JPH03177570A - Production of combined hard material - Google Patents

Production of combined hard material

Info

Publication number
JPH03177570A
JPH03177570A JP31423989A JP31423989A JPH03177570A JP H03177570 A JPH03177570 A JP H03177570A JP 31423989 A JP31423989 A JP 31423989A JP 31423989 A JP31423989 A JP 31423989A JP H03177570 A JPH03177570 A JP H03177570A
Authority
JP
Japan
Prior art keywords
ions
ion
base material
film
drawn out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31423989A
Other languages
Japanese (ja)
Inventor
Tokiaki Hayashi
林 常昭
Shuji Hida
修司 飛田
Kazuyuki Sakamoto
和志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP31423989A priority Critical patent/JPH03177570A/en
Publication of JPH03177570A publication Critical patent/JPH03177570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a combined hard material reduced in composition gap from the inner part of a base material by applying film formation to the surface of a base material by means of ion implantation and ion mixing. CONSTITUTION:As a base material, one side of a Ti or Ti-Al alloy sheet is subjected to mirror-finish polishing and to ultrasonic cleaning, and this sheet is held by a holder in a vacuum chamber equipped with functions of ion irradiation and vapor deposition. The inside of this chamber is evacuated and Ar ions are drawn out, and the above sheet is irradiated with these Ar ions to undergo pretreatment for surface cleaning. Subsequently, Ar ions are drawn out of a mass separation type ion source, and ion implantation is carried out. Successively, in the same vacuum chamber, sputtering vapor deposition is applied to the base material by means of irradiation with Ar ions drawn out of a sputter ion source, and simultaneously, nitrogen ions are drawn out of another ion source and the sputtering vapor deposited film is irradiated with these nitrogen ions, by which a combined nitrided film having N composition can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に耐摩耗性、耐酸化性に優れた複合硬質材
料を製造する方性に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention particularly relates to the method of producing a composite hard material having excellent wear resistance and oxidation resistance.

[従来の技術と課題] 通常、Ti合金は軽量の耐熱高強度材料として航空、宇
宙産業用を初めとして自動車工業、一般工業用として幅
広く実用されてきているが、産業界では総合的な性能向
上の要求がなされており、特にその耐酸化性、耐摩耗性
の改善向上に期待が寄せられている。
[Conventional technologies and issues] Generally, Ti alloys have been widely used as lightweight, heat-resistant, high-strength materials in the aviation and space industries, as well as in the automobile industry and general industry. In particular, there are expectations for improved oxidation resistance and wear resistance.

一般的に、Ti合金は酸化雰囲気中で約500℃以上で
は酸化が急激に進行し、通常長時間の使用に耐えられな
い。この為、色々な耐酸化被覆の利用が試みられ、Al
1.Si、Ni、Cr、Ptなどの被膜が耐酸化性を向
上せしめたが、十分とは言い難い現状である。
In general, Ti alloys undergo rapid oxidation at temperatures above about 500° C. in an oxidizing atmosphere, and cannot usually withstand long-term use. For this reason, attempts have been made to use various oxidation-resistant coatings, including Al
1. Although coatings made of Si, Ni, Cr, Pt, etc. have improved oxidation resistance, the current situation is far from sufficient.

ところで、T 1−Al系の金属間化合物は耐酸化性に
優れ、通常のTi合金に比べて酸化開始温度を約300
℃程度向上させる。しかし、これらの材料は加工性が悪
いため現在その改善に努めているところである。しかる
に、この耐酸化性の高いTi−Al系金属間化合物膜を
従来のTi合金の表面に被覆することにより、耐酸化性
に優れた複合材料を作り出すことの可能性が考えられる
By the way, T1-Al-based intermetallic compounds have excellent oxidation resistance, and have an oxidation initiation temperature of about 300°C compared to ordinary Ti alloys.
Increase by about ℃. However, since these materials have poor workability, efforts are currently being made to improve them. However, it is possible to create a composite material with excellent oxidation resistance by coating the surface of a conventional Ti alloy with this highly oxidation-resistant Ti-Al intermetallic compound film.

