPS6046368A - Sputtering target - Google Patents

Sputtering target

Info

Publication number
JPS6046368A
JPS6046368A JP15352783A JP15352783A JPS6046368A JP S6046368 A JPS6046368 A JP S6046368A JP 15352783 A JP15352783 A JP 15352783A JP 15352783 A JP15352783 A JP 15352783A JP S6046368 A JPS6046368 A JP S6046368A
Authority
JP
Japan
Prior art keywords
target
substrate
sputtering
film
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15352783A
Other languages
Japanese (ja)
Other versions
JPS6331550B2 (en
Inventor
Takashi Hasegawa
隆 長谷川
Mihiro Sumiyama
隅山 望洋
Hiroshi Shimada
寛 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15352783A priority Critical patent/JPS6046368A/en
Publication of JPS6046368A publication Critical patent/JPS6046368A/en
Publication of JPS6331550B2 publication Critical patent/JPS6331550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase a film forming amount per unit time, by forming a sputtering targed into a U-shape having an opening part directed to an object to be coated and arranging magnets to both sides of said target. CONSTITUTION:The target 1 in a sputtering apparatus is formed into a U-shape from side plates 4 and a bottom plate 5 and the opening part 1a thererof is directed to a substrate 3 to which a sputtering film is formed. In addition, a W tilament is attached to one end in the target 1 and anode plate 12 to the opposite side therein while magnets 2 each having a yoke are attached to the outer sides of said target 1. The substrate 3 is used as an anode and the target 1 is used as a cathode to apply voltage of 500-1,000V therebetween while a current is supplied to the filament to apply voltage between said filament and the anode plate 12. Glow discharge is generated between the target 1 and the substrate 3 and the molecule of the target 1 is generated but glow discharge is promoted by the thermoelectron from the filament and a large amount of the target molecules are uniformly collided with the substrate 3 by the restriction of the side plates 4 and the magnetic field due to the magnets 2 to form a vapor deposition film having a uniform thichkness at a high speed.

Description

【発明の詳細な説明】 本発明は、スパッタリングに用いろスノツタリングター
ゲットに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sputtering target for use in sputtering.

周知のようにスパッタリングは、グロー放電またはアー
ク放成により生成したプラズマイオンを、平板状のター
ゲツト面に衝突させ、この衝撃によりターゲットから飛
び土す原子または分子を被覆対象物の表面に堆積させて
行なっている。ところで、従米のスパッタリング装置に
おいてに、ターゲット近傍に発生させるプラズマの密夏
の同上及びプラズマの空間的は均−注の向上が難しく、
このこめにスパッタ率(換言すれば、単位時間あこりの
被覆績斌量が小さく、生産性が低いという問題があつこ
As is well known, sputtering is a process in which plasma ions generated by glow discharge or arc emission collide with a flat target surface, and this impact causes atoms or molecules flying from the target to be deposited on the surface of the object to be coated. I am doing it. By the way, in the conventional sputtering equipment, it is difficult to improve the uniformity of the plasma generated near the target in the heat of summer and the spatial distribution of the plasma.
On top of this, there is the problem that the sputtering rate (in other words, the amount of coating per unit time is small and productivity is low).

これに対してプラズマ密度を宣めろこぬに、ターゲット
の放射面近傍の空間に、ターゲットと柄版との間に与え
られに心弁の方向に対して直角方向に磁束を与えるよう
にしこ装置(いわゆるマグネトロン式の装置)が知られ
ている。ところが、この種の装置では、ターゲット近傍
の必要とされる空間領域内に均一な磁束分布を与えるこ
とが困難であり、まこターゲットが強磁性体である場合
には、磁束がターゲット内に吸収されて所期の目釣が達
成されない等のこめに、充分な生産性の向上を図ること
ができなかつこ。
On the other hand, in order to determine the plasma density, a magnetic flux is applied in the space near the radiation surface of the target between the target and the handle in a direction perpendicular to the direction of the heart valve. A device (a so-called magnetron type device) is known. However, with this type of device, it is difficult to provide a uniform magnetic flux distribution within the required spatial region near the target, and if the mako target is a ferromagnetic material, the magnetic flux is absorbed within the target. However, due to problems such as not being able to achieve the desired catch, it is not possible to improve productivity sufficiently.

