JPH02185964A - Composite material and production thereof - Google Patents

Composite material and production thereof

Info

Publication number
JPH02185964A
JPH02185964A JP470389A JP470389A JPH02185964A JP H02185964 A JPH02185964 A JP H02185964A JP 470389 A JP470389 A JP 470389A JP 470389 A JP470389 A JP 470389A JP H02185964 A JPH02185964 A JP H02185964A
Authority
JP
Japan
Prior art keywords
layer
base material
surface layer
composite material
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP470389A
Other languages
Japanese (ja)
Other versions
JPH068505B2 (en
Inventor
Tokiaki Hayashi
林 常昭
Naoki Muramatsu
直巳 松村
Kazuyuki Sakamoto
和志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP470389A priority Critical patent/JPH068505B2/en
Publication of JPH02185964A publication Critical patent/JPH02185964A/en
Publication of JPH068505B2 publication Critical patent/JPH068505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a composite material having superior oxidation resistance as well as superior corrosion resistance by forming a TiN-based layer at the inside of the surface layer of a Ti or Ti alloy base material and a Ti-Al intermetallic compd. at the upper part ot the surface layer or on the surface layer. CONSTITUTION:A TiN-based layer is formed at the inside of the surface layer of a Ti or Ti alloy base material by implanting N ions into the base material and a Ti-Al intermetallic compd. is formed at the upper part of the surface layer or on the surface layer. The surface of the base material may further be coated with an Al2O3 film. The Ti-Al intermetallic compd. can be formed with satisfactory adhesion and the diffusion of Al in the compd. into the Ti or Ti alloy base material in an atmosphere at high temp. can be prevented by the barrier action of the TiN-based layer. Since an Al2O3 film as a dense protective coat can be formed in an oxidizing atmosphere at high temp., a composite material having superior oxidation resistance is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、主として自動車、航空宇宙産業分野に利用さ
れる基材がTiもしくはTi合金からなる複合材料及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite material whose base material is made of Ti or a Ti alloy, which is mainly used in the automobile and aerospace industries, and a method for manufacturing the same.

[従来の技術及び課題] Ti もしくはTi合金は、耐食性に優れた軽量構造材
料として主に自動車、航空宇宙産業の分野での利用、拡
大が考えられてきた。しかしながら、かかるTi もし
くはTi合金は500℃以上の温度範囲の酸化性雰囲気
中で酸化が激しく進行するという問題があった。
[Prior Art and Problems] Ti or Ti alloys have been considered for use and expansion mainly in the fields of automobiles and aerospace industries as lightweight structural materials with excellent corrosion resistance. However, such Ti or Ti alloys have a problem in that oxidation proceeds rapidly in an oxidizing atmosphere at a temperature range of 500° C. or higher.

このようなことから、最近、軽量で耐酸化性の優れた高
強度耐熱材料としてTi−Al1金属間化合物が注目さ
れている。Ti −Al金属間化合物は、高温での酸化
性雰囲気下で表面に保護被膜であるAl2O3膜を生成
が起り、優れた耐酸化性を有する。こうしたTi −A
l金属間化合物の侵れた物性及びTi等と熱膨張係数が
近似している性質を利用して、前記Ti もしくはTi
合金からなる基材上にTi−AJ?金属間化合物層を被
覆することによりTi等の欠点である耐酸化性を改善し
た複合材料が考えられている。
For these reasons, Ti-Al1 intermetallic compounds have recently attracted attention as a lightweight, high-strength heat-resistant material with excellent oxidation resistance. The Ti-Al intermetallic compound forms an Al2O3 film as a protective film on its surface in an oxidizing atmosphere at high temperatures, and has excellent oxidation resistance. Such Ti-A
l Taking advantage of the corrosive physical properties of intermetallic compounds and the property that their coefficient of thermal expansion is similar to that of Ti, etc., the above-mentioned Ti or Ti
Ti-AJ on a base material made of alloy? Composite materials are being considered that have improved oxidation resistance, which is a drawback of Ti and the like, by coating with an intermetallic compound layer.