しかし、従来のCVD、PVD手法による被覆膜では、
耐熱材として使用される繰り返し熱応力の発生する条件
下で、剥離等が生じ実用上問題であった。また、従来の
Ti合金は無潤滑の状態で摩擦係数が大きく、摺動部や
他の金属との接触部に使用する場合、焼付けの問題が生
じる各種潤滑剤を使用することにより摩擦係数を下げる
ことが可能であるが、長時間の使用に耐えることができ
ないため、表面処理が行われている。上記焼付を防止す
るにはTi合金の表面を硬化することが必要で、浸入型
元素硬化法、めっき法、ろう付け。
However, coating films made using conventional CVD and PVD methods,
Under conditions where repeated thermal stress is generated when used as a heat-resistant material, peeling and the like occur, which is a practical problem. In addition, conventional Ti alloys have a large coefficient of friction without lubrication, and when used in sliding parts or parts that come into contact with other metals, the friction coefficient can be lowered by using various lubricants that can cause seizure problems. However, since it cannot withstand long-term use, surface treatment is performed. In order to prevent the above-mentioned seizure, it is necessary to harden the surface of the Ti alloy, which can be done by immersion elemental hardening, plating, or brazing.

溶射、拡散接合肉盛溶接法等種々の方法が試みられてい
るが、表面硬化層の硬度はビッカーズ硬度(Hv ) 
1000以上程度で従来品より焼付けに対し有効である
が、耐摩耗性の面で十分とは言い難い。
Various methods have been tried, such as thermal spraying and diffusion bonding welding, but the hardness of the surface hardening layer is only Vickers hardness (Hv).
A value of about 1000 or more is more effective against seizure than conventional products, but it cannot be said to be sufficient in terms of wear resistance.

本発明は上記事情に鑑みてなされたもので、基材表面へ
のイオン注入並びにイオンミッシング法による成膜によ
り基材内部からの組成ギャップの少ない複合硬質材料を
製造する方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a composite hard material with a small composition gap from inside the base material by ion implantation onto the surface of the base material and film formation by the ion missing method. shall be.

[課題を解決するための手段と作用] 本発明者らは、耐酸化性のみを付与するためには、Tf
またはTi合金の被覆層としてTi −Al系の金属間
化合物膜を形成すれば良いのであるが、併せて耐摩耗性
を向上せしめるために耐摩耗、耐酸化性に優れている(
Ti−A、&)N又は(T i −Al−V) Nの硬
質膜を被覆した複合硬質材料を開発した。
[Means and effects for solving the problem] The present inventors believe that in order to impart only oxidation resistance, Tf
Alternatively, a Ti-Al intermetallic compound film may be formed as a Ti alloy coating layer, but it also has excellent wear resistance and oxidation resistance to improve wear resistance (
We have developed a composite hard material coated with a hard film of Ti-A, &)N or (Ti-Al-V)N.

本願第1の発明は、Ti又はTi合金からなる基材の表
層内にイオン注入法によりAl!イオン。
The first invention of the present application provides Al! ion.

窒素イオ吃の少なくともいずれかを注入した後、その表
層上に(Ti−Ajll)N系の被膜を被覆することを
特徴とする複合硬質材料の製造方法である。
This method of manufacturing a composite hard material is characterized in that after injecting at least one of nitrogen ions, a (Ti-Ajll)N-based film is coated on the surface layer of the material.

本願第2の発明は、Ti又はTi合金からなる基材の表
層内にイオン注入法によりA、9イオン。
A second invention of the present application is to inject A,9 ions into the surface layer of a base material made of Ti or a Ti alloy by an ion implantation method.

バナジウム(V)イオン、窒素イオンの少なくともいず
れかを注入した後、その表層上に(Ti−Aρ)N系の
被膜を被覆することを特徴とする複合硬質材料の製造方
法である。
This method of manufacturing a composite hard material is characterized in that after implanting at least one of vanadium (V) ions and nitrogen ions, the surface layer thereof is coated with a (Ti-Aρ)N-based film.

本発明において、Ti又はTi合金の表層(イオン注入
層)にはT 1−Al7系の金属間化合物が生成しても
良く、また窒化物層が生成されても良い。また、硬質窒
化膜被覆膜は、Ti、Alまたは7 t 、 Aft 
+  ”を蒸着すると同時に、別のイオン諒より窒素イ
オンを照射するイオンビームミクシング法により成膜す
るもので、蒸着手段としてはターゲットを利用したイオ
ンビームスパッタ法(前者)と電子ビームによる真空蒸
着法(後者)を挙げることができる。ここで、前者の場
合、所定の化学組成を構成するTi−A1組成ターゲッ
トまたはTi−Al7−V組成ターゲットを利用しても
よく、あるいはTi、Al7及びV単体の金属ターゲッ
ト1こ順次スパッタイオンビームを照射して基材表面に
蒸着してもよい。一方、後者の場合、ダブルまたはトリ
プルハース方式によるEB蒸着が通常利用される。
In the present invention, a T1-Al7-based intermetallic compound or a nitride layer may be formed on the surface layer (ion-implanted layer) of Ti or Ti alloy. Further, the hard nitride film coating film is made of Ti, Al or 7t, Aft
The film is formed using an ion beam mixing method in which nitrogen ions are simultaneously deposited from a different ion source, and the deposition methods include ion beam sputtering using a target (the former) and vacuum evaporation using an electron beam. In the former case, a Ti-A1 composition target or a Ti-Al7-V composition target constituting a predetermined chemical composition may be used, or Ti, Al7 and V alone may be used. The metal target 1 may be sequentially irradiated with a sputter ion beam to deposit on the substrate surface.In the latter case, on the other hand, double or triple hearth EB deposition is usually used.