また、ターゲット近傍のプラズマを発生させる空間に向
けてタングステンフィラメント等を加熱して熱電子を放
出させ、大岐流のアークプラズマによりプラズマ密度を
高めろようにしこ装置が知られているが、ターゲツト面
に対して均一なアークプラズマを発生せしめるには高度
な技術を必要とし、これを実現するこめには装置が複雑
化すると共に高価格化し、従つて生産コストが著しく高
騰するという問題をかかえていに。
In addition, a Nishiko device is known that heats a tungsten filament or the like toward a space where plasma is generated near the target, emitting thermoelectrons, and increases the plasma density by using the arc plasma of the Oki flow. Generating a uniform arc plasma over a surface requires advanced technology, and in order to achieve this, the equipment becomes complicated and expensive, resulting in a significant rise in production costs. To.

不発明は上記事湾に鑑み、生産コストを低く迎え得ると
共にスパッタリングの能率の同上を図ることができるス
パッタリングターゲッを提供することを目的としてなさ
れこもので、プラズマイオンの衝撃を受けて成分原子ま
こは分子を放出するスパッタリングターゲットの放射面
を、被覆対象物に向けて開いた断面U字状の曲面もしく
は断面凹状の而に形成したことを脣債とするものがある
In view of the above problems, the invention was made with the aim of providing a sputtering target that can reduce production costs and improve sputtering efficiency, and in which component atoms are Some sputtering targets that emit molecules have a radiation surface that is formed into a curved surface with a U-shaped cross section or a concave cross section that opens toward the object to be coated.

以下、本発明を図面な舒照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図、第2図は、不発明のスパッタリングターゲット
を用いこスパッタ装置の一例を示す図である。これらの
図中、符号1はクーゲット、2は磁石、3は基板である
FIGS. 1 and 2 are diagrams showing an example of a sputtering apparatus using a sputtering target according to the invention. In these figures, numeral 1 is a cuget, 2 is a magnet, and 3 is a substrate.

ターゲット1は、長方形状の貨板4,4を2枚、平行に
定向配置し、それらの長辺方向の下町社部間を底板5に
より連結してなる断面U手状に形成されていろ。そして
、そのU字状の開口部1aを基板3に向けて設置されて
いる、このクーゲット1は、その材料として、スパック
リングにより形成しようとする被膜の成分と同じ成分を
もったものが用さらt、この実施例においては純鉄つも
はっている。
The target 1 is formed into a U-shaped cross section by arranging two rectangular cargo plates 4, 4 in parallel and oriented directions, and connecting the downtown area in the long side direction with a bottom plate 5. This cuguette 1, which is installed with its U-shaped opening 1a facing the substrate 3, is made of a material having the same components as the coating to be formed by spackling. In this embodiment, pure iron is also used.

まこ、ターゲット1の開口部1aを除く外耐は、シール
ド6によって覆われている。このシールト6に、例えば
鋼等の導成住材料(好ましくは、導電性かつ非磁性材料
)の板体を断面U字状に折曲加工して形成され、前記タ
ーゲット1の外面をら若干離間させた状態で配置され、
このシールド6に対してターゲット1はその上宿縁部で
絶縁材7を弁して固定されている。そして、ターゲツト
1外面とシールド6内面との間には、図示しないが金属
製の水冷ジャケットがターゲット1に密着させて設けら
し、このジャケット内部がターゲット1冷却用の冷卸水
通路8となっている。
The outer part of the target 1 except for the opening 1a is covered with a shield 6. The shield 6 is formed by bending a plate of a conductive material (preferably a conductive and non-magnetic material) such as steel into a U-shaped cross section, and is spaced slightly apart from the outer surface of the target 1. It is placed in a state that
The target 1 is fixed to the shield 6 by using an insulating material 7 at its upper edge. A metal water cooling jacket (not shown) is provided between the outer surface of the target 1 and the inner surface of the shield 6 in close contact with the target 1, and the inside of this jacket serves as a cooling water passage 8 for cooling the target 1. There is.