しかしながら、上記構成の複合材料にあっては高温雰囲
気下でTi −AfI金属間化合物中のAl成分が基材
であるTl中に拡散し、金属間化合物層中のAlが次第
に減少してTiリッチの層となるため、高温での酸化性
雰囲気下でTlO2の生成が進行する。その結果、緻密
な保護被膜であるAl2O3膜の生成効果が得られず、
酸化が急激に進行するという問題があった。
However, in the composite material with the above structure, the Al component in the Ti-AfI intermetallic compound diffuses into the base material Tl in a high-temperature atmosphere, and the Al in the intermetallic compound layer gradually decreases, making it rich in Ti. As a result, the production of TlO2 progresses under an oxidizing atmosphere at high temperatures. As a result, the effect of forming an Al2O3 film, which is a dense protective film, could not be obtained.
There was a problem that oxidation progressed rapidly.

本発明は、上記従来の課題を解決するためになされたも
ので、軽量性、耐食性と共に優れた耐酸化性を有する複
合材料、及びかかる複合材料を簡単に製造し得る方法を
提供しようとするものである。
The present invention was made to solve the above-mentioned conventional problems, and aims to provide a composite material that is lightweight, has excellent corrosion resistance, and excellent oxidation resistance, and a method for easily manufacturing such a composite material. It is.

[課題を解決するための手段] 本発明の複合材料は、Ti もしくはTi合金からなる
基材の表層内部にTiN系層を形成すると共に、該表層
上部もしくは表層上にTi −Ail系金属間化合物層
を形成したことを特徴とするものである。
[Means for Solving the Problems] The composite material of the present invention has a TiN-based layer formed inside the surface layer of a base material made of Ti or a Ti alloy, and a Ti-Ail-based intermetallic compound on the top of the surface layer or on the surface layer. It is characterized by forming layers.

上記Ti合金としテハ、例えばTl−8All −4V
等を挙げることができる。
The above Ti alloy is used, for example, Tl-8All-4V.
etc. can be mentioned.

上記TiN系層としては、例えばTi N層、TiNに
一部AΩ、■成分が結合した(TiAl、V)N層等を
挙げることができる。
Examples of the TiN-based layer include a TiN layer and a (TiAl, V)N layer in which a portion of AΩ and (2) components are bonded to TiN.

上記T!−Al系金属間化合物としては、例えばTi−
AJ7金属間化合物、N成分が一部固溶したTi−AN
金属間化合物、■成分が一部固溶したTi−/l金属間
化合物、N及びV成分が一部固溶したTi −Aj?金
属間化合物等を挙げることができる。
Above T! -Al-based intermetallic compounds include, for example, Ti-
AJ7 intermetallic compound, Ti-AN in which N component is partially dissolved
Intermetallic compound, Ti-/l intermetallic compound in which component (■) is partially dissolved in solid solution, Ti-Aj? in which N and V components are partially dissolved in solid solution. Examples include intermetallic compounds.

また、本発明の複合材料は前記表層上部もしくは表層上
にTi−AN金属間化合物層が形成された基材表面に、
A l 203膜を更に被覆したものである。
Further, the composite material of the present invention has a base material surface on which a Ti-AN intermetallic compound layer is formed on the upper surface layer or on the surface layer.
It is further coated with Al 203 film.

本発明の複合材料の製造方法は、Ti もしくは7.1
合金からなる基材に窒素イオンを注入して該基材の表層
内部にTiN系層を形成した後、該基材の表層上部もし
くは表層上にTi−Ap系金金属間化合物層形成するこ
とを特徴とするものである。
The method for producing a composite material of the present invention is based on Ti or 7.1
After implanting nitrogen ions into a base material made of an alloy to form a TiN-based layer inside the surface layer of the base material, a Ti-Ap-based gold intermetallic compound layer is formed on or on the surface layer of the base material. This is a characteristic feature.

