JPH01255663A - Method and device for vacuum deposition - Google Patents

Method and device for vacuum deposition

Info

Publication number
JPH01255663A
JPH01255663A JP8190588A JP8190588A JPH01255663A JP H01255663 A JPH01255663 A JP H01255663A JP 8190588 A JP8190588 A JP 8190588A JP 8190588 A JP8190588 A JP 8190588A JP H01255663 A JPH01255663 A JP H01255663A
Authority
JP
Japan
Prior art keywords
vacuum
evaporation
substrate
base plate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8190588A
Other languages
Japanese (ja)
Other versions
JPH0784650B2 (en
Inventor
Hiroshi Tamagaki
浩 玉垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63081905A priority Critical patent/JPH0784650B2/en
Publication of JPH01255663A publication Critical patent/JPH01255663A/en
Publication of JPH0784650B2 publication Critical patent/JPH0784650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To efficiently form a vapor deposition film excellent in film quality by separately arranging an evaporation target consisting of either the same component as the substance forming the vapor deposition film or one component thereof and evaporating arc in vacuum and vapor-depositing the produced ions toward a base plate. CONSTITUTION:A cathode (target) 21 consisting of the same component as vapor deposition source substance 4 is arranged to the lower part slanted toward a base plate 7 in a vacuum chamber 1. An anode 22 is provided in the vicinity of the base plate 7 side and both the anode 22 and the cathode 21 are connected with an arc power source 23. Then the vapor deposition source substance 4 in a crucible 3 is heated and evaporated by utilizing the above-mentioned device according to an ordinary method and vacuum-deposited on the base plate 7. On the other hand, the vapor generated from the cathode 21 is ionized with high efficiency by generating arc between the anode 22 and the cathode 21 and the surface of the base plate 7 is irradiated by the generated ion beams 9. As a result, the particles on the film are activated by allowing the ions having large energy such as 10-50eV to collide against the film being vapor-deposited on the base plate 7. Thereby the vacuum deposition film which is high quality and excellent in adhesion to the base plate 7 is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、真空アーク放電により生じたイオンの支援を
受けて行なわれる真空蒸着方法及びその装置に関し、特
に膜質が良好であり操業安定性に優れた真空蒸着法及び
その装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vacuum evaporation method and an apparatus therefor which are carried out with the support of ions generated by vacuum arc discharge, and in particular, to a vacuum evaporation method and an apparatus thereof that have good film quality and operational stability. This article relates to an excellent vacuum evaporation method and its equipment.

[従来の技術] 真空蒸着法は、薄膜形成技術の1つとして最もよく知ら
れ、且つ汎用されている技術であり、蒸着しようとする
物質を電子ビーム(EB)加熱。
[Prior Art] The vacuum evaporation method is one of the most well-known and widely used thin film forming techniques, in which a substance to be evaporated is heated with an electron beam (EB).

抵抗加熱、誘導加熱等の方法で加熱して蒸発させ、これ
を基板上に堆積させる技術である。この方法は、比較的
簡素な装置を使用して実施できるところから工業的利用
価値が高く、大規模製品から小規模製品まで広い範囲の
成膜に適用されている。
This is a technique in which the material is heated and evaporated using a method such as resistance heating or induction heating, and then deposited on a substrate. This method has high industrial value because it can be carried out using relatively simple equipment, and is applied to a wide range of film formation from large-scale products to small-scale products.

しかるにこの方法においては蒸発粒子が殆んどイオン化
していないのでその活性度が低く、基板上に堆積される
膜の性状や密着性等が劣るという欠点があった。
However, this method has the disadvantage that the evaporated particles are hardly ionized, so the activity is low, and the properties and adhesion of the film deposited on the substrate are poor.