また磁石2.2に、前記ターゲット1の側板4.4外面
側に沿って配置されている。これらの磁石2,2のうち
の一方の磁石はN極をターゲット1に向け、他方の磁石
はS極をクーゲット1に向けて設置され、図示しよい固
定手段により強固に固定すれている。各磁石2.2のタ
ーゲット1に町り面には、それぞれ磁石ヨーク10,1
0が固足さしてる。各ヨーク10.10は、ターゲット
1の開口部1a側でターゲット1とヨーク10との間の
距離が最も小さくなるように形成されており、従って磁
石2.2による磁束は、ターゲット1の開口部1a近傍
で最も密反が旨くはっティる。
The magnet 2.2 is also arranged along the outer surface of the side plate 4.4 of the target 1. One of these magnets 2, 2 is installed with its north pole facing the target 1, and the other magnet is installed with its south pole facing the target 1, and is firmly fixed by fixing means that is well illustrated. On the surface of each magnet 2.2 facing the target 1, there are magnet yokes 10, 1, respectively.
0 stands firm. Each yoke 10.10 is formed such that the distance between the target 1 and the yoke 10 is the smallest on the side of the opening 1a of the target 1, so that the magnetic flux due to the magnet 2.2 is directed toward the opening 1a of the target 1. The dense fabric is most effective near 1a.

まこ、この例において第1図に示すようにクーグツト1
の一漏部にタングステンフィラメント11が設けられる
と共に、他端部に陽愼板12が設けられており、これら
タングステンフィラメント11と陽極板12とにターゲ
ット1の側板4、4間の空間に熱電子を供給するアーク
プラズマ発生装置を構成している。
Mako, in this example, as shown in Figure 1, Kugut 1
A tungsten filament 11 is provided at one end, and a positive electrode plate 12 is provided at the other end. It constitutes an arc plasma generator that supplies

しかして、上記のスパッタ装置でに、第2図に示すよう
にクーゲット1に列して基板3が正電位(通常500〜
1000V)をもつように范圧が印加される。まこ、ア
ークプラズマ発生装置の陽極板12にはタングステンフ
ィラメント11に対して正電圧が印加しると共て、タン
グステンクイラメント11にはこれを加熱つるための鷺
力が供給されるようになっている。
In the above-mentioned sputtering apparatus, the substrate 3 is placed at a positive potential (usually 500 to
1000V) is applied. Now, a positive voltage is applied to the anode plate 12 of the arc plasma generator with respect to the tungsten filament 11, and a force is supplied to the tungsten filament 11 to heat it. There is.

次に、上記のスパッタ装置の作用及びターゲット1の作
用を説明する。
Next, the operation of the above sputtering apparatus and the operation of the target 1 will be explained.

まず、雰囲気を所定の圧力に減圧し、ターゲット1と基
板3との間に電圧を印加すると共にタングステンフィラ
メント11に通電してこれを加熱し、かうタングステン
フィラメント11と陽極板32との間に電圧を印加する
。これによってターゲット1と征圧3との間にはグロー
放電またはアーク放電よるプラズマが生じ、その原子ま
たは電子のイオンがターゲット1の表面に衝突してター
ゲット1の表面の金属原子をイオン化して叩き出す。タ
ーゲット1の表面から放出された多数の金属イオンは、
ターゲット1表面に対して様々な方向の運動量をもつが
、本発明のターゲット1においては、開口部1aによっ
て金属イオンの散乱方向が制限される。すなわち、ター
ゲット1の底板5からこの底板5の面に略直角な方向の
運動量をもって放出された金属イオンは、基板3に向け
て飛び出し、また劉隅6の面に対して直角以外の方向の
運動量をもって放出された金属イオンは、軌道が側板4
、4によって制限され、開口部1aを通過し得る方向の
運動量をもった金属イオンがターゲット1から飛び丁ま
。また、ターゲット1の側仮4.4から叩ご出されこ金
属イオンも開口部1aにより飛び出し方向が制限される
。矢って、上記のようなターゲットによれば、このター
ゲット1から叩き出されろ原子イオンの放出方向に、基
板3に同いこ方向性を与えることかでざる。
First, the atmosphere is reduced to a predetermined pressure, a voltage is applied between the target 1 and the substrate 3, electricity is applied to the tungsten filament 11 to heat it, and a voltage is applied between the tungsten filament 11 and the anode plate 32. Apply. As a result, plasma due to glow discharge or arc discharge is generated between the target 1 and the subduing force 3, and the ions of atoms or electrons collide with the surface of the target 1 to ionize and strike the metal atoms on the surface of the target 1. put out. A large number of metal ions released from the surface of target 1 are
Although the metal ions have momentum in various directions relative to the surface of the target 1, in the target 1 of the present invention, the scattering direction of metal ions is limited by the opening 1a. That is, the metal ions emitted from the bottom plate 5 of the target 1 with momentum in a direction substantially perpendicular to the plane of the bottom plate 5 jump out toward the substrate 3, and also have momentum in a direction other than perpendicular to the plane of the corner 6. The metal ions released by
, 4, the metal ions fly away from the target 1 with momentum in a direction that allows them to pass through the opening 1a. Furthermore, the direction in which the metal ions ejected from the side portion 4.4 of the target 1 is also restricted by the opening 1a. In other words, with the target as described above, it is necessary to give the substrate 3 the same directionality in the direction in which the atomic ions that are ejected from the target 1 are emitted.