生成される硬質窒化物膜については単一の組成またはV
量を段階的もしくは連続的に増加させた組成構造を有す
ることも有効である。
For the hard nitride film produced, a single composition or V
It is also effective to have a composition structure in which the amount is increased stepwise or continuously.

以下、本発明の実施例について比較例とともに説明する
Examples of the present invention will be described below along with comparative examples.

[実施例1] まず、基材として、寸法が30X 30X 2 mmの
Ti又はT i−6A1−6A合金板の片面を鏡面研磨
し、超音波洗浄を施した後、イオン照射と蒸着機能を備
えた真空チャンバ内のホルダに保持した。
[Example 1] First, as a base material, one side of a Ti or Ti-6A1-6A alloy plate with dimensions of 30 x 30 x 2 mm was mirror-polished and subjected to ultrasonic cleaning, and then equipped with ion irradiation and vapor deposition functions. It was held in a holder in a vacuum chamber.

つづいて、このチャンバ内を5 X to−6Torr
に真空引きした後、イオン源から加速電圧5KVのAr
イオンを引出し、前記板に照射して表面洗浄のための前
処理を施した。
Next, the inside of this chamber was heated to 5 X to -6 Torr.
After evacuation to
Ions were extracted and irradiated onto the plate to pre-treat the surface for cleaning.

次いで、質量分離型イオン源から1イオンを引出し、加
速電圧180KeV、  ビーム電流1.0+wAドー
ズffi I X 10’7jons/ cm2でAJ
フイオン注入を行い、引き続き加速電圧160KeV、
  ビーム電流15mA、  ドーズm 5 X 10
17Ions/ cm2で窒素(Nイオン注入を行った
Next, one ion was extracted from the mass-separated ion source and AJ was applied at an acceleration voltage of 180 KeV and a beam current of 1.0 + wA dose ffi I x 10'7 jons/cm2.
After ion implantation, the acceleration voltage was 160KeV,
Beam current 15mA, dose m 5 x 10
Nitrogen (N ion implantation) was performed at 17 Ions/cm2.

ひきつづき、同一真空チャンバー内で50at%T 1
−50at%Alのモザイクターゲット(Tiターゲッ
ト上にAlチップを所定の組成相当量のせたもの)を使
用して、スパッターイオン源より加速電圧2.5KV、
イオン電流1.5Aで引き出したArイオンを照射し、
前記基材上にスパッタ蒸着すると同時に他のイオン源か
ら窒素イオンを加速電圧IKV、イオン電流密度30μ
A/cs”の条件で引き出し、該スパッタ蒸着膜に照射
して厚さ約2μmの(50at%T i −50aL%
Al)N組成を有する複合窒化膜を形成して複合硬質材
料を製造した。
Continuing, 50 at% T 1 in the same vacuum chamber
- Using a 50 at% Al mosaic target (Al chips placed on a Ti target in an amount equivalent to a predetermined composition), an acceleration voltage of 2.5 KV was applied from a sputter ion source.
Irradiate Ar ions extracted with an ion current of 1.5A,
Nitrogen ions are sputter-deposited onto the base material at the same time from another ion source at an acceleration voltage of IKV and an ion current density of 30μ.
A/cs'' condition and irradiated the sputter-deposited film to form a film with a thickness of about 2 μm (50at%T i -50aL%
A composite hard material was manufactured by forming a composite nitride film having an Al)N composition.