そこでこうした真空蒸着法の欠点を解消する目的で種々
の改善方法が提案されており、そうした技術の1つとし
て真空蒸着中の基板に対してAr等の不活性ガスのイオ
ンを照射する、いわゆるイオンビームアシスト真空蒸着
法が挙げられる。この方法においては、第3図に例示さ
れる様に、真空チャンバー1内にるつぼ3.基板ホルダ
6、基板7.イオン源8等を配置し、真空ポンプ2で真
空チャンバー1内を減圧排気して所定の真空度に調整し
た後、るつぼ3内の蒸発源物質を電子ビーム等によって
加熱・蒸発させ、蒸発源物質に対向配置した基板7に蒸
発粒子を堆積させる。一方別途配置されたイオン源8に
ガス供給系10からArを導入し、イオンビーム9を発
生させてこれを基板7上に照射する。この結果、基板7
上に到達したイオンビームが基板上で成長中の膜に衝突
してマイグレーション等の活性化作用が与えられて蒸着
膜の性状は大幅に改善されることになる。
Therefore, various improvement methods have been proposed to overcome these drawbacks of vacuum evaporation, and one such technique is so-called ionization, in which ions of an inert gas such as Ar are irradiated onto the substrate during vacuum evaporation. A beam-assisted vacuum evaporation method is mentioned. In this method, as illustrated in FIG. 3, a crucible 3. Substrate holder 6, substrate 7. After arranging the ion source 8, etc., and adjusting the vacuum chamber 1 to a predetermined degree of vacuum by reducing the pressure inside the vacuum chamber 1 using the vacuum pump 2, the evaporation source material in the crucible 3 is heated and evaporated by an electron beam, etc. The evaporated particles are deposited on a substrate 7 placed opposite to the substrate 7 . On the other hand, Ar is introduced from a gas supply system 10 into an ion source 8 arranged separately to generate an ion beam 9 and irradiate the substrate 7 with it. As a result, the board 7
The ion beam that has reached the top collides with the film being grown on the substrate and gives activation effects such as migration, resulting in a significant improvement in the properties of the deposited film.

[発明が解決しようとする課題] しかるに上記イオンビームアシスト真空蒸着法は、膜質
の改善という点で相当の効果が得られるものの、次の様
な欠点がある。
[Problems to be Solved by the Invention] However, although the above-mentioned ion beam assisted vacuum evaporation method achieves considerable effects in terms of improving film quality, it has the following drawbacks.

■真空チャンバーにイオンビーム源となるガスを導入す
る為真空チャンバー内の真空度が低下し、高真空下での
蒸着が困難になる。即ち蒸発速度が低下すると共に蒸発
粒子の平均自由工程が低下して蒸着速度が大幅に悪化す
る。又真空ポンプに対する負荷が増大する。さらに加熱
装置としてEBガンを使用する場合には真空度の低下に
よりその動作に悪影響が現れる。
■Introducing the gas that serves as the ion beam source into the vacuum chamber reduces the degree of vacuum within the vacuum chamber, making evaporation difficult under high vacuum conditions. That is, the evaporation rate decreases and the mean free path of the evaporated particles decreases, resulting in a significant deterioration of the evaporation rate. Moreover, the load on the vacuum pump increases. Furthermore, when an EB gun is used as a heating device, a decrease in the degree of vacuum adversely affects its operation.

■イオンビーム用ガスとしては不活性ガスが使用される
が、不活性ガスとはいえ蒸着物質以外の物質が基板に照
射されるので照射イオン物質が基板中に不純物として取
り込まれ、膜質に悪影響が出る。
■Inert gas is used as the ion beam gas, but even though it is an inert gas, substances other than the vapor deposition substance are irradiated onto the substrate, so the irradiated ion substances are incorporated into the substrate as impurities, which adversely affects the film quality. Get out.

■イオンビーム発生装置は出力の大きなものでも出力電
流がIA程度であり、−膜内には100mA程度のもの
が多く、照射面積が小さい。照射面積を大きくするには
大型装置を使用すればよいが、大型のイオンビーム発生
装置は非常に高価であり、大面積膜への適用が難しい。
(2) Even if the ion beam generator has a large output, the output current is about IA, and - most of the ion beam generators have a current of about 100 mA, so the irradiation area is small. To increase the irradiation area, a large ion beam generator can be used, but large ion beam generators are very expensive and difficult to apply to large area films.