まこ、上記のターゲット1でに、これと基板3との間に
発生すろプラズマが、側板4.4と紙板5とによって囲
まれており、従ってプラズマイオンがターゲット1に衝
突する確率が従来の平板状のターゲットに比べて著しく
筒くするため、址属イオンの放出量か従来のものより増
加する。
In the above target 1, the plasma generated between it and the substrate 3 is surrounded by the side plate 4.4 and the paper board 5, and therefore the probability of plasma ions colliding with the target 1 is lower than that of the conventional flat plate. Since the target is significantly more cylindrical than a conventional target, the amount of ions emitted is increased compared to conventional targets.

上記のスパッタ装置において、タングステンフィラメン
ト11と陽極板12とからなるアークプラズマ発生装置
は、側板4,4と底板5とに囲まれたターゲット1内の
空間に熱電子を放出し、もってターゲット1と基板3と
の間の放電を容易にしてプラズマ密度の向上を促す作用
をする。
In the sputtering apparatus described above, the arc plasma generator comprising the tungsten filament 11 and the anode plate 12 emits thermionic electrons into the space within the target 1 surrounded by the side plates 4, 4 and the bottom plate 5. It functions to facilitate discharge between the substrate 3 and promote an improvement in plasma density.

まだ、上記のスパツタ装置において磁石2.2は、ター
ゲット1の開口部1a近傍の空間に、ターゲット1と基
板3との間に生じろ電昇方向に対して直角方向の磁場を
高い密度で発生させる。この磁場は、ターゲット1と基
板3との間に発生するプラズマを、ターゲット1の近傍
に集束させる作用をして基板3への電荷の流入を抑え、
基板3の温度上昇を防止する作用をする。
However, in the above sputtering device, the magnet 2.2 generates a high density magnetic field in the space near the opening 1a of the target 1 in a direction perpendicular to the direction of electric current generated between the target 1 and the substrate 3. let This magnetic field acts to focus the plasma generated between the target 1 and the substrate 3 in the vicinity of the target 1, suppressing the inflow of electric charge into the substrate 3,
It acts to prevent the temperature of the substrate 3 from rising.

しかして上記のような不発明のターゲットによれば、そ
の形状を断面U竿状まこは凹字状とし、開口部を被覆対
象物に向けて用いるようにし、かつプラズマをU字状ま
には凹字状に形成されたターゲットの内面側に発生させ
ろようにしこものであるから、プラズマイオンの衝撃に
よりスノソタされる粒子の数が多く、かつスパッタされ
た定子の飛翔方向が開口部により制限されて破暖対象物
に向けて方向性を与えられるこめ、単侍時間あたりの被
膜生成量を著しく同上させろごとができ、従って生産性
の高いスパッタ装置を夾現することができる。
However, according to the above-mentioned uninvented target, its cross section is U-shaped, the pole is concave, and the opening is directed toward the object to be coated, and the plasma is directed to the U-shaped or concave shape. Since the sputtered particles are generated on the inner surface of the target formed in a concave shape, a large number of particles are scattered by the plasma ion bombardment, and the flight direction of the sputtered constant is restricted by the opening. Since directionality is given to the object to be heated, the amount of film produced per unit time can be significantly increased, and a highly productive sputtering apparatus can therefore be realized.