しかして、実施例1の複合硬質材料を空気中にて850
℃まで昇温し、その後常温まで下げる急熱急冷操作を1
0回繰返す高温酸化試験を行い、試験後の各複合材料の
酸化に伴うff1ffi変化及び外観を調べた。その結
果を、後掲する第1表に示す。
Therefore, the composite hard material of Example 1 was exposed to 850°C in air.
1 rapid heating and cooling operation to raise the temperature to ℃ and then lower it to room temperature.
A high-temperature oxidation test was repeated 0 times, and changes in ff1ffi due to oxidation and appearance of each composite material after the test were investigated. The results are shown in Table 1 below.

[実施例2ゴ まず、基材として、寸法が30X 30X 2 tai
)50at%T i −50at%A1組成の金属間化
合物板材を用意し、実施例1と同様な前処理を施した。
[Example 2] First, as a base material, the dimensions are 30X 30X 2
) An intermetallic compound plate material having a composition of 50 at% Ti -50 at% A1 was prepared and subjected to the same pretreatment as in Example 1.

次いで、質量分離型イオン源からNイオンを引出し、加
速電圧!80K e V 、  ビーム電流1.5mA
Next, N ions are extracted from the mass-separated ion source, and the accelerating voltage! 80K e V, beam current 1.5mA
.

ドーズ量5 x to”1ons/ cm’でNイオン
注入を行った。
N ion implantation was performed at a dose of 5 x to"1 ons/cm'.

ひきつづき、同一真空チャンバー内でトリプルハース方
式でTi、Al1.VをEB蒸着しながら同時に非分離
型のイオン源からNイオンを引き出し、照射させながら
イオンミクシング成膜を行なった。この結果、膜厚は約
2μmであった。なお、各金属の蒸着速度は、T i 
; 6.0入/see 、  A11)  ;1.7入
/see 、  V ; 0.3入/seeとし、窒素
イオンの照射は加速電圧10KV、イオン電流密度0.
2mA/Cl112の条件で行なった。
Subsequently, Ti, Al1. While V was being EB-evaporated, N ions were extracted from a non-separated ion source and ion mixing film formation was performed while irradiating the film. As a result, the film thickness was approximately 2 μm. Note that the vapor deposition rate of each metal is T i
; 6.0 in/see, A11) ; 1.7 in/see, V ; 0.3 in/see, and nitrogen ion irradiation was performed at an acceleration voltage of 10 KV and an ion current density of 0.
The test was carried out under the conditions of 2 mA/Cl112.

形成された窒化物膜の組成はfl/2(75at%Ti
−21at%Al−4at%V)150%Nであること
が、EPMAで成分量の確認、X線回折で単一層の確認
で明らかになっている。
The composition of the formed nitride film is fl/2 (75 at% Ti
-21at%Al-4at%V)150%N was confirmed by confirming the component amount by EPMA and by confirming a single layer by X-ray diffraction.

しかして、実施例2の材料をpin on disc方
式の耐摩耗試験に供した。ここで、条件は、φ5IIf
flルビーボール使用、加重2.5N、速度5.5 X
l0−2m5−’、回転数1000で行った。その結果
を後掲する第2表に示す。また、連続酸化試験(空気中
Therefore, the material of Example 2 was subjected to a pin-on-disc wear resistance test. Here, the condition is φ5IIf
fl Ruby ball used, weight 2.5N, speed 5.5X
The test was carried out at l0-2m5-' and 1000 rotations. The results are shown in Table 2 below. Also, continuous oxidation test (in air).

800℃、 10(lhrs)の結果も併せて第2表に
示す。
The results at 800°C and 10 (lhrs) are also shown in Table 2.

[比較例1] 前記実施例1と同様に前処理されたTi−6Al+−4
v合金板(寸法30×30×21111)の表面に、直
接実施例1と同様な条件で、(50aL%T i −5
0at%AJ)N膜を約2μm成膜した材料を製造した
[Comparative Example 1] Ti-6Al+-4 pretreated in the same manner as in Example 1
(50aL%T i -5
A material in which a 0at%AJ)N film was formed to a thickness of approximately 2 μm was manufactured.

[比較例2] 前記実施例1と同様に前処理されたAl及びNのイオン
注入がされたT i −6A、Q−4V合金板(寸法3
0X 30X 2−■)の表面に、実施例1と同一のモ
ザイクターゲットを使用し、窒素イオンの同時照射によ
るイオンビームミクシング作用のないイオンビームスパ
ッター法により50at%T i −50at%AlI
組成の約2μmの金属間化合物被膜材を製造した。
[Comparative Example 2] Ti-6A, Q-4V alloy plate pretreated in the same manner as in Example 1 and implanted with Al and N ions (dimension 3
0X 30X 2-■) using the same mosaic target as in Example 1, 50 at% Ti -50 at% AlI was applied by ion beam sputtering without ion beam mixing effect due to simultaneous irradiation with nitrogen ions.
An intermetallic compound coating material having a composition of about 2 μm was produced.