上記Ti −Al7系金属間化合物層を形成手段として
は、CVD法やPVD法などの各種の蒸着法を採用し得
るが、特にAlイオンの直接的な注入法又はイオンミキ
シング法によるTi −AN系金属間化合物層の形成は
密着性、結晶性及び組成の調整等の総合的な観点から好
適である。なお、後者のイオンミキシング法は、Ti又
はA47の蒸着と共にAll又はTiイオンを注入する
方法であり、蒸着手段としては真空蒸着法、電子ビーム
加熱法、スパッタリング法を採用し得る。Tl−Al1
系金属間化合物層を数μm程度と厚く形成する場合には
、前記Alイオンの単独注入では十分な厚さTi −A
N系金属間化合物層を形成することが難しい。このよう
な場合には、イオンビームミキシングを採用することが
望ましい。
Various vapor deposition methods such as CVD and PVD can be used to form the Ti-Al7-based intermetallic compound layer, but in particular, Ti-AN based intermetallic compound layer formed by direct Al ion implantation or ion mixing method can be used. Formation of an intermetallic compound layer is suitable from the comprehensive viewpoint of adhesion, crystallinity, composition adjustment, etc. Note that the latter ion mixing method is a method in which All or Ti ions are implanted together with the deposition of Ti or A47, and a vacuum deposition method, an electron beam heating method, or a sputtering method may be employed as the deposition method. Tl-Al1
When forming the intermetallic compound layer as thick as several μm, the single implantation of Al ions does not have enough thickness Ti-A.
It is difficult to form an N-based intermetallic compound layer. In such cases, it is desirable to employ ion beam mixing.

また、本発明の複合材料の製造方法は基材の表層を部も
しくは表層上にTi −AjJ系金属間化合物層を形成
した後、更にイオンビームミキシング法によりAI?2
03膜を形成するものである。この場合、Al2O3膜
の形成に先だって酸化処理を施して表面にAj1203
薄膜を形成し、この後に被覆されるAN 203膜の密
着性を高めるようにしてもよい。
In addition, in the method for manufacturing a composite material of the present invention, after forming a Ti-AjJ-based intermetallic compound layer on the surface layer of a base material, AI? 2
03 film is formed. In this case, prior to forming the Al2O3 film, oxidation treatment is performed to form Aj1203 on the surface.
A thin film may be formed to enhance the adhesion of the subsequently coated AN 203 film.

[作用] 本発明によれば、TiもしくはTi合金からなる基材の
表層内部にTi N系層を形成すると共に、該表層上部
もしくは表層上にTiと熱膨張係数が近似したTi −
Aff系金属間化合物層を形成することによって、該金
属間化合物層を密着性よく形成でき、しかも高温雰囲気
下において前記Ti−/l系金属間化合物中のAll成
分が基材であるTi もしくはTi合金中に拡散するの
を前記表層内部に形成したTiN系層のバリア作用によ
り防止できる。その結果、金属間化合物層中の1の減少
を防止でき、高温での酸化性雰囲気下で緻密な保護波膜
であるAi)20s膜を生成できるため、耐酸化性の優
れた複合材料を得ることができる。また、基材がTiも
しくはTi合金から形成されているため、複合材料の軽
量化、耐食性を達成できる。更に、A41203膜を別
途被覆することによって耐酸化性をより一層向上できる
[Function] According to the present invention, a TiN-based layer is formed inside the surface layer of a base material made of Ti or a Ti alloy, and a Ti-N layer having a thermal expansion coefficient similar to that of Ti is formed on the upper part of the surface layer or on the surface layer.
By forming the Aff-based intermetallic compound layer, the intermetallic compound layer can be formed with good adhesion, and moreover, in a high temperature atmosphere, the All component in the Ti-/l-based intermetallic compound is a base material of Ti or Ti. Diffusion into the alloy can be prevented by the barrier effect of the TiN-based layer formed inside the surface layer. As a result, it is possible to prevent the reduction of 1 in the intermetallic compound layer, and to produce a dense protective wave film, Ai)20s film, in an oxidizing atmosphere at high temperatures, resulting in a composite material with excellent oxidation resistance. be able to. Furthermore, since the base material is made of Ti or a Ti alloy, the composite material can be made lighter and has better corrosion resistance. Furthermore, by separately coating the A41203 film, the oxidation resistance can be further improved.