まに、不発明のターゲットは、アークプラズマ発生装置
な潮えろことによってプラズマ密度を高め、被膜生成速
度を更に向上させることができ、更にはターゲットを断
面U手状(まこは凹字状)とすることによってターゲッ
トが強磁性体である場合も磁石により与えこ磁束密度を
ターゲットの開口部近傍の空間で胃くすることが可能と
なり、従って磁束によりプラズマを集束させてプラズマ
の利用効率の向上及び基板への電荷の流入防止効果の向
上を図ることができる等の効果を得ろことがでさる。
In addition, the uninvented target can increase the plasma density and further improve the film formation rate by changing the flow rate of an arc plasma generator. By doing so, even if the target is a ferromagnetic material, the magnetic flux density applied by the magnet can be concentrated in the space near the opening of the target, and therefore the plasma can be focused by the magnetic flux, improving the efficiency of plasma utilization and It is possible to obtain effects such as being able to improve the effect of preventing charge from flowing into the substrate.

なお、上記の実施例においては、ターゲットを平板を結
合して断面凹壬状に形成しこ例を示しこが、これに限定
されるものではなく、貧属板をプレス成形法等により断
面U字状の曲面をもにせこ形状とすることもできろ。
In the above embodiment, the target is formed by combining flat plates to have a concave cross section, but the present invention is not limited to this. It is also possible to make the curved surface of the letter shape into a curved shape.

仄に実験例をあげて本光明を更に具体的に説明する。The present invention will be explained in more detail by briefly giving an experimental example.

〔実験例1、磁束密度の分布状態〕 第1図、第2図に示したターゲット1を以下に示す材質
及び寸法により形成しこ。
[Experimental Example 1, Distribution of Magnetic Flux Density] The target 1 shown in FIGS. 1 and 2 was formed using the materials and dimensions shown below.

・材質:純鉄 ・厚さ:5mm ・開口部寸法:30mm ・高さ(内のり):70mm ・長さ:200mm 上記のターゲット1に厚さ2mmの銅板からなろシール
ド6を取り付け、鋼板4,4の外面側に活って平行に、
純鉄製のヨーク10.10を備えた永久磁石2,2を配
置した。ヨーク10.10の上部先端とシールド6との
間の間隔は3mnとしに。
・Material: Pure iron ・Thickness: 5mm ・Opening dimension: 30mm ・Height (inner glue): 70mm ・Length: 200mm Attach Naro Shield 6 made of a 2mm thick copper plate to the target 1 above, and steel plates 4 and 4. parallel to the outer surface of the
Permanent magnets 2, 2 provided with yokes 10.10 made of pure iron were arranged. The distance between the upper tip of the yoke 10.10 and the shield 6 is 3 mm.

まこ、ターゲット1の上方に、ターゲット1土端の開口
部1aから50mm離間させ、ターゲット1と平行に、
材質がガラスからなり、幅寸法30mm、長さ寸法20
0mmの基板3を配置しに。
Mako, above the target 1, 50 mm apart from the opening 1a at the edge of the target 1, parallel to the target 1,
Made of glass, width 30mm, length 20mm
Place the 0mm board 3.

上記永久磁石2,2により2000エルステツドの磁場
を与えた場合のターゲット1内方の梁間に生じる磁束の
密度、及びターゲット側板4の上端部で4と4の中央部
(第3図の長手方向の中央位置で測定)における漏洩磁
場を測定しに。
The density of the magnetic flux generated between the inner beams of the target 1 when a magnetic field of 2000 oersted is applied by the permanent magnets 2, 2, and the center of the upper end of the target side plate 4 (in the longitudinal direction in Fig. 3). To measure the leakage magnetic field at the central position).

漏洩磁場の測定値は180エルステツドであつた。また
、ターゲット1の1両板4,4間中央部での磁束密度の
分布を第3図に示しこ。
The measured leakage magnetic field was 180 oersted. Further, the distribution of magnetic flux density at the center between the two plates 4, 4 of the target 1 is shown in FIG.

