JP2603919B2 - Method for producing boron nitride film containing cubic boron nitride crystal grains - Google Patents

Method for producing boron nitride film containing cubic boron nitride crystal grains

Info

Publication number
JP2603919B2
JP2603919B2 JP60234340A JP23434085A JP2603919B2 JP 2603919 B2 JP2603919 B2 JP 2603919B2 JP 60234340 A JP60234340 A JP 60234340A JP 23434085 A JP23434085 A JP 23434085A JP 2603919 B2 JP2603919 B2 JP 2603919B2
Authority
JP
Japan
Prior art keywords
boron nitride
nitride film
substrate
crystal grains
nitrogen ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60234340A
Other languages
Japanese (ja)
Other versions
JPS6293366A (en
Inventor
靖典 安東
潔 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP60234340A priority Critical patent/JP2603919B2/en
Publication of JPS6293366A publication Critical patent/JPS6293366A/en
Application granted granted Critical
Publication of JP2603919B2 publication Critical patent/JP2603919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、窒化ホウ素膜、特に立方晶系窒化ホウ素
の結晶粒を含む高硬度の窒化ホウ素膜を作製する方法に
関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a boron nitride film, particularly a high hardness boron nitride film containing cubic boron nitride crystal grains.

〔従来の技術〕[Conventional technology]

窒化ホウ素膜を作製する従来の方法としては、基板
に金属ホウ素を蒸着させるに当り、蒸発物の一部を窒素
ガス雰囲気中でイオン化してこれに電界によりエネルギ
ーを与え、これをイオン化されなかった他の蒸発物と共
に基板上に堆積させるイオンプレーティング法、ホウ
素系及び窒素系の気体分子をチャンバー内で熱励起等の
手段を用いて分解、活性化し、これを基板上に堆積させ
るCVD法等がある。
As a conventional method of fabricating a boron nitride film, when depositing metallic boron on a substrate, a part of the evaporated substance is ionized in a nitrogen gas atmosphere, and energy is given to this by an electric field, and this is not ionized. Ion plating method to deposit on the substrate together with other evaporates, CVD method to decompose and activate boron-based and nitrogen-based gas molecules in the chamber by means such as thermal excitation, and deposit this on the substrate There is.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、イオンプレーティング法、CVD法等の
従来の方法では、作製した窒化ホウ素膜内に立方晶系窒
化ホウ素の結晶粒が含まれないことが知られており、そ
のため従来の方法では高硬度の窒化ホウ素膜が得られな
いという問題があった。
However, in conventional methods such as ion plating and CVD, it is known that cubic boron nitride crystal grains are not included in the produced boron nitride film. There is a problem that a boron nitride film cannot be obtained.

そこでこの発明は、立方晶系窒化ホウ素の結晶粒を含
む高硬度の窒化ホウ素膜の作製方法を提供することを目
的とする。
Accordingly, an object of the present invention is to provide a method for manufacturing a high-hardness boron nitride film containing cubic boron nitride crystal grains.

〔問題点を解決するための手段〕[Means for solving the problem]

この発明の窒化ホウ素膜の作製方法は、真空中で基板
に対して、蒸発源から蒸発させたホウ素を蒸着させると
同時に、この蒸発源とは別の箇所に設けられていてプラ
ズマ閉じ込めにカスプ磁場を用いるバケット型のイオン
源から窒素イオンを引き出してそれを質量分離手段を通
すことなくそのまま同基板に照射し、かつその際に基板
に照射する窒素イオンのエネルギーを0.5KeV以上5KeV未
満の範囲内とすることを特徴とする。
According to the method for producing a boron nitride film of the present invention, boron evaporated from an evaporation source is vapor-deposited on a substrate in a vacuum, and at the same time, a cusp magnetic field is provided at a location different from the evaporation source to confine plasma. Extract nitrogen ions from a bucket-type ion source and irradiate them directly to the same substrate without passing through mass separation means. It is characterized by the following.

〔作用〕[Action]

上記条件下で製膜することにより、立方晶系窒化ホウ
素の結晶粒を含む高硬度の窒化ホウ素膜であって、しか
も膜表面が平滑な良質の窒化ホウ素膜が得られた。
By forming a film under the above conditions, a high-quality boron nitride film having a high hardness containing nitrided cubic boron nitride and having a smooth film surface was obtained.

