JPH01168857A - Formation of titanium nitride film - Google Patents

Formation of titanium nitride film

Info

Publication number
JPH01168857A
JPH01168857A JP32639887A JP32639887A JPH01168857A JP H01168857 A JPH01168857 A JP H01168857A JP 32639887 A JP32639887 A JP 32639887A JP 32639887 A JP32639887 A JP 32639887A JP H01168857 A JPH01168857 A JP H01168857A
Authority
JP
Japan
Prior art keywords
titanium
substrate
film
ion
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32639887A
Other languages
Japanese (ja)
Other versions
JPH0663087B2 (en
Inventor
Masato Kiuchi
正人 木内
Mamoru Sato
守 佐藤
Kaneyoshi Fujii
藤井 兼栄
Korekazu Yoshida
吉田 云一
Yoichi Hashimoto
陽一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Electric Corp filed Critical Agency of Industrial Science and Technology
Priority to JP32639887A priority Critical patent/JPH0663087B2/en
Publication of JPH01168857A publication Critical patent/JPH01168857A/en
Publication of JPH0663087B2 publication Critical patent/JPH0663087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form the title TiN film contg. Ti2N crystal and having excellent adhesive strength and hardness by specifying the Ti vapor-deposition rate, accelerating voltage for N, and N input in the formation of the hard TiN film on the surface of a steel member by vacuum deposition. CONSTITUTION:The inside of a vacuum vessel 11 is evacuated from an exhaust port 10, and gaseous N is supplied at a low pressure from a gas inlet 8. The gaseous N2 particle is formed into positive ion by an electron shower from an electron radiation source 7, and the ion is accelerated by the accelerating voltage 6 impressed with a negative voltage of 1-80kV and projected on a substrate 1 to be treated. The Ti in a crucible 4 is heated by an electron-beam gun 3, vaporized, and deposited on the substrate 1. In this case, the Ti vapor deposition rate is controlled to 0.1-200Angstrom /sec and the irradiation amt. of N ion to 1X10<12>-1X10<15> ion/mm<2>.sec, the ions consisting of 20-100% gaseous N2 and 0-80% inert gas are clustered, and the cluster is projected on the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、大きな琴擦力を受ける摺動部材や工具表面
などに、強い付着力を有する硬い窒化チタン膜を形成す
る方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for forming a hard titanium nitride film with strong adhesion on sliding members, tool surfaces, etc. that are subjected to large rubbing forces. .

〔従来の技術〕[Conventional technology]