第3図から分かろように、不発明のターゲットによれば
、ターゲットの材質が純鉄等の強磁性体である忌合にも
、開口部1a近傍の空間に高い密度の磁束を与えろこと
ができる。
As can be seen from Fig. 3, according to the uninvented target, it is possible to apply a high density magnetic flux to the space near the opening 1a even if the target material is a ferromagnetic material such as pure iron. .

〔実験例2、被膜生成速度の測定〕 実験例1で用いこターゲット1、基板3等を圧力1×1
0−3〜1×10−2Torrのアルゴンガス雰囲気宇
において、ターゲット1と基板3との間に基板3を正成
位として600Vの成田を印加しに。この状態で、発生
するプラズマ放電の一流を3Aに保ち、アークプラズマ
発生装置(第1図中のタングステンフイラメント11と
陽極板12)に20VAの電力を供給しこ場合と、これ
を用いない場合とについて、基板3に対する純鉄被膜の
虫取速度の分布を副足しこ。
[Experimental Example 2, Measurement of film formation rate] Target 1, substrate 3, etc. used in Experimental Example 1 were subjected to a pressure of 1×1.
In an argon gas atmosphere of 0-3 to 1 x 10-2 Torr, a Narita voltage of 600 V was applied between the target 1 and the substrate 3 with the substrate 3 in the positive position. In this state, the current of the generated plasma discharge is maintained at 3A, and 20VA of power is supplied to the arc plasma generator (tungsten filament 11 and anode plate 12 in Fig. 1), and there are cases where this is not used. , the distribution of the insect retrieval speed of the pure iron coating with respect to the substrate 3 is added below.

第4図にはターゲット1の幅方向についての被膜生成速
度の分布を、また第5図にはターゲット1の長手方向に
ついての被膜生成速度の分布な示しである。また、第4
図、第5図ともに、アークプラズマ発生装置を用いこ場
合の結果を実線で、用いない場合の結果を破線で示しで
ある。
FIG. 4 shows the distribution of film formation speed in the width direction of the target 1, and FIG. 5 shows the distribution of the film formation speed in the longitudinal direction of the target 1. Also, the fourth
In both FIG. 5, the solid line indicates the results obtained when an arc plasma generator is used, and the broken line indicates the results obtained when the arc plasma generator is not used.

第4図に示すように、不発明のターゲットでは、ターゲ
ットの幅方向の中央部で基板上への被膜の虫取速度が最
大となり、ターゲットからスノツタされた粒子の飛翔方
向がターゲットの開口部が向けられた方同に集中されて
いろことが分かる。また、第5図に示すように、不発明
のターゲットでは、その長さ方向には略均−な被膜生成
速度が得られることが分かる。
As shown in Figure 4, in the uninvented target, the speed at which the film is removed onto the substrate is maximum at the center of the width of the target, and the flight direction of the particles snotted from the target is directed by the opening of the target. I understand that you should be concentrating on those who have been affected. Furthermore, as shown in FIG. 5, it can be seen that in the uninvented target, a substantially uniform film formation rate can be obtained in the length direction.

仄に本発明の一実施例を示す。An embodiment of the present invention will be briefly shown.

実施例、(樹脂フイームへの被膜形成)実験例1・2と
同じターゲットを用い、ポリイミドフィルムに鉄被膜を
形成しよ。
Example (Formation of film on resin film) Using the same target as in Experimental Examples 1 and 2, form an iron film on a polyimide film.

基板3′として第6図に示すように断半円状の柱体をタ
ーゲット1と平行に配置し、また、彼覆対象とするフィ
ルムFは、基板3′の一也方に股けた供給ロール15か
ら引き出し、基板3′の曲面を経て巻き取りロール16
に一定速度で巻き取らせるようにした。
As shown in FIG. 6, a semicircular columnar body is arranged parallel to the target 1 as the substrate 3', and the film F to be covered is placed on a supply roll that is stretched in both directions of the substrate 3'. 15, and the winding roll 16 is pulled out through the curved surface of the substrate 3'.
I made it wind up at a constant speed.

スパッタリングの条件は実験例2と同僚であり、まこフ
ィルムFとしては、厚さ0.1mn、幅200nm、長
さ5mのものを用いこ。フィルムFの移動速度は、10
cm/分に設定した。
The sputtering conditions were the same as in Experimental Example 2, and the Mako film F had a thickness of 0.1 mm, a width of 200 nm, and a length of 5 m. The moving speed of film F is 10
cm/min.