上記比較例1,2の複合材料を空気中にて850℃まで
昇温し、その後常温まで下げる急熱急冷操作を10回繰
返す高温酸化試験を行い、試験後の各複合材料の酸化に
伴う重量変化及び外観を調べた。
A high-temperature oxidation test was conducted in which the composite materials of Comparative Examples 1 and 2 were heated to 850°C in air and then lowered to room temperature, repeated 10 times. Changes and appearance were investigated.

その結果を、後掲する第1表に示す。The results are shown in Table 1 below.

[比較例3,4] 上記実施例2と同一寸法の2種類の片面鏡面研磨板材を
比較例として用意した。つまり、比較例3は50at%
T 1−50at%Aj7組成の金属間化合物板材、比
較例4はT 1−BAρ−4V合金板材である。
[Comparative Examples 3 and 4] Two types of single-sided mirror-polished plate materials having the same dimensions as those of Example 2 were prepared as comparative examples. In other words, Comparative Example 3 is 50 at%
Comparative Example 4, which is an intermetallic compound plate having a composition of T 1-50 at% Aj7, is a T 1-BAρ-4V alloy plate.

しかして、比較例3.4の材料についても、実施例2と
同様な条件でpin On djsc方式の耐摩耗試験
、連続酸化試験を行ったところ、第2表に示す結果が得
られた。
When the material of Comparative Example 3.4 was also subjected to a pin-on-djsc wear test and a continuous oxidation test under the same conditions as Example 2, the results shown in Table 2 were obtained.

第 表 [発明の効果] 以上詳述した如く本発明によれば、 基材表面へ のイオン注入並びにイオンミ クシング広による戊No. table [Effect of the invention] According to the present invention as detailed above, To the base material surface ion implantation and ion mi 戊 by Kushing Hiroshi

Claims (4)

【特許請求の範囲】[Claims] (1)Ti又はTi合金からなる基材の表層内にイオン
注入法によりAlイオン,窒素イオンの少なくともいず
れかを注入した後、その表層上に(Ti−Al)N系の
被膜を被覆することを特徴とする複合硬質材料の製造方
法。
(1) After injecting at least one of Al ions and nitrogen ions into the surface layer of a base material made of Ti or Ti alloy by ion implantation method, the surface layer is coated with a (Ti-Al)N-based film. A method for manufacturing a composite hard material characterized by:
(2)前記(Ti−Al)N系の被膜を作製する際、チ
タン,アルミニウムを蒸着すると同時にNイオン照射を
行うイオンビームミクシング法により成膜する請求項1
記載の複合硬質材料の製造方法。
(2) When producing the (Ti-Al)N-based film, the film is formed by an ion beam mixing method in which N ions are irradiated at the same time as titanium and aluminum are vapor-deposited.
A method of manufacturing the composite hard material described.
(3)Ti又はTi合金からなる基材の表層内にイオン
注入法によりAlイオン,バナジウムイオン,窒素イオ
ンの少なくともいずれかを注入した後、その表層上に(
Ti−Al)N系の被膜を被覆することを特徴とする複
合硬質材料の製造方法。
(3) After implanting at least one of Al ions, vanadium ions, and nitrogen ions into the surface layer of the base material made of Ti or Ti alloy by ion implantation method, (
1. A method for producing a composite hard material, comprising coating with a Ti-Al)N-based film.
(4)前記(Ti−Al)N系の被膜を作製する際、チ
タン,アルミニウム,バナジウムを蒸着すると同時にN
イオン照射を行うイオンビームミクシング法により成膜
する請求項3記載の複合硬質材料の製造方法。
(4) When producing the (Ti-Al)N-based film, titanium, aluminum, and vanadium are vapor-deposited and N
4. The method for manufacturing a composite hard material according to claim 3, wherein the film is formed by an ion beam mixing method that performs ion irradiation.
JP31423989A 1989-12-05 1989-12-05 Production of combined hard material Pending JPH03177570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31423989A JPH03177570A (en) 1989-12-05 1989-12-05 Production of combined hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31423989A JPH03177570A (en) 1989-12-05 1989-12-05 Production of combined hard material

Publications (1)

Publication Number Publication Date
JPH03177570A true JPH03177570A (en) 1991-08-01