本発明はこうした事情に着目してなされたものであって
、膜質の優れた蒸着膜を能率良く成膜することができ、
必要であれば大面積膜への適用が可能である様な真空蒸
着方法及びその装置を提供しようとするものである。
The present invention has been made in view of these circumstances, and is capable of efficiently forming a vapor-deposited film with excellent film quality.
The present invention aims to provide a vacuum evaporation method and apparatus that can be applied to large-area films if necessary.

[課題を解決するための手段] しかして上記目的を達成した本発明方法は、単数又は複
数の蒸着膜形成物質を基板上に蒸着させる真空蒸着法に
おいて、前記蒸着膜形成物質と同一成分若しくはその一
成分からなる蒸発ターゲットを別途配置して真空アーク
蒸発させ、生成したイオンを前記基板に向けて照射しつ
つ蒸着する点に要旨があり、又本発明装置は、真空チャ
ンバー内に、基板と蒸発源を対向配置させてなる真空蒸
着装置において、基板に向けてイオンを照射する為の真
空アーク蒸発用ターゲットを基板面に指向させて配置し
てな−ることに要旨が存在する。
[Means for Solving the Problems] The method of the present invention, which achieves the above object, is a vacuum evaporation method in which one or more vapor-deposited film-forming substances are vapor-deposited on a substrate. The gist is that an evaporation target consisting of one component is separately arranged and evaporated in a vacuum arc, and the generated ions are irradiated toward the substrate for evaporation. In a vacuum evaporation apparatus in which sources are arranged facing each other, the gist lies in that a vacuum arc evaporation target for irradiating ions toward a substrate is arranged so as to be directed toward the substrate surface.

[作用] 本発明方法においては、真空蒸着用蒸発源とこれに対向
配置される基板等からなる真空蒸着機構とは別に、真空
アーク蒸発用ターゲットを配置し該蒸発ターゲットを陰
極として陽極との間に真空アークを発生させて真空アー
ク蒸発用ターゲットからイオンや中性子からなるプラズ
マ粒子を発生させ、これを前記基板に照射する。即ち常
法に従フて真空蒸着されつつある基板の堆積面に対して
真空アークによるプラズマ粒子が照射される結果、プラ
ズマ粒子の衝撃を受けて基板に堆積しつつある蒸着物質
が活性化され、緻密で基板との密着性に優れた真空蒸着
膜を得ることができる。
[Function] In the method of the present invention, a vacuum arc evaporation target is arranged separately from a vacuum evaporation mechanism consisting of an evaporation source for vacuum evaporation and a substrate placed opposite thereto, and the evaporation target is used as a cathode and the evaporation target is used as a cathode. A vacuum arc is generated to generate plasma particles consisting of ions and neutrons from a vacuum arc evaporation target, and the plasma particles are irradiated onto the substrate. That is, as a result of irradiating plasma particles from a vacuum arc onto the deposition surface of a substrate that is being vacuum-deposited according to a conventional method, the deposition material that is being deposited on the substrate is activated by the impact of the plasma particles. A vacuum-deposited film that is dense and has excellent adhesion to the substrate can be obtained.

そして本発明方法ではプラズマ粒子照射の為に真空アー
ク蒸発の手法を採用するので真空チャンバー内へのガス
導入が不要となり、高真空下におけるイオンアシスト真
空蒸着を実施することができる。又同じ理由から真空ポ
ンプに対する負荷が小さくて済み、小型の真空ポンプで
経済的な真空蒸着を実施することができる。さらに真空
アーク蒸発用ターゲットとしては、真空蒸着用蒸着物質
と同一成分、あるいは基板上に形成される蒸着膜が反応
性蒸着膜である場合等にはその一成分を蒸発ターゲット
として使用するので、ここから発生するプラズマ粒子が
蒸着膜に取込まれても不純物の混入とはならず、不純物
の少ない真空蒸着膜を得ることができる。
Since the method of the present invention employs a vacuum arc evaporation technique for plasma particle irradiation, it is not necessary to introduce gas into the vacuum chamber, and ion-assisted vacuum deposition can be performed under high vacuum. Furthermore, for the same reason, the load on the vacuum pump is small, and economical vacuum deposition can be carried out using a small vacuum pump. Furthermore, as the target for vacuum arc evaporation, the same component as the evaporation material for vacuum evaporation, or if the evaporation film formed on the substrate is a reactive evaporation film, one of the components is used as the evaporation target. Even if plasma particles generated from the evaporation film are taken into the deposited film, they do not introduce impurities, and a vacuum-deposited film with less impurities can be obtained.