上記の条件でフイルムFを全長にわたって処理し、表面
に鉄被膜を形成しこところ、得ろれた鉄被覆フィルムの
全長にわたり、その幅方向には中央部の130nmの幅
で厚ざ2000Aの均一な鉄被膜が形成されていこ、鉄
被膜の保砕刀を測定しこところ、Hc=60eでちって
、磁気将性においても優れたものでらつこ。
The film F was treated over its entire length under the above conditions to form an iron coating on the surface.A uniform film with a thickness of 2000A was formed in the width direction with a width of 130nm at the center over the entire length of the obtained iron-coated film. After the iron coating was formed, we measured the strength of the iron coating and found that it had an Hc of 60e, indicating that it had excellent magnetic properties.

上記の結果から、不発明のターゲットは、その長さと同
程夏の酊をもったフィルムや板状材料等に、均質なスパ
ッタによる被膜を路戊することがでさ、大計生産に適し
たものであることが分かつた。
From the above results, the uninvented target is suitable for large-scale production, as it is capable of producing a homogeneous sputter coating on films, plate-like materials, etc. that have as much heat as the length of the target. I realized that it was something.

図面の部用が説月 第1図、第2図は不発明によろターゲットの一実施例を
示す図であって、第1図は斜視図、第2図は正面断面図
、第3図は実験例1における磁束密度の測定結果を示す
図、第4図、第5図は実験例2における被膜生成速度の
分布の測定結果を示す図であって、第4図はターゲット
の幅方向についての速度分布を示す図、第5図はターゲ
ットの高さ方向についての速度分布を示す図、第6図は
実施例において用いたスパッタ装置の概略構成を示す図
である。
Figures 1 and 2 are views showing one embodiment of the target according to the invention, in which Figure 1 is a perspective view, Figure 2 is a front sectional view, and Figure 3 is a front sectional view. Figures 4 and 5 are diagrams showing the measurement results of the magnetic flux density in Experimental Example 1, and Figures 4 and 5 are diagrams showing the measurement results of the film formation rate distribution in Experimental Example 2. FIG. 5 is a diagram showing the velocity distribution in the height direction of the target, and FIG. 6 is a diagram showing the schematic configuration of the sputtering apparatus used in the example.

3・・・スパッタターゲット、1a・・・開口部、2・
・・磁石、3・・・基板、11・・・タングステンフィ
ラメント(アークプラズマ発生装置)、32・・・陽極
板(アークプラズマ発生装置)。
3... Sputter target, 1a... Opening, 2...
... Magnet, 3... Substrate, 11... Tungsten filament (arc plasma generator), 32... Anode plate (arc plasma generator).

出罪人 昭和電工株式会仕 代理人 弁理士 志賀正武Offender: Showa Denko Co., Ltd. Agent: Patent Attorney Masatake Shiga

Claims (1)

【特許請求の範囲】 1、被覆対象物に向けられた放射面にプラズマイオノ衝
撃を受けて成分原子まこは数分分子を放出するスパッタ
リングターゲットにおいて、前記数射面が前記被覆対象
物に向けて開いた断面U字状の曲面もしくは、断面凹状
の面に形成されてなることを特徴とするスパッタリング
ターゲット、 2、前記放射面近傍の壁間に対して磁場を発生させろ磁
石を備えてなる特許請求の範囲第1項記載のスパッタリ
ングターゲット。 3、前記放射面近傍の空間に対して電子を供給するアー
クプラズマ発生装置を備えてなろ特許請求の範囲第1項
まには第2項記載のスパッタリングターゲット。
[Claims] 1. In a sputtering target that emits component atoms and molecules for several minutes upon plasma ion bombardment on a radiation surface directed toward the object to be coated, the radiation surface is directed toward the object to be coated. A sputtering target characterized by being formed into a curved surface with an open U-shaped cross section or a concave cross section; 2. A sputtering target comprising a magnet for generating a magnetic field between walls near the radiation surface. The sputtering target according to item 1. 3. The sputtering target according to claim 1 or 2, comprising an arc plasma generator that supplies electrons to a space near the radiation surface.
JP15352783A 1983-08-23 1983-08-23 Sputtering target Granted JPS6046368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15352783A JPS6046368A (en) 1983-08-23 1983-08-23 Sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15352783A JPS6046368A (en) 1983-08-23 1983-08-23 Sputtering target