第2図は、例えば金属表面技術第30巻第5号232頁
〜240頁(1979年)に示されたイオンブレーティ
ング法の概要図で1図においc(1)は基板、すなわち
被加工物、(2)は基板支持台、(5)はチタン材料、
(8)はガス導入口、(9)は加速用直流電源、α@は
排気系、G11は各部材を収各する真空各器、叩は高周
波コイル、αJは高周波コイル■への印加電源、G4は
蒸発用フィラメント、 USはフィラメントlへの印加
電源である) 次に動作にりい1説明するコまず真空各器tin内を真
空にした後、ガス導入口(8)から窒素ガスを導入し、
高周波電源03により高周波コイル(12+と基板(1
)との間で高周波放電を生じさせることにより高周波電
界を発生させる。フィラメント電源αSよりフィラメン
トαのへ通電し、チタン材料(5)を加熱・蒸発させる
。この蒸発チタン粒子が高周波電界中へ入り、その一部
がイオン化または励起された窒素粒子や電子と衝突し1
イオン化されると共に、窒素粒子と反応し″′cTiN
粒子となる。この粒子が基板(1)の負電位により加速
され、基板(1)表面に付着する。
Figure 2 is a schematic diagram of the ion brating method shown in, for example, Metal Surface Technology Vol. 30, No. 5, pp. 232-240 (1979). , (2) is a substrate support stand, (5) is a titanium material,
(8) is the gas inlet, (9) is the DC power source for acceleration, α@ is the exhaust system, G11 is the vacuum device that collects each member, Ta is the high frequency coil, αJ is the power supply to the high frequency coil ■, G4 is the filament for evaporation, and US is the power supply applied to the filament L.) Next, we will explain the operation.First, make the inside of each vacuum device vacuum, and then introduce nitrogen gas from the gas inlet port (8). death,
The high frequency coil (12+) and the board (1
) A high-frequency electric field is generated by generating a high-frequency discharge between the two. Electricity is applied to the filament α from the filament power supply αS to heat and evaporate the titanium material (5). These evaporated titanium particles enter the high-frequency electric field, and some of them collide with ionized or excited nitrogen particles and electrons.
It is ionized and reacts with nitrogen particles to form "'cTiN".
It becomes a particle. These particles are accelerated by the negative potential of the substrate (1) and adhere to the surface of the substrate (1).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の方法では、膜の組成・組織、結晶構造の制御性が
低く、得られる膜の硬さは充分なものでなかった。また
粒子の大部分はイオン化されないので基板に対する衝突
エネルギが低く、膜の付着力が弱いことにより、形成膜
が基板から剥離する等の問題があった5 この発明はと記のような問題点を解決するためになされ
たもので、強い付着力を有する硬い窒化チタン膜を形成
する方法を得ることを目的とする)〔問題点を解決する
ための手段〕 この発明の窒化チタン膜の形成方法は、真空中でチタン
を被加工物に0.1〜200λ/ Sec の速度で蒸
着すると同時に、蒸着している被加工物に窒素を含むイ
オンを、加速電圧1〜80KVで加速し、照射ii I
 X 10”−I X I Q” 1ons/mmL 
secで打込み、TiN結晶を含む膜を形成するように
しだも雪 のである。
In conventional methods, the controllability of the composition, texture, and crystal structure of the film was low, and the resulting film did not have sufficient hardness. In addition, since most of the particles are not ionized, the collision energy with the substrate is low, and the adhesion of the film is weak, resulting in problems such as the formed film peeling off from the substrate.5 This invention solves the following problems. [Means for solving the problem] The method for forming a titanium nitride film of the present invention is to obtain a method for forming a hard titanium nitride film with strong adhesive force. , titanium is vapor-deposited onto the workpiece in vacuum at a rate of 0.1-200λ/Sec, and at the same time, ions containing nitrogen are accelerated at an acceleration voltage of 1-80KV onto the workpiece being irradiated with irradiation II
X 10"-I X I Q" 1ons/mmL
It is implanted for 20 seconds to form a film containing TiN crystals.

〔作 用〕[For production]

この発明においtは、チタンの蒸着速度と窒素イオンの
打込み址を個別に制御できること、及び窒素イオンの加
速電圧を変化させられることを利用して、膜の組成・組
織・結晶構造の制御が可能でめるので、TiN結晶中に
Ti2N結晶を合成することができるし、Ti2N結晶
だけを合成できるコまた、大きなエネルギを与えられ1
基板(すなわち被加工物)表面に打ち込まれる窒素イオ
ンは、膜形成の初期におい1は、基板に注入されると同
時に基板表面上に飛来したチタン原子と衝突し。
In this invention, it is possible to control the composition, texture, and crystal structure of the film by taking advantage of the fact that the deposition rate of titanium and the implantation area of nitrogen ions can be individually controlled, and that the accelerating voltage of nitrogen ions can be changed. Therefore, it is possible to synthesize Ti2N crystals in TiN crystals, or to synthesize only Ti2N crystals.
Nitrogen ions implanted into the surface of the substrate (that is, the workpiece) collide with titanium atoms flying onto the substrate surface at the same time as they are implanted into the substrate at the initial stage of film formation.

チタン原子を基板に押し込む、この時、窒素イオンによ
る反跳効果と、内部に発生した欠陥により内部拡散が促
進され、チタン原子は基板内部へ導入される。このよう
に基板と形成膜間の境界付近ではミキシングが起こり、
注入窒素原子、蒸着チタン原子、基板原子の混在した層
が形成され、組成が連成的に変化しながら膜が形成され
る。このようにしt滑らかな濃度勾配を持つ境界層を形
成することにより、膜の基板への付着力を極め1大きく
することができる。
When titanium atoms are pushed into the substrate, internal diffusion is promoted by the recoil effect of nitrogen ions and internally generated defects, and the titanium atoms are introduced into the substrate. In this way, mixing occurs near the boundary between the substrate and the formed film,
A layer containing a mixture of implanted nitrogen atoms, deposited titanium atoms, and substrate atoms is formed, and a film is formed while the composition changes in a coupled manner. By forming a boundary layer with a smooth concentration gradient in this manner, the adhesion force of the film to the substrate can be greatly increased.