この場合、Al2203膜が何等かの原因によりクラッ
クが発生し、下地が酸化性雰囲気に曝されても前述した
ように耐酸化性の優れたTl−1系金属間化合物層が形
成されているため、酸化の進行を防止できる。
In this case, even if the Al2203 film cracks for some reason and the underlying layer is exposed to an oxidizing atmosphere, a Tl-1 intermetallic compound layer with excellent oxidation resistance is formed as described above. , can prevent the progress of oxidation.

一方、本発明によればTiもしくはTi合金からなる基
材に窒素イオンを注入して該基材の表層内部にTiN系
層を形成した後、該基材の表層上部もしくは表層上にT
・l−Al1系金属間化合物層を形成することによって
、既述した軽量性、耐食性と共に、耐酸化性の優れた複
合材料を簡単に製造することができる。
On the other hand, according to the present invention, nitrogen ions are implanted into a base material made of Ti or a Ti alloy to form a TiN-based layer inside the surface layer of the base material, and then T
- By forming the l-Al1-based intermetallic compound layer, it is possible to easily produce a composite material that has excellent oxidation resistance as well as light weight and corrosion resistance as described above.

[実施例] 以下、本発明の実施例を詳細に説明する。[Example] Examples of the present invention will be described in detail below.

実施例1 まず、基材としての50X 50X 2 mmの寸法の
Ti板を用意し、この片面を鏡面研磨し、超音波洗浄、
乾燥を施した後、イオン照射と蒸着機能を備えた真空チ
ャンバ内のホルダに設置した。つづいて、このチャンバ
内を所定の真空度に真空引きした後、イオン源からNイ
オンを加速電圧5kVの条件でTi板の鏡面に5分間照
射して表面清浄化のための前処理を施した。ひきつづき
、Nイオンを加速電圧18(lkV、イオン電流値3.
0mAでTi板にイオン注入し、Ti板板層層内部Ti
N層を形成した。次いで、50at%Tt−50at%
Alの組成の金属間化合物ターゲットを用いてArイオ
ンを加速電圧5kV、ビーム電流2.5mA/cシの条
件でイオンビームスパッタ蒸着を行なって厚さ2.0μ
mの50at%Tl −50at%A、9金属間化合物
層を形成し、複合材料を製造した。
Example 1 First, a Ti plate with dimensions of 50 x 50 x 2 mm was prepared as a base material, one side of the plate was mirror polished, ultrasonically cleaned,
After drying, it was placed in a holder in a vacuum chamber equipped with ion irradiation and vapor deposition functions. Next, after evacuating the chamber to a predetermined degree of vacuum, the mirror surface of the Ti plate was irradiated with N ions from an ion source at an acceleration voltage of 5 kV for 5 minutes to perform pretreatment for surface cleaning. . Continuing, N ions were accelerated at a voltage of 18 (lkV, ion current value of 3.
Ions are implanted into the Ti plate at 0 mA, and the Ti inside the Ti plate layer is
An N layer was formed. Then 50at%Tt-50at%
Using an intermetallic compound target with a composition of Al, Ar ions were deposited by ion beam sputtering at an acceleration voltage of 5 kV and a beam current of 2.5 mA/c to a thickness of 2.0 μm.
A composite material was produced by forming 9 intermetallic compound layers of 50 at% Tl - 50 at% A.

比較例1 実施例1と同様にTi板の片面を鏡面研磨し、超音波洗
浄、乾燥、イオンクリーニングを施した後、50a[%
Tl−50at%AΩの組成の金属間化合物ターゲット
を用いてA「イオンを加速電圧5kV、ビーム電流2.
5mA/c−の条件で該Ti板に直接イオンビームスパ
ッタ蒸着を行なって厚さ2.0μmの50at%Tl−
508t%Afi金属間化合物層を形成し、複合材料を
製造した。
Comparative Example 1 Similar to Example 1, one side of a Ti plate was mirror-polished, subjected to ultrasonic cleaning, drying, and ion cleaning.
Using an intermetallic compound target with a composition of Tl-50 at% AΩ, A' ions were accelerated at a voltage of 5 kV and a beam current of 2.
Direct ion beam sputter deposition was performed on the Ti plate under the condition of 5 mA/c- to deposit 50 at% Tl- to a thickness of 2.0 μm.
A 508t% Afi intermetallic compound layer was formed to produce a composite material.

