JPH0215164A - Composite material - Google Patents

Composite material

Info

Publication number
JPH0215164A
JPH0215164A JP16616088A JP16616088A JPH0215164A JP H0215164 A JPH0215164 A JP H0215164A JP 16616088 A JP16616088 A JP 16616088A JP 16616088 A JP16616088 A JP 16616088A JP H0215164 A JPH0215164 A JP H0215164A
Authority
JP
Japan
Prior art keywords
film layer
phase
intermetallic compound
ions
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16616088A
Other languages
Japanese (ja)
Other versions
JPH0587592B2 (en
Inventor
Tokiaki Hayashi
林 常昭
Shuji Hida
修司 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP16616088A priority Critical patent/JPH0215164A/en
Publication of JPH0215164A publication Critical patent/JPH0215164A/en
Publication of JPH0587592B2 publication Critical patent/JPH0587592B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide superior lightweight characteristic and heat resistance and also to improve oxidation resistance at high temp. by coating the surface on which Pt or Pt-Al phase is formed with a thin-film layer of TiAl-type intermetallic compound. CONSTITUTION:The surface of a base material composed of Ti or Ti alloy on which Pt or Pt-Al phase is formed by means of the implantation of Pt ions or Pt and Al ions is coated with TiAl-type intermetallic compound. By the above procedure, on exposure to high-temp. oxidizing atmosphere, Al diffused from the resulting thin-film layer is allowed to react with the Pt phase or Pt-Al phase on the base-material surface and fixed in the form of Pt-Al compound, by which the diffusion of Al in the thin-film layer into the base material can be prevented. As a result, sufficient amounts of Al can be incorporated to the thin-film layer and Al2O3 contributing as an oxidation protective film can be formed on the surface of the thin-film layer of TiAl-type intermetallic compound in a high-temp. oxidizing atmosphere, by which high- temp. oxidation resistance due to the thin-film layer of intermetallic compound TiAl3 as well as the superior lightweight characteristic and heat resistance of Ti alloy, etc., can be obtained.

Description

【発明の詳細な説明】 [産業−1−の利用分野] 本発明は、航空機や宇宙関連部品の軽量耐熱材料として
有用な複合材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application in Industry-1-] The present invention relates to a composite material useful as a lightweight heat-resistant material for aircraft and space-related parts.

[従来の技術及び課題] T1又はTi合金は、軽量で比強度か高いため、航空機
や宇宙関連の各種部品として開発されてきたか、最近、
高温祠料としても注1」されている。
[Prior art and issues] T1 or Ti alloys are lightweight and have high specific strength, so they have been developed as various parts for aircraft and space.
It is also noted 1 as a high-temperature amulet.

しかしなから、T1又はTi合金は高温耐酸化性が著し
く劣るため、使用温度が制限されるという問題かあった
However, since T1 or Ti alloys have extremely poor high-temperature oxidation resistance, there is a problem in that the temperature at which they can be used is limited.

このようなことから、Ti又はTi合金の基材上に高温
耐酸化性の優れたTi Al基金属間化合物の薄膜層を
被覆して複合材料とすることが試みられている。しかし
ながら、かかる複合材料においても高温の酸化性雰囲気
に曝ずと、Ti Al基金属間化合物の薄膜層中のAJ
が基材側へ内方拡散し、次第にAJ2濃度の低い薄膜層
が形成されるようになり、最後には耐酸化性を有するT
j A、ff系金属間化合物の薄膜層か自失して耐酸化
性処理の効果が消滅してしまうという問題かあった。
For this reason, attempts have been made to coat a Ti or Ti alloy base material with a thin film layer of a TiAl-based intermetallic compound having excellent high-temperature oxidation resistance to form a composite material. However, even in such a composite material, the AJ in the thin film layer of the TiAl-based intermetallic compound can be removed without being exposed to a high-temperature oxidizing atmosphere.
diffuses inward toward the base material, and a thin film layer with a low AJ2 concentration is gradually formed, and finally T, which has oxidation resistance,
j There was a problem that the thin film layer of the A, ff-based intermetallic compound would self-destruct and the effect of the oxidation-resistant treatment would disappear.

本発明は、上記従来の課題を解決するためになされたも
ので、軽量性、耐熱性に優れていると共に、高温下での
耐酸化性を改善した複合材料を提供し7ようとするもの
である。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a composite material that is lightweight and has excellent heat resistance, as well as improved oxidation resistance at high temperatures. be.

[課題を解決するための手段] 本発明は、ptイオン又はPtとAlの両イオンのl+
人により表面にPt相もしくはPt −Al相か形成さ
れたTi又はTi合金からなる基材と、この基材のPt
相もしくはPL−Al相が形成された表面に被覆された
Ti Af系金金属