〔実施例〕〔Example〕

第1図は、この発明に係る窒化ホウ素膜の作製方法を
実施する装置の一例を示す概略図である。真空容器(図
示省略)内に、ホルダ1に取り付けられて基板(例えば
シリコン基板)2が収納されており、当該基板2に向け
て蒸発源4およびイオン源7が配置されている。蒸発源
4は例えば電子ビーム蒸発源であり、蒸発材料としてホ
ウ素金属5を有しており、それからのホウ素(ホウ素蒸
気)6を基板2上に蒸着させる。イオン源7はいわゆる
バケット型イオン源であり、供給された窒素ガスGをイ
オン化して均一で大面積の窒素イオン8を基板2に向け
て照射することができる。バケット型イオン源は、プラ
ズマ閉じ込めに多極磁場、より具体的にはカスプ磁場を
用いるイオン源のことである。尚、9は基板2上に作製
される窒化ホウ素膜3の膜厚モニタである。
FIG. 1 is a schematic view showing an example of an apparatus for performing the method for producing a boron nitride film according to the present invention. A substrate (for example, a silicon substrate) 2 is attached to a holder 1 and housed in a vacuum vessel (not shown), and an evaporation source 4 and an ion source 7 are arranged toward the substrate 2. The evaporation source 4 is, for example, an electron beam evaporation source, has a boron metal 5 as an evaporation material, and deposits boron (boron vapor) 6 on the substrate 2. The ion source 7 is a so-called bucket type ion source, and can ionize the supplied nitrogen gas G and irradiate the substrate 2 with uniform and large-area nitrogen ions 8. The bucket type ion source refers to an ion source that uses a multipole magnetic field, more specifically, a cusp magnetic field, for confining plasma. Reference numeral 9 denotes a thickness monitor of the boron nitride film 3 formed on the substrate 2.

膜作製に際しては、真空容器内を例えば10-7Torr程度
にまで排気した後、蒸発源4からのホウ素6を基板2上
に蒸着させると同時に、イオン源7からの窒素イオン8
を基板2上に照射する。その際、必要に応じてホルダ1
に冷却水等の冷却媒体Wを供給して基板2を冷却する。
At the time of film formation, the inside of the vacuum vessel is evacuated to, for example, about 10 -7 Torr, and then boron 6 from the evaporation source 4 is deposited on the substrate 2 while nitrogen ions 8 from the ion source 7 are deposited.
Is irradiated on the substrate 2. At this time, if necessary, holder 1
A cooling medium W such as cooling water is supplied to the substrate 2 to cool the substrate 2.

上記の場合の窒素イオン8のエネルギーは、0.5〜5Ke
Vの範囲内の低エネルギーとする。これは、実験結果に
よると、0.5KeV未満では窒化ホウ素膜3は作製されず、
逆に5KeV以上になると、窒化ホウ素膜3が作製されても
窒素イオン8のスパッタ作用により平滑な膜面が得られ
ないと共に、当該窒化ホウ素膜3内部に欠陥部等の損傷
部が多くなって良質の窒化ホウ素膜3が得られないから
である。
The energy of the nitrogen ions 8 in the above case is 0.5 to 5 Ke
Low energy within the range of V. This is because according to the experimental results, the boron nitride film 3 was not produced below 0.5 KeV,
On the other hand, if it is 5 KeV or more, even if the boron nitride film 3 is manufactured, a smooth film surface cannot be obtained due to the sputtering action of the nitrogen ions 8 and the damaged portion such as a defect portion increases in the boron nitride film 3. This is because a high quality boron nitride film 3 cannot be obtained.

また、膜作製時には、基板2へ蒸着させるホウ素Bと
基板2へ照射する窒素イオンNとの粒子比(組成比)B/
Nを適切な値、例えば0.7〜2.0程度の範囲内に選ぶのが
好ましい。
Further, at the time of film formation, the particle ratio (composition ratio) of boron B deposited on the substrate 2 and nitrogen ions N irradiated on the substrate 2 is represented by B /
It is preferable to select N to an appropriate value, for example, in the range of about 0.7 to 2.0.

上記のような製膜方法の特徴を列挙すれば次のとおり
である。
The features of the film forming method as described above are as follows.

低エネルギーの窒素イオン8を用いても、立方晶系窒
化ホウ素結晶粒を含む高硬度の、例えば通常の立方晶系
窒化ホウ素の硬度と同程度の硬度を有する窒化ホウ素膜
3が得られる。
Even when the low energy nitrogen ions 8 are used, a boron nitride film 3 having high hardness including cubic boron nitride crystal grains, for example, having the same hardness as that of ordinary cubic boron nitride can be obtained.