この様に本発明方法によれば種々の優れた効果を享受で
きるが、さらに真空アーク蒸発ではイオン電流をIA以
上得ることが非常に容易であり、且つ装置の大型化に際
しても特に支障がない。その結果基板上へ照射するプラ
ズマ粒子のイオン電流密度を従来より遥かに高くとるこ
とができ、高品質膜を成膜することができる。
As described above, the method of the present invention can enjoy various excellent effects, and furthermore, in vacuum arc evaporation, it is very easy to obtain an ion current of IA or more, and there is no particular problem when increasing the size of the apparatus. As a result, the ion current density of plasma particles irradiated onto the substrate can be made much higher than in the past, and a high quality film can be formed.

[実施例] 実施例1 第1図は本発明方法を実施する為の装置を示す模式図で
、真空蒸着機構は従来と同等であるので、同じ符号を用
いている。本装置においては、真空チャンバー1内に蒸
着源物質4と同一成分の陰極(ターゲット)21を基板
17に対して斜め下方に配置し、その基板17側近傍に
陽極22を設け、陽極22と陰極21をアーク電源23
で接続している。尚23はBN等で作成したアーク封じ
込めリングである。
[Example] Example 1 FIG. 1 is a schematic diagram showing an apparatus for carrying out the method of the present invention, and since the vacuum evaporation mechanism is the same as the conventional one, the same reference numerals are used. In this apparatus, a cathode (target) 21 having the same composition as the evaporation source material 4 is placed in a vacuum chamber 1 diagonally below a substrate 17, an anode 22 is provided near the substrate 17, and the anode 22 and cathode 21 to arc power supply 23
It is connected with Note that 23 is an arc containment ring made of BN or the like.

上記装置を使用して真空蒸着を実施するに当たっては、
常法に従い、るつぼ3内の蒸発源物質4を加熱・蒸発さ
せ、基板17に真空蒸着させる。一方陽極22と陰極2
1の間でアークを発生させると陰8i21から発生する
蒸気が50〜100%の高い効率でイオン化し、イオン
ビームな発生するので該イオンビーム19を基板17面
に照射する。この結果基板上に蒸着されつつある膜には
(10〜50eV)もの大きなエネルギーを持ったイオ
ンが衝突することとなって膜粒子の活性化がはかられ、
高品質で基板との密着性に優れた真空蒸着膜を得ること
ができた。
When performing vacuum evaporation using the above equipment,
According to a conventional method, the evaporation source material 4 in the crucible 3 is heated and evaporated, and vacuum-deposited onto the substrate 17. On the other hand, anode 22 and cathode 2
When an arc is generated between 1 and 1, the vapor generated from the negative 8i21 is ionized with a high efficiency of 50 to 100%, and an ion beam is generated.The ion beam 19 is irradiated onto the surface of the substrate 17. As a result, the film being deposited on the substrate is bombarded with ions with high energy (10 to 50 eV), activating the film particles.
We were able to obtain a vacuum-deposited film of high quality and excellent adhesion to the substrate.