〔実施例〕〔Example〕

以下この発明の窒化チタン膜の形成方法の一実施例を図
と共に説明する5m1図はこの発明の窒化チタン膜の形
成方法を実施するための成膜装置の、断面構成図で、図
においt (11、+21 、 +51及び(8)〜U
は第2図に示した従来の装置と同−又は相当部分である
、(3)はチタン材料(5)の加熱用EB(El!ec
tion Beam )ガン、(4+はるりは、(61
はイオン加速電極、(7)は窒素ガスをイオン化するた
めの電子放射源である。
An embodiment of the method for forming a titanium nitride film according to the present invention will be described below with reference to figures. Figure 5m1 is a cross-sectional configuration diagram of a film forming apparatus for carrying out the method for forming a titanium nitride film according to the present invention. 11, +21, +51 and (8)~U
is the same or equivalent part to the conventional device shown in Fig. 2. (3) is an EB (El!ec) for heating titanium material (5).
tion Beam) Gun, (4+ Haruri, (61
is an ion accelerating electrode, and (7) is an electron radiation source for ionizing nitrogen gas.

欠にt記の装置を用いた窒化チタン膜の形成方法にりい
工説明する。まず真空8器(Ill内を10 ’ror
rオーダにまで真空引きした後、ガス導入口(8)から
窒素ガスを導入し、IQ−4Torrオーダに医り、こ
の窒素ガス粒子を、電子放射源(7)からの電子シャワ
ーを浴びせることによつt窒素ガス粒子をプラスイオン
化した後、加速電極(6)に負電圧を印加することによ
りt加速し1基板+11 ff面に照射する。
The method for forming a titanium nitride film using the apparatus described above will be briefly explained. First, vacuum 8 units (10'ror inside Ill)
After evacuation to the order of R, nitrogen gas was introduced from the gas inlet (8) to a pressure of the order of IQ-4 Torr, and the nitrogen gas particles were showered with electrons from the electron radiation source (7). After the nitrogen gas particles are positively ionized, they are accelerated by applying a negative voltage to the accelerating electrode (6) and irradiated onto the 1 substrate + 11 ff surface.

この時るつぼ(4)内に収浮されたチタン材料(51を
EBガン(3)を使りエ加熱・蒸発させ1基板は)の表
面に堆積させることにより1、チタンの蒸着と窒素の注
入とを同時に行なう、−例として、チタンの蒸着速成を
3 Q A/sec 、 屋素イオンの照射量を1.2
6X l 0131ons /mmL sec、窒素イ
オンの加速電圧を30KVとすると、被加工物表面部に
形成される窒化チタン膜は、TiN結晶とT i 、 
N結晶との比率が、TiN : Ti、 N = 4 
: 6となる膜が得られ、ビッカース硬さHy−= 2
200以tでるり、苛酷な条件下におい1も、剥離現象
は見られなかった。このときのチタンの蒸着速度は0.
1〜200 A/sec 、g素イオンの照射量(電子
放射源(7)の調整により制御できる)はl X l 
01” 〜l X I Q151ons/ramlse
c、窒素イオンの加速電圧は1〜80KV程度が適当で
At this time, the titanium material (51) suspended in the crucible (4) is heated and evaporated using an EB gun (3) and deposited on the surface of the first substrate.1. At the same time, for example, the rapid deposition of titanium is performed at 3 QA/sec, and the irradiation amount of nitrogen ions is 1.2
When the acceleration voltage of nitrogen ions is 30 KV, the titanium nitride film formed on the surface of the workpiece is composed of TiN crystal and Ti,
The ratio with N crystal is TiN:Ti, N = 4
: A film with a Vickers hardness of 6 was obtained, and the Vickers hardness Hy-=2
At 200 tons or more, no peeling phenomenon was observed even under severe conditions. At this time, the titanium deposition rate was 0.
1 to 200 A/sec, the irradiation amount of g-ion (which can be controlled by adjusting the electron radiation source (7)) is l x l
01” ~l X I Q151ons/ramlse
c. The appropriate acceleration voltage for nitrogen ions is about 1 to 80 KV.

この範囲内で成膜条件を変化させることによりt膜中の
1’ i N 結晶とT i 2 N結晶との比率を制
御できる。チタンの蒸着速度を帆IA/sec以下にす
ると処理速度が遅く、工業的意味が薄く、不純物の混入
割合が高くなる。チタンの蒸着速度を200A/sec
  以tにするとイオンの打込み址を多くする必要がア
リ、基板(被加工物)の過昇温の発生、大規模イオン源
の必要があり不都合である。窒素イオンの照射量をtx
ton以下にすると処理速度が遅く、窒素が充分に入ら
ず、チタンが多い膜が形成される、逆に照射量をtxt
ots以とにすると基板温度が辷がり過ぎ、基板の形状
精度を損なうことになり、また熱拡散の進行に伴ない膜
の付着力の低下を招き好ましくない、窒素イオンの加速
電圧をIKV以丁にすると膜の充分な付着力が得られな
くなり、逆に加速電圧を80KV以tにすると、基板温
度がとがり過ぎ、基板の形状精度を損ない、また熱拡散
の進行に伴ない、膜の付着力の低下を招くことになり、
好ましくなへ1城膜の当初にはチタンの蒸着速度をl 
、 Q A/sec程度の低い値に抑え工窒素及びチタ
ン原子と基板原子との充分なミキシング領域を確保し、
その後膜厚600〜800 A tでは蒸着速度を徐々
にと昇させ1行くことにより滑らかな濃度勾配を持つ境
界層を形成し1、膜と基板との間に極め工高い付着力を
得ることが可能となる。
By changing the film forming conditions within this range, the ratio of 1' i N crystal to T i 2 N crystal in the t film can be controlled. If the titanium deposition rate is lower than IA/sec, the processing rate will be slow, it will have little industrial significance, and the proportion of impurities will increase. The titanium deposition rate is 200A/sec.
If t is less, it is necessary to increase the area for ion implantation, excessive temperature rise of the substrate (workpiece) occurs, and a large-scale ion source is required, which are disadvantageous. tx nitrogen ion irradiation amount
If the irradiation amount is less than txt, the processing speed will be slow and nitrogen will not enter sufficiently, resulting in the formation of a film with a large amount of titanium.
If the temperature is higher than 0.05 m, the substrate temperature will become too high, which will impair the shape accuracy of the substrate, and the adhesion of the film will decrease as thermal diffusion progresses, which is undesirable. If the acceleration voltage is set to 80 KV or higher, the substrate temperature becomes too high, impairing the shape accuracy of the substrate, and as thermal diffusion progresses, the film's adhesion force decreases. This will lead to a decrease in
Preferably, the deposition rate of titanium is set to l at the beginning of the film.
, by suppressing the QA/sec to a low value and ensuring a sufficient mixing area for nitrogen and titanium atoms and substrate atoms.
After that, when the film thickness is 600 to 800 At, the deposition rate is gradually increased to form a boundary layer with a smooth concentration gradient and to obtain extremely high adhesion between the film and the substrate. It becomes possible.

なお、実施例では、イオ・ン化ガスに窒素100%ガス
を使用する場合を示したが、窒素50%、アルゴンなど
の不活性ガス50%の混合ガスを使用し王も同様の効果
が得られる。窒素と不活性ガスの比率は、窒素:不活性
ガス=20−1oo%+SO〜0≠ が好ましい。
In addition, although the example shows the case where 100% nitrogen gas is used as the ionization gas, the same effect can be obtained by using a mixed gas of 50% nitrogen and 50% inert gas such as argon. It will be done. The ratio of nitrogen and inert gas is preferably nitrogen:inert gas=20-100%+SO~0≠.

又窒素に水素などの反応性ガスを混合しtもよく、その
混合比率は窒素:反応性ガス=20−100チ:80〜
θ%が好ましい。
It is also good to mix nitrogen with a reactive gas such as hydrogen, and the mixing ratio is nitrogen: reactive gas = 20-100 chi: 80~
θ% is preferred.

チタンの蒸着には、真空蒸着法、スパッタ蒸着法、チタ
ンをクラスタイオン化させるイオンガンを使用する方法
などを利用し1もよい。
For vapor deposition of titanium, a vacuum vapor deposition method, a sputter vapor deposition method, a method using an ion gun for cluster ionizing titanium, or the like may be used.

〔発明の効果〕〔Effect of the invention〕

以f:、説明したように、この発明の鼠化チタン膜の形
成方法は、真空中でチタンを被加工物に0.1〜200
 A/secの速度で蒸着すると同時に、蒸着している
被加工物に窒素を含むイオンを、加速電圧1〜80Kv
 で加速し、照射量lX1012〜1x101sion
s/mm2− secで打込み、TizN  結晶を含
む膜を形成するようにしたので、非常に硬い窒化チタン
膜を形成することができると共に被加工物との間に極め
て強い付着力が得られる膜を形成することができる。
f: As explained above, the method for forming a titanium rat film of the present invention involves applying titanium to a workpiece in a vacuum at a concentration of 0.1 to 200%.
At the same time, ions containing nitrogen are deposited on the workpiece being deposited at an accelerating voltage of 1 to 80 Kv.
Accelerate with
Since the implantation is performed at a rate of s/mm2-sec to form a film containing TizN crystals, it is possible to form a very hard titanium nitride film and to obtain a film that has extremely strong adhesion to the workpiece. can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の窒化チタン膜の形成方法に使用する
成膜装置の断面構成図、第2図は従来の成膜装置の断面
構成図でめるり fi+は被加工物、(3)はEBガン&(4jはるつぼ
、(5)はチタン材料、(6)は加速電極、(7)は電
子放射源、(8)はガス導入口、lは真空G器でるる。 なお図中、同一符号は同−又は相当部分を示すコ代 理
 人   大  岩  増  雄第1図
Fig. 1 is a cross-sectional configuration diagram of a film forming apparatus used in the method of forming a titanium nitride film of the present invention, and Fig. 2 is a cross-sectional configuration diagram of a conventional film forming apparatus. EB gun & (4j crucible, (5) is a titanium material, (6) is an accelerating electrode, (7) is an electron radiation source, (8) is a gas inlet, and l is a vacuum gas outlet. In the figure, The same symbols indicate the same or equivalent parts.Masuo OiwaFigure 1

Claims (5)

【特許請求の範囲】[Claims] (1)真空中でチタンを被加工物に0.1〜200Å/
secの速度で蒸着すると同時に、蒸着している被加工
物に窒素を含むイオンを、加速電圧1〜80KVで加速
し、照射量1×10^1^2〜1×10^1^5ion
s/mm^2・secで打込み、Ti_2N結晶を含む
膜を形成するようにした窒化チタン膜の形成方法。
(1) Apply titanium to the workpiece in vacuum with a thickness of 0.1 to 200 Å/
At the same time, ions containing nitrogen are accelerated on the workpiece being vapor-deposited at an acceleration voltage of 1 to 80 KV, and the irradiation amount is 1 x 10^1^2 to 1 x 10^1^5 ions.
A method for forming a titanium nitride film in which implantation is performed at a rate of s/mm^2·sec to form a film containing Ti_2N crystals.
(2)Ti_2N結晶を含む膜は、TiN結晶とTi_
2N結晶を含む膜である特許請求の範囲第1項記載の窒
化チタン膜の形成方法。
(2) A film containing Ti_2N crystal is composed of TiN crystal and Ti_2N crystal.
A method for forming a titanium nitride film according to claim 1, which is a film containing 2N crystals.
(3)チタンの蒸着に、真空蒸着法及びスパッタ蒸着法
のいずれかを用いる特許請求の範囲第1項又は第2項記
載の窒化チタン膜の形成方法。
(3) The method for forming a titanium nitride film according to claim 1 or 2, in which either a vacuum evaporation method or a sputter evaporation method is used for vapor deposition of titanium.
(4)チタンの蒸着に、チタンをクラスタイオン化させ
るイオンガンを使用する特許請求の範囲第1項又は第2
項記載の窒化チタン膜の形成方法、。
(4) Claim 1 or 2 uses an ion gun that cluster ionizes titanium for vapor deposition of titanium.
A method for forming a titanium nitride film as described in .
(5)イオンとして、窒素を20〜100%と、不活性
ガスまたは反応性ガスを0〜80%とを含むガスを用い
る特許請求の範囲第1項ないし第4項のいずれかに記載
の窒化チタン膜の形成方法。
(5) Nitriding according to any one of claims 1 to 4, using a gas containing 20 to 100% nitrogen and 0 to 80% inert gas or reactive gas as ions. Method of forming titanium film.
JP32639887A 1987-12-23 1987-12-23 Method for forming titanium nitride film Expired - Lifetime JPH0663087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32639887A JPH0663087B2 (en) 1987-12-23 1987-12-23 Method for forming titanium nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32639887A JPH0663087B2 (en) 1987-12-23 1987-12-23 Method for forming titanium nitride film

Publications (2)

Publication Number Publication Date
JPH01168857A true JPH01168857A (en) 1989-07-04
JPH0663087B2 JPH0663087B2 (en) 1994-08-17

Family

ID=18187351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32639887A Expired - Lifetime JPH0663087B2 (en) 1987-12-23 1987-12-23 Method for forming titanium nitride film

Country Status (1)

Country Link
JP (1) JPH0663087B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290784A (en) * 1988-05-16 1989-11-22 Kobe Steel Ltd Wear-resistant composite member
JPH03177570A (en) * 1989-12-05 1991-08-01 Raimuzu:Kk Production of combined hard material
JPH04124259A (en) * 1990-09-12 1992-04-24 Nissin Electric Co Ltd Formation of boron nitride thin film
CN103276361A (en) * 2013-05-09 2013-09-04 中南大学 Method for preparing Ti/TiO2 or TiN biocompatible film on surface of magnesium matrix composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290784A (en) * 1988-05-16 1989-11-22 Kobe Steel Ltd Wear-resistant composite member
JPH03177570A (en) * 1989-12-05 1991-08-01 Raimuzu:Kk Production of combined hard material
JPH04124259A (en) * 1990-09-12 1992-04-24 Nissin Electric Co Ltd Formation of boron nitride thin film
CN103276361A (en) * 2013-05-09 2013-09-04 中南大学 Method for preparing Ti/TiO2 or TiN biocompatible film on surface of magnesium matrix composite

Also Published As

Publication number Publication date
JPH0663087B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
CN102492924A (en) Autologous ion bombardment assisted electron beam evaporation device, and method for coating film by using same
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
JPH01168857A (en) Formation of titanium nitride film
JPS6320447A (en) Method and apparatus for continuous coating of metallic strip with ceramics
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPS63238270A (en) Production of thin compound film
JPS63262457A (en) Preparation of boron nitride film
JPH01172563A (en) Formation of high-purity film
JPS63213664A (en) Ion plating device
JPS61201772A (en) Method and device for forming thin film
JPS58100672A (en) Method and device for formation of thin film
KR100701365B1 (en) Apparatus for improving sputtering effect according to plasma source in pvd
JPS63206464A (en) Inline type composite surface treatment device
JPH0372069A (en) Method for continuously vapor-depositing compound on metal strip
JPH048506B2 (en)
JPS61190064A (en) Formation of thin titanium nitride film
JPS63210006A (en) Formation of thin amorphous carbon film
JPS6320445A (en) Ion plating
JPH05112863A (en) Formation of thin film
JP2600092B2 (en) Surface modification method for metallic materials
RU2145362C1 (en) Process of vacuum-plasma deposition of coats
JPH04318168A (en) Ion composite cvd method and device therefor
JPS63161168A (en) Formation of film by ion beam sputtering
JP2636577B2 (en) Method of forming titanium nitride film
JPH06287743A (en) Formation of thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14