低エネルギーの窒素イオン8を用いるため、スパッタ
による荒れが少なくて膜表面が非常に平滑であり、しか
も膜内部に欠陥部等の損傷部の少ない良質の窒化ホウ素
膜3が得られる。
Since the low-energy nitrogen ions 8 are used, a high-quality boron nitride film 3 having less roughness due to sputtering, having a very smooth film surface, and having few damaged portions such as defects inside the film can be obtained.

低エネルギーの窒素イオン8を用いるため、イオン源
7およびそれに関連する電源等の機器が低コストになる
と共に、それら各種機器の操作、取扱い等も容易にな
る。従って、工業的な応用に際しての利点も大きい。
Since low-energy nitrogen ions 8 are used, the cost of the ion source 7 and related devices such as a power supply are reduced, and the operation and handling of the various devices are facilitated. Therefore, the advantage in industrial application is great.

イオン源7としてバケット型のイオン源を用いるの
で、均一で大面積の窒素イオン8が得られるため、窒化
ホウ素膜3内の組成がより均一となる。
Since a bucket-type ion source is used as the ion source 7, uniform and large-area nitrogen ions 8 can be obtained, so that the composition in the boron nitride film 3 becomes more uniform.

ホウ素蒸着と窒素イオン照射の個々の処理条件の調整
が可能であるため、膜作製時の組成比B/Nに対する制御
性が良い。
Since the individual processing conditions of boron deposition and nitrogen ion irradiation can be adjusted, the controllability on the composition ratio B / N during film formation is good.

次により具体例を示す。シリコン基板を室温に保持し
た状態で、窒素イオン(3KeV、15mA)の照射とホウ素蒸
着(蒸着材料として99.5%金属ホウ素使用、蒸着速度約
1Å/sec)を同時に行い、基板上に窒化ホウ素膜を約1
μm堆積させた。その際の組成比B/Nは約1.1であった。
The following is a specific example. With the silicon substrate kept at room temperature, irradiation of nitrogen ions (3 KeV, 15 mA) and boron deposition (using 99.5% metal boron as the deposition material, deposition rate of about 1 mm / sec) were performed simultaneously to form a boron nitride film on the substrate. About 1
μm was deposited. At that time, the composition ratio B / N was about 1.1.

上記窒化ホウ素膜においては、10gの荷重に対してビ
ッカース硬度Hv=4730〔kg/mm2〕が得られた。ちなみに
この場合は膜厚が約1μmであるためシリコン基板(Hv
≒2000)の影響を非常に大きく受けているにも拘らず、
その基板の2倍以上もの硬度が得られており、上記窒化
ホウ素膜自身の硬度は、通常の立方晶系窒化ホウ素の硬
度(Hv≒8000)と同程度であると思われる。この膜の赤
外線吸収スペクトルを測定した結果、1100cm-1付近に立
方晶系窒化ホウ素の示す吸収が認められた。また、上記
窒化ホウ素膜を一万倍程度の顕微鏡観察したところ、表
面での凹凸は殆ど観られなかった。
In the above boron nitride film, a Vickers hardness Hv of 4730 [kg / mm 2 ] was obtained with a load of 10 g. Incidentally, in this case, since the film thickness is about 1 μm, the silicon substrate (Hv
(2000),
The hardness is at least twice as high as that of the substrate, and the hardness of the boron nitride film itself is considered to be about the same as the hardness of normal cubic boron nitride (Hv ≒ 8000). As a result of measuring the infrared absorption spectrum of this film, absorption indicated by cubic boron nitride was observed at around 1100 cm -1 . When the boron nitride film was observed under a microscope of about 10,000 times, almost no irregularities on the surface were observed.

〔発明の効果〕〔The invention's effect〕

この発明は、上記のとおり構成されているので、次の
ような効果を奏する。
The present invention is configured as described above, and has the following effects.

高硬度層として優れた性能を示す立方晶系窒化ホウ素
は準安定なものであり、窒化ホウ素膜内に欠陥部等の損
傷部が多いとこの損傷部のために成長しにくいが、この
発明では0.5KeV以上5KeV未満という低エネルギーの窒素
イオンを用いるため、照射イオンによる膜内の欠陥部の
発生を抑えて、立方晶系窒化ホウ素の結晶粒を多く含む
高硬度の窒化ホウ素膜を得ることができる。
Cubic boron nitride that exhibits excellent performance as a high-hardness layer is metastable, and if there are many damaged parts such as defects in the boron nitride film, it is difficult to grow due to these damaged parts. Since low energy nitrogen ions of 0.5 KeV or more and less than 5 KeV are used, it is possible to suppress the generation of defects in the film due to irradiation ions and obtain a high hardness boron nitride film containing many cubic boron nitride crystal grains. it can.