尚上記実施例では、陰極21は図示しない冷却構造によ
って冷却され、絶縁構造のサポート機構によって真空チ
ャンバー1内に支持している。又実施例では陰極21の
基板17側に陽極22を設置したが、特別の陽極を設置
しないで真空容器を陽極としてもよく、あるいは陰極及
び陽極の一方を真空チャンバー壁に直接若しくは抵抗を
介して接続してもよい。勿論両方がフローティングであ
っても良い。さらに上記実施例ではるつぼ3内の蒸発源
物質と同一成分の蒸発源物質を陰極21に使用したが、
陰極21形成材料はるつぼ3内の蒸発源物質と異なって
いてもよい。即ち基板上に蒸着される膜成分として必要
な成分であれば不純物の混入とならないので蒸着膜の膜
成分を陰極材料としてもよい。また真空アーク蒸発を採
用すると通常の加熱・蒸発では蒸発困難な高融点金属も
蒸発させることができるので、例えばW、Mo。
In the above embodiment, the cathode 21 is cooled by a cooling structure (not shown) and supported within the vacuum chamber 1 by a support mechanism having an insulating structure. Further, in the embodiment, the anode 22 was installed on the substrate 17 side of the cathode 21, but the vacuum container may be used as the anode without installing a special anode, or one of the cathode and the anode may be connected directly to the wall of the vacuum chamber or through a resistor. May be connected. Of course, both may be floating. Furthermore, in the above embodiment, an evaporation source material having the same composition as the evaporation source material in the crucible 3 was used for the cathode 21.
The material forming the cathode 21 may be different from the source material in the crucible 3. That is, if the component is necessary as a film component to be vapor deposited on the substrate, the film component of the vapor deposited film may be used as the cathode material since no impurities will be mixed in. Furthermore, by employing vacuum arc evaporation, it is possible to evaporate high melting point metals that are difficult to evaporate with normal heating and evaporation, such as W and Mo.

Cr等の高融点金属を陰極材料として利用しつつこれら
の高融点金属を組成成分の1つとする蒸着膜を得ること
ができる。
While using high melting point metals such as Cr as a cathode material, it is possible to obtain a deposited film containing these high melting point metals as one of the composition components.

又真空アーク蒸発源は一般に50〜数百Aのアーク放電
々流で動作するが、このうち8%前後の電流が蒸発イオ
ン電流になるとされている。
Further, a vacuum arc evaporation source generally operates with an arc discharge current of 50 to several hundreds of amperes, and it is said that about 8% of this current becomes an evaporation ion current.

従って蒸発イオン電流は4AからIOA以上となり多量
のイオンが発生する。このイオンビームを従来と同じ面
積の基板に照射すれば従来に比べてはるかに高い電流密
度を得ることができ、より高品質の蒸着膜を得ることが
できると共に、大面積の成膜にも適用することができる
Therefore, the evaporation ion current changes from 4A to more than IOA, and a large amount of ions are generated. If this ion beam is irradiated onto a substrate with the same area as before, it is possible to obtain a much higher current density than before, making it possible to obtain a deposited film of higher quality and also applicable to large-area deposition. can do.

実施例2 第2図は基板が鋼板等の長尺物である実施例を示し、本
実施例では真空チャンバー1内のローラ31.32間に
鋼板ロール33を張設した状態で配置し、ローラ31,
32間を走行させながら真空蒸着を実施し、ローラ32
に巻きとっている。
Embodiment 2 FIG. 2 shows an embodiment in which the substrate is a long object such as a steel plate. In this embodiment, a steel plate roll 33 is placed stretched between rollers 31 and 32 in the vacuum chamber 1, and the roller 31,
Vacuum deposition is carried out while running between rollers 32 and 32.
It is wrapped around.

本実施例の場合、被蒸着材がかなり大規模なものであり
、且つ走行する鋼板に連続的に真空蒸着しなければなら
ないので蒸着材料並びにイオンビームを鋼板に対し十分
に連続供給する必要がある。
In the case of this example, the material to be evaporated is quite large-scale and must be vacuum-deposited continuously on the moving steel plate, so it is necessary to supply the evaporation material and ion beam sufficiently continuously to the steel plate. .