Publications (2)

Publication Number Publication Date
JPS6046368A true JPS6046368A (en) 1985-03-13
JPS6331550B2 JPS6331550B2 (en) 1988-06-24

Family

ID=15564471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15352783A Granted JPS6046368A (en) 1983-08-23 1983-08-23 Sputtering target

Country Status (1)

Country Link
JP (1) JPS6046368A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183219A (en) * 1993-10-08 1995-07-21 Varian Assoc Inc Pvd system based on ion extraction from plasma
JP2008239151A (en) * 2005-12-13 2008-10-09 Shimano Inc Hydraulic apparatus for bicycle brake lever device
JP2018115356A (en) * 2017-01-17 2018-07-26 神港精機株式会社 Deposition apparatus and deposition method for reaction film by magnetron sputtering method
JP2018119185A (en) * 2017-01-26 2018-08-02 神港精機株式会社 Formation method of decorative film by magnetron sputtering method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207174A (en) * 1981-06-12 1982-12-18 Matsushita Electric Works Ltd Sputtering device
JPS5861461A (en) * 1981-10-09 1983-04-12 Taihei Kogyo Kk Spraying method for magnetic particle liquid in magnetic particle flaw detection
JPS5861461U (en) * 1981-10-19 1983-04-25 富士通株式会社 sputtering equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207174A (en) * 1981-06-12 1982-12-18 Matsushita Electric Works Ltd Sputtering device
JPS5861461A (en) * 1981-10-09 1983-04-12 Taihei Kogyo Kk Spraying method for magnetic particle liquid in magnetic particle flaw detection
JPS5861461U (en) * 1981-10-19 1983-04-25 富士通株式会社 sputtering equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183219A (en) * 1993-10-08 1995-07-21 Varian Assoc Inc Pvd system based on ion extraction from plasma
JP2008239151A (en) * 2005-12-13 2008-10-09 Shimano Inc Hydraulic apparatus for bicycle brake lever device
JP2018115356A (en) * 2017-01-17 2018-07-26 神港精機株式会社 Deposition apparatus and deposition method for reaction film by magnetron sputtering method
JP2018119185A (en) * 2017-01-26 2018-08-02 神港精機株式会社 Formation method of decorative film by magnetron sputtering method

Also Published As

Publication number Publication date
JPS6331550B2 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
JP4264475B2 (en) Magnetic mirror plasma source
KR100228534B1 (en) Arrangement for generating a plasma by means of cathode sputtering
JP4150504B2 (en) Method and apparatus for ionized physical vapor deposition
US4361472A (en) Sputtering method and apparatus utilizing improved ion source
KR100361620B1 (en) apparatus for a vaccum arc discharge, plasma duct for a vaccum arc discharge, apparatus for generating a beam of plasma and method for controlling an arc discharge
JP4253385B2 (en) Equipment for sputtering or arc evaporation
US4434038A (en) Sputtering method and apparatus utilizing improved ion source
US20070026161A1 (en) Magnetic mirror plasma source and method using same
JPS6330987B2 (en)
JP2002352765A (en) Ion implantion apparatus
JPH0645872B2 (en) Cathode type magnetron device
AU3418899A (en) Method and apparatus for deposition of biaxially textured coatings
EP0523695B1 (en) A sputtering apparatus and an ion source
JP2002512658A (en) Sputter coating apparatus and method using substrate electrode
JP3132599B2 (en) Microwave plasma processing equipment
JP4078084B2 (en) Ionized film forming method and apparatus
JPS6046368A (en) Sputtering target
JP3064214B2 (en) Fast atom beam source
JP3893436B2 (en) Inclined target type magnetron sputtering system
JP3610289B2 (en) Sputtering apparatus and sputtering method
JPS582589B2 (en) sputtering equipment
JP3961158B2 (en) Electron beam evaporator
JPH0578849A (en) High magnetic field microwave plasma treating device
JP2552697B2 (en) Ion source
JPH09235113A (en) Evaporator for high-melting substance