Family

ID=18050963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31423989A Pending JPH03177570A (en) 1989-12-05 1989-12-05 Production of combined hard material

Country Status (1)

Country Link
JP (1) JPH03177570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584483A1 (en) * 1992-08-11 1994-03-02 Applied Materials, Inc. Method for preparing a shield to reduce particles in a physical vapor deposition chamber
US5695827A (en) * 1991-07-01 1997-12-09 Boeing North American, Inc. Surface protection of gamma and alpha-2 titanium aluminides by ion implantation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199763A (en) * 1986-02-25 1987-09-03 Matsushita Electric Works Ltd Formation of tin film
JPS63250454A (en) * 1987-04-06 1988-10-18 Hitachi Ltd Corrosion-and wear resistant member and its production
JPS6465251A (en) * 1987-09-07 1989-03-10 Nippon Light Metal Co Surface treatment of aluminum member
JPS6473069A (en) * 1987-09-10 1989-03-17 Nissin Electric Co Ltd Production of aluminum nitride film
JPH01168857A (en) * 1987-12-23 1989-07-04 Agency Of Ind Science & Technol Formation of titanium nitride film
JPH01212751A (en) * 1988-02-19 1989-08-25 Hitachi Ltd Manufacture of transparent aluminum nitride film
JPH01215965A (en) * 1988-02-23 1989-08-29 Nissin Electric Co Ltd Manufacture of tin film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199763A (en) * 1986-02-25 1987-09-03 Matsushita Electric Works Ltd Formation of tin film
JPS63250454A (en) * 1987-04-06 1988-10-18 Hitachi Ltd Corrosion-and wear resistant member and its production
JPS6465251A (en) * 1987-09-07 1989-03-10 Nippon Light Metal Co Surface treatment of aluminum member
JPS6473069A (en) * 1987-09-10 1989-03-17 Nissin Electric Co Ltd Production of aluminum nitride film
JPH01168857A (en) * 1987-12-23 1989-07-04 Agency Of Ind Science & Technol Formation of titanium nitride film
JPH01212751A (en) * 1988-02-19 1989-08-25 Hitachi Ltd Manufacture of transparent aluminum nitride film
JPH01215965A (en) * 1988-02-23 1989-08-29 Nissin Electric Co Ltd Manufacture of tin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695827A (en) * 1991-07-01 1997-12-09 Boeing North American, Inc. Surface protection of gamma and alpha-2 titanium aluminides by ion implantation
EP0584483A1 (en) * 1992-08-11 1994-03-02 Applied Materials, Inc. Method for preparing a shield to reduce particles in a physical vapor deposition chamber

Similar Documents

Publication Publication Date Title
JPH02138459A (en) Laminated hard material and production thereof
US5556713A (en) Diffusion barrier for protective coatings
KR101353451B1 (en) Coated steel sheet and method for manufacturing the same
JPS58181863A (en) Surface treatment method
US6143141A (en) Method of forming a diffusion barrier for overlay coatings
CN112458438B (en) Chromium-based nitride gradient composite coating structure and in-situ preparation method thereof
JPS62222057A (en) Production of laminated working material or laminated working material piece by applying vapor deposition treatment of at least metal material to metal substrate
KR102055320B1 (en) Target for physical deposition, nitride hard coating using thereof and methods of fabricating the same
KR20120059255A (en) Coating Material Comprising Titanium, Silver, and Nitrogen and Coating Method of the Same
JPH03177570A (en) Production of combined hard material
WO1990004044A1 (en) Surface treatment of metals and alloys
RU2413793C2 (en) Procedure for ion-plasma treatment of surface of metal cutting tool made out of high speed powder steel
JPH01136962A (en) Coating method
JPH0525636A (en) Manufacture of dry tin plated stainless steel for decoration
GB2252981A (en) Diffusion barrier coating for titanium alloys involving alloying
JPH0587592B2 (en)
JP2001226761A (en) Oxidation resistant film structure for niobium type heat resistant material and method of its deposition
RU2756960C1 (en) Method for applying composite coating to tool steel part
JPH0587591B2 (en)
JPH02185964A (en) Composite material and production thereof
JPS60131964A (en) Manufacture of film-coated body
JP3099671B2 (en) Die tool parts excellent in mold release and manufacturing method
JPS6342362A (en) Production of surface coated steel material
JPS6376862A (en) Aluminum member having hardened surface layer
JPH0280557A (en) Manufacture of metallic mold made of superplastic zn-al alloy