るつぼ3からの蒸着量については電子ビーム等の熱源出
力をあげることで対応することができ、又イオンビーム
照射量は真空アーク電流を高めることによって必要に応
じた量まで高めることができる。かくして幅1mもの広
幅の鋼板に対する真空蒸着を実施することができる。
The amount of evaporation from the crucible 3 can be adjusted by increasing the output of the heat source such as an electron beam, and the amount of ion beam irradiation can be increased to a required amount by increasing the vacuum arc current. In this way, vacuum deposition can be performed on steel plates as wide as 1 m in width.

その他、基板到達時のイオンビームのエネルギーを高め
イオン照射効果を増大させる為には、基板ホルダ6を介
して基板7に負のバイアス電圧を印加し、基板直前でイ
オンをバイアス印加電圧に対応するエネルギー分加速す
ることが有効である。同様の趣旨で、真空アーク蒸発用
ターゲット(陰極)に正のバイアス電圧を印加しく但し
陽極にはより高い正電圧が印加されている)、バイアス
電圧に相当するエネルギー分だけイオンを加速して基板
に照射することも有効であり、上記基板への負のバイア
ス電圧印加と組合せるとイオン照射効果を一層高めるこ
とができる。
In addition, in order to increase the energy of the ion beam when it reaches the substrate and increase the ion irradiation effect, a negative bias voltage is applied to the substrate 7 via the substrate holder 6, and the ions are caused to correspond to the bias applied voltage just before the substrate. It is effective to accelerate by the amount of energy. In a similar way, a positive bias voltage is applied to the vacuum arc evaporation target (cathode), but a higher positive voltage is applied to the anode), and ions are accelerated by the energy equivalent to the bias voltage to It is also effective to irradiate the ions, and when combined with the application of a negative bias voltage to the substrate, the effect of ion irradiation can be further enhanced.

[発明の効果] 本発明は以上の様に構成されており、以下要約する効果
を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and can obtain the effects summarized below.

(1)イオン種ガスを導入する必要がないので、真空度
の悪化を招くことがなく真空アークによって生じたイオ
ンを蒸着膜に照射することによって高真空下でイオンア
シスト真空蒸着を実施することができる。
(1) Since there is no need to introduce ion species gas, ion-assisted vacuum deposition can be performed under high vacuum by irradiating the deposited film with ions generated by a vacuum arc without causing deterioration of the degree of vacuum. can.

(2)真空ポンプに対する負荷を低減することができる
(2) The load on the vacuum pump can be reduced.

(3)イオン種ガスによる膜純度の低下がない。(3) There is no decrease in membrane purity due to ionic species gas.

(4)真空アーク蒸発の採用によってイオンビーム出力
電流を高めることができ、高速化並びに大面積化に対応
することができる。
(4) By employing vacuum arc evaporation, the ion beam output current can be increased, making it possible to respond to higher speeds and larger areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明の実施例を示す模式図、第3図は従
来例を示す模式図である。 1・・・真空チャンバー 2・・・真空ポンプ3・・・
るつぼ     4・・・蒸着源物質5・・・蒸発粒子
    6・・・基板ホルダー7・・・基板     
 8・・・イオン源9・・・イオンビーム  10・・
・ガス供給系21・・・陰8i22・・・陽極 23・・・アーク電源 24・・・アーク封じ込めリング 31.32・・・ローラ   33・・・鋼板第1図 第2図 第3図
1 and 2 are schematic diagrams showing an embodiment of the present invention, and FIG. 3 is a schematic diagram showing a conventional example. 1... Vacuum chamber 2... Vacuum pump 3...
Crucible 4... Evaporation source material 5... Evaporated particles 6... Substrate holder 7... Substrate
8...Ion source 9...Ion beam 10...
・Gas supply system 21...Anode 23...Arc power source 24...Arc containment ring 31.32...Roller 33...Steel plate Fig. 1 Fig. 2 Fig. 3

Claims (2)