0.5KeV以上5KeV未満という低エネルギーの窒素イオン
を照射するため、イオン照射に伴うスパッタによる荒れ
が少なくて膜表面が非常に平滑であり、しかも膜内部に
欠陥部等の損傷部の少ない良質の窒化ホウ素膜が得られ
る。
Since low-energy nitrogen ions of 0.5 KeV or more and less than 5 KeV are irradiated, the surface of the film is very smooth with little roughness due to sputtering due to ion irradiation, and high quality nitridation with few damaged parts inside the film. A boron film is obtained.

低エネルギーの窒素イオンを用いるため、イオン源お
よびそれに関連する電源等の機器が低コストになると共
に、それら各種機器の操作、取扱い等も容易になる。従
って、工業的な応用に際しての利点も大きい。
Since low-energy nitrogen ions are used, the cost of equipment such as an ion source and a power supply associated with the ion source is reduced, and the operation and handling of the various equipment are facilitated. Therefore, the advantage in industrial application is great.

バケット型のイオン源は、プラズマ閉じ込めにカスプ
磁場を用いていて、大面積のプラズマを均一性良く閉じ
込めることができるので、均一で大面積の窒素イオンを
得ることができる。従ってこのようなイオン源を用いる
ことによって、大面積でしかも組成の均一性の高い窒化
ホウ素膜を得ることができるので、良質の窒化ホウ素膜
を生産性良く作製することができる。従って工業的な利
用価値も高い。
The bucket-type ion source uses a cusp magnetic field for plasma confinement, and can confine large-area plasma with good uniformity, so that uniform and large-area nitrogen ions can be obtained. Therefore, by using such an ion source, a boron nitride film having a large area and high composition uniformity can be obtained, so that a high-quality boron nitride film can be manufactured with high productivity. Therefore, its industrial value is high.

イオン源から窒素イオンを引き出してそれを質量分離
手段を通すことなくそのまま基板に照射するので、質量
分離手段を通すことによるイオン量の減少を避けること
ができ、窒化ホウ素膜の生産性が高い。しかも、質量分
離手段が不要であるのでそのぶん装置の小型化および低
コスト化を図ることができる。特に、大面積のイオンを
得るためには、質量分離手段を用いる場合はそれも大型
化せざるを得ないが、この発明によればそのような問題
も全くない。
Since nitrogen ions are extracted from the ion source and are irradiated on the substrate without passing through the mass separation means, a decrease in the amount of ions caused by passing through the mass separation means can be avoided, and the productivity of the boron nitride film is high. Moreover, since no mass separation means is required, the size and cost of the apparatus can be reduced accordingly. In particular, in order to obtain large area ions, when mass separation means is used, the size must be increased, but according to the present invention, there is no such problem.

イオン源の奥の部分に蒸発源を設けて両者を一体化す
る考えもあるが、そのようにすると、イオン源の引出し
電極に蒸発源からの蒸発物質が付着して、引出し電極の
汚染や目詰まりが起こり易く、イオンを長時間安定して
引き出すことができなくなる。これに対してこの発明で
は、蒸発源とイオン源とを互いに別の箇所に設けている
ので、蒸発物質による引出し電極の汚染や目詰まりが起
こらず、従ってイオンを長時間安定して引き出すことが
できる。従って生産性が高く工業的な利用価値も高い。
There is also a thought that an evaporation source is provided at the back of the ion source and the two are integrated, but in such a case, the evaporation material from the evaporation source adheres to the extraction electrode of the ion source, and the extraction electrode is contaminated or clogged. Clogging is likely to occur and ions cannot be stably extracted for a long time. On the other hand, in the present invention, since the evaporation source and the ion source are provided at different positions from each other, contamination and clogging of the extraction electrode by the evaporating substance do not occur, and therefore, ions can be stably extracted for a long time. it can. Therefore, productivity is high and industrial utility value is high.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明に係る窒化ホウ素膜の作製方法を実
施する装置の一例を示す概略図である。 2……基板、3……窒化ホウ素膜、4……蒸発源、6…
…ホウ素、7……イオン源、8……窒素イオン。
FIG. 1 is a schematic view showing an example of an apparatus for performing the method for producing a boron nitride film according to the present invention. 2 ... substrate, 3 ... boron nitride film, 4 ... evaporation source, 6 ...
... boron, 7 ... ion source, 8 ... nitrogen ion.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−227163(JP,A) 特開 昭60−63372(JP,A) 特開 昭58−81967(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-227163 (JP, A) JP-A-60-63372 (JP, A) JP-A-58-81967 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空中で基板に対して、蒸発源から蒸発さ
せたホウ素を蒸着させると同時に、この蒸発源とは別の
箇所に設けられていてプラズマ閉じ込めにカスプ磁場を
用いるバケット型のイオン源から窒素イオンを引き出し
てそれを質量分離手段を通すことなくそのまま同基板に
照射し、かつその際に基板に照射する窒素イオンのエネ
ルギーを0.5KeV以上5KeV未満の範囲内とすることを特徴
とする、立方晶系窒化ホウ素の結晶粒を含む窒化ホウ素
膜の作製方法。
1. A bucket type ion beam, which is provided on a substrate in a vacuum and which is vapor-deposited with boron from an evaporation source, and which is provided at a location different from the evaporation source and uses a cusp magnetic field for confining plasma. It is characterized by extracting nitrogen ions from the source and irradiating the same substrate without passing through the mass separation means, and in this case, the energy of the nitrogen ions irradiating the substrate is in a range of 0.5 KeV or more and less than 5 KeV. To produce a boron nitride film containing cubic boron nitride crystal grains.
JP60234340A 1985-10-18 1985-10-18 Method for producing boron nitride film containing cubic boron nitride crystal grains Expired - Lifetime JP2603919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60234340A JP2603919B2 (en) 1985-10-18 1985-10-18 Method for producing boron nitride film containing cubic boron nitride crystal grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60234340A JP2603919B2 (en) 1985-10-18 1985-10-18 Method for producing boron nitride film containing cubic boron nitride crystal grains

Publications (2)

Publication Number Publication Date
JPS6293366A JPS6293366A (en) 1987-04-28
JP2603919B2 true JP2603919B2 (en) 1997-04-23

Family

ID=16969451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60234340A Expired - Lifetime JP2603919B2 (en) 1985-10-18 1985-10-18 Method for producing boron nitride film containing cubic boron nitride crystal grains

Country Status (1)

Country Link
JP (1) JP2603919B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526698B2 (en) * 1990-03-30 1996-08-21 日新電機株式会社 Substrate coated with boron nitride thin film and method for manufacturing the same
JP2611521B2 (en) * 1990-09-12 1997-05-21 日新電機株式会社 Method of forming boron nitride thin film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063372A (en) * 1983-09-19 1985-04-11 Agency Of Ind Science & Technol Manufacture of thin boron nitride film of high hardness

Also Published As

Publication number Publication date
JPS6293366A (en) 1987-04-28

Similar Documents

Publication Publication Date Title
JP3660866B2 (en) Method and apparatus for forming hard carbon film
JPH06192834A (en) Method and equipment for plasma energized magnetron sputtering vapor deposition
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
JPS6063372A (en) Manufacture of thin boron nitride film of high hardness
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPH0259862B2 (en)
JP3647507B2 (en) Method for forming gas clusters and gas cluster ions
JPH0568541B2 (en)
EP0280198B1 (en) Method of forming diamond film
JP2535886B2 (en) Carbon-based film coating method
JPS6326349A (en) Formation of cubic boron nitride film
JPS63262457A (en) Preparation of boron nitride film
JP2001172763A (en) Method of forming metal-containing hard carbon film
JPH01168857A (en) Formation of titanium nitride film
JPH031377B2 (en)
JPS60181262A (en) Production of boron nitride film having high hardness
JPS63206387A (en) Production of diamond thin film
JPH01275746A (en) Method for forming metallic carbide layer onto diamond
JPS6315346B2 (en)
JPH01255663A (en) Method and device for vacuum deposition
JP2769404B2 (en) Method for forming carbon-nitrogen compound film
JPH05112863A (en) Formation of thin film
JP4408505B2 (en) Method and apparatus for forming diamond-like carbon film
JPS63210006A (en) Formation of thin amorphous carbon film
JPH0397847A (en) Formation of boron nitride film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term