本実施例1及び比較例1により得られた複合材料を空気
中にて850℃、5時間の酸化試験を行なったところ、
下記第1表に示す結果を得た。
The composite materials obtained in Example 1 and Comparative Example 1 were subjected to an oxidation test at 850°C for 5 hours in air.
The results shown in Table 1 below were obtained.

第1表 上記第1表から明らかなように本実施例1の複合材料は
比較例1の複合材料に比べて耐酸化性が極めて優れてい
ることがわかる。
Table 1 As is clear from Table 1 above, the composite material of Example 1 is found to have extremely superior oxidation resistance compared to the composite material of Comparative Example 1.

実施例2 基材としての30X 50X 2關の寸法のT I−8
Afi−4V合金板を用意し、この片面を前記実施例1
と同様な方法により前処理、Nイオンの注入による表層
内部にTiN層を形成した。つづいて、Ti及びAfi
をダブルハース方式の電子ビーム蒸着を行ない、前記T
i合金板表面に厚さ2.5μmの50at%Ti−50
at%/lの組成の金属間化合物層を形成した。次いで
、Apの真空蒸着と同時にイオン源より酸素イオンを加
速電圧10kV、イオン電流密度0.5mA/cシでイ
オン注入して厚さ3.0μmのAl2O3膜を形成し、
複合材料を製造した。
Example 2 T I-8 with dimensions of 30X 50X 2 as base material
An Afi-4V alloy plate was prepared, and one side of the plate was prepared in accordance with Example 1.
A TiN layer was formed inside the surface layer by pretreatment and N ion implantation using the same method as described above. Next, Ti and Afi
The above-mentioned T
i 50 at% Ti-50 with a thickness of 2.5 μm on the surface of the alloy plate
An intermetallic compound layer having a composition of at%/l was formed. Next, simultaneously with the vacuum evaporation of Ap, oxygen ions were implanted from an ion source at an acceleration voltage of 10 kV and an ion current density of 0.5 mA/c to form an Al2O3 film with a thickness of 3.0 μm.
A composite material was produced.

比較例2 実施例2と同様なTi合金板の片面を前記実施例1と同
様な方法により前処理した後、Alの真空蒸着と同時に
イオン源より酸素イオンを加速電圧10kV、イオン電
流密度0.5mA/c−でイオン注入するイオンビーム
ミキシング法によりTi合金板表面に厚さ3.0μmの
A、Q203膜を直接形成し、複合材料を製造した。
Comparative Example 2 One side of the same Ti alloy plate as in Example 2 was pretreated in the same manner as in Example 1, and at the same time as vacuum evaporation of Al, oxygen ions were applied from an ion source at an acceleration voltage of 10 kV and an ion current density of 0. A 3.0 μm thick A, Q203 film was directly formed on the surface of a Ti alloy plate by an ion beam mixing method in which ions were implanted at 5 mA/c- to produce a composite material.

′本実施例2及び比較例2により得られた複合材料を空
気中にて800℃、2時間の酸化試験を10回繰返し行
なった。この試験後での各複合材料の酸化増量及び外観
を下記第2表に示す。
'The composite materials obtained in Example 2 and Comparative Example 2 were subjected to an oxidation test at 800° C. for 2 hours in air 10 times. The oxidation weight gain and appearance of each composite material after this test are shown in Table 2 below.

第2表 手続補正 平成Table 2 procedural amendment Heisei

Claims (4)

【特許請求の範囲】[Claims] (1)、TiもしくはTi合金からなる基材の表層内部
にTiN系層を形成すると共に、該表層上部もしくは表
層上にTi−Al系金属間化合物層を形成したことを特
徴とする複合材料。
(1) A composite material characterized in that a TiN-based layer is formed inside the surface layer of a base material made of Ti or a Ti alloy, and a Ti-Al-based intermetallic compound layer is formed on or above the surface layer.
(2)、表層上部もしくは表層上にTi−Al系金属間
化合物層が形成された基材表面に、Al_2O_3膜を
更に被覆したことを特徴とする請求項1記載の複合材料
(2) The composite material according to claim 1, wherein the surface of the base material on which the Ti-Al intermetallic compound layer is formed on or above the surface layer is further coated with an Al_2O_3 film.
(3)、TiもしくはTi合金からなる基材に窒素イオ
ンを注入して該基材の表層内部にTiN系層を形成した
後、該基材の表層上部もしくは表層上にTi−Al系金
属間化合物層を形成することを特徴とする複合材料の製
造方法。
(3) After implanting nitrogen ions into a base material made of Ti or a Ti alloy to form a TiN-based layer inside the surface layer of the base material, a Ti-Al-based metal interlayer is formed on the upper surface layer or on the surface layer of the base material. A method for producing a composite material, comprising forming a compound layer.
(4)、基材の表層上部もしくは表層上にTi−Al系
金属間化合物層を形成した後、更にイオンビームミキシ
ング法によりAl_2O_3膜を形成することを特徴と
する請求項3記載の複合材料の製造方法。
(4) The composite material according to claim 3, characterized in that after forming the Ti-Al intermetallic compound layer on the upper surface layer or on the surface layer of the base material, an Al_2O_3 film is further formed by an ion beam mixing method. Production method.
JP470389A 1989-01-13 1989-01-13 Composite material and manufacturing method thereof Expired - Lifetime JPH068505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP470389A JPH068505B2 (en) 1989-01-13 1989-01-13 Composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP470389A JPH068505B2 (en) 1989-01-13 1989-01-13 Composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02185964A true JPH02185964A (en) 1990-07-20
JPH068505B2 JPH068505B2 (en) 1994-02-02

Family

ID=11591241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP470389A Expired - Lifetime JPH068505B2 (en) 1989-01-13 1989-01-13 Composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH068505B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321613B1 (en) * 1999-09-15 2002-01-31 권문구 Multilayer ion-coating method being fluorine compound on metal surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321613B1 (en) * 1999-09-15 2002-01-31 권문구 Multilayer ion-coating method being fluorine compound on metal surface

Also Published As

Publication number Publication date
JPH068505B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JPH02138459A (en) Laminated hard material and production thereof
KR101527144B1 (en) Mg-al coated steel sheet and method for manufacturing the same
KR101353451B1 (en) Coated steel sheet and method for manufacturing the same
JP2019524983A (en) Method for protecting hafnium-free nickel-based single crystal superalloy parts from corrosion and oxidation
JPH0229634B2 (en)
JPH068500B2 (en) Alumina-coated A-1 / A-1 alloy member manufacturing method
JPH02185964A (en) Composite material and production thereof
RU2727412C1 (en) Method of producing anticorrosion coating on articles from monolithic titanium nickelide
JPH01136962A (en) Coating method
JPH0587591B2 (en)
JPH0676265B2 (en) Method for producing surface-coated carbon material
JPH0215164A (en) Composite material
JPH03177570A (en) Production of combined hard material
JP2001226761A (en) Oxidation resistant film structure for niobium type heat resistant material and method of its deposition
KR100421948B1 (en) Titanium aluminides having a composite coating layer
JP2903105B2 (en) Manufacturing method of oxidation resistant coating layer
JP2001288558A (en) Blue ceramics coated metallic material excellent in corrosion resistance
KR20130074648A (en) Coated steel sheet and method for manufacturing the same
JPH024956A (en) Metallized film and its production
JP2545731B2 (en) Method for producing intermetallic compound-coated composite by vapor phase method
TW593710B (en) A method using physical vapor deposition to improve the high temperature oxidation resistance of gamma-titanium aluminides
JPH06172967A (en) Boron nitride-containing film-coated base and its production
JPH02170966A (en) Clad material and production thereof
JPH03260059A (en) Corrosion-resistant composite material and its production
JPH03260058A (en) Corrosion-resistant coated composite material and its production