【特許請求の範囲】[Claims] (1)単数又は複数の蒸着膜形成物質を基板上に蒸着さ
せる真空蒸着法において、前記蒸着膜形成物質と同一成
分若しくはその一成分からなる蒸発ターゲットを別途配
置して真空アーク蒸発させ、生成したイオンを前記基板
に向けて照射しつつ蒸着することを特徴とする真空蒸着
方法。
(1) In a vacuum evaporation method in which one or more vapor-deposited film-forming substances are vapor-deposited on a substrate, an evaporation target consisting of the same component or one component as the vapor-deposited film-forming substance is separately arranged and vacuum arc evaporation is performed. A vacuum evaporation method characterized by performing evaporation while irradiating ions toward the substrate.
(2)真空チャンバー内に、基板と蒸発源を対向配置さ
せてなる真空蒸着装置において、基板に向けてイオンを
照射する為の真空アーク蒸発用ターゲットを基板面に指
向させて配置してなることを特徴とする真空蒸着装置。
(2) In a vacuum evaporation apparatus in which a substrate and an evaporation source are arranged facing each other in a vacuum chamber, a vacuum arc evaporation target for irradiating ions toward the substrate is arranged to face the substrate surface. A vacuum evaporation device featuring:
JP63081905A 1988-04-01 1988-04-01 Vacuum deposition method and vacuum deposition apparatus Expired - Fee Related JPH0784650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081905A JPH0784650B2 (en) 1988-04-01 1988-04-01 Vacuum deposition method and vacuum deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081905A JPH0784650B2 (en) 1988-04-01 1988-04-01 Vacuum deposition method and vacuum deposition apparatus

Publications (2)

Publication Number Publication Date
JPH01255663A true JPH01255663A (en) 1989-10-12
JPH0784650B2 JPH0784650B2 (en) 1995-09-13

Family

ID=13759459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081905A Expired - Fee Related JPH0784650B2 (en) 1988-04-01 1988-04-01 Vacuum deposition method and vacuum deposition apparatus

Country Status (1)

Country Link
JP (1) JPH0784650B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860344A (en) * 1994-08-16 1996-03-05 Stanley Electric Co Ltd Formation of mixture thin film and device therefor
KR101306224B1 (en) * 2011-04-13 2013-09-09 바코스 주식회사 High Speed Film Forming Apparatus, And Film Forming Method Using The Same
WO2013165036A1 (en) * 2012-05-02 2013-11-07 바코스 주식회사 High-speed film-forming device and film-forming method using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860344A (en) * 1994-08-16 1996-03-05 Stanley Electric Co Ltd Formation of mixture thin film and device therefor
KR101306224B1 (en) * 2011-04-13 2013-09-09 바코스 주식회사 High Speed Film Forming Apparatus, And Film Forming Method Using The Same
WO2013165036A1 (en) * 2012-05-02 2013-11-07 바코스 주식회사 High-speed film-forming device and film-forming method using same

Also Published As

Publication number Publication date
JPH0784650B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
JPH07109571A (en) Electron-beam continuous vapor deposition device
US4933065A (en) Apparatus for applying dielectric or metallic materials
JPH01255663A (en) Method and device for vacuum deposition
JPH0456761A (en) Thin film forming device
US20090020415A1 (en) "Iontron" ion beam deposition source and a method for sputter deposition of different layers using this source
JPS63472A (en) Vacuum device for forming film
JPH0625835A (en) Vacuum deposition method and vacuum deposition device
RU172351U1 (en) Device for electron beam deposition of oxide coatings
JP3409874B2 (en) Ion plating equipment
JPS5842771A (en) Ion planting device
JPS60251269A (en) Method and apparatus for ionic plating
JPH04191364A (en) Method and device for ion plating
JP3464998B2 (en) Ion plating apparatus and method for controlling thickness and composition distribution of deposited film by ion plating
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPS6199670A (en) Ion plating device
JP3330159B2 (en) Dynamic mixing device
JPH01168857A (en) Formation of titanium nitride film
JPH04202656A (en) Thin film forming apparatus
JPS5739169A (en) Preparation of thin film vapor deposited object
JPH03150353A (en) Reactive ion plating method
JPS595732Y2 (en) Ion plating equipment
JPH01201470A (en) Ionizing device and ion plating device
JPH04191363A (en) Method and device for ion plating
JPH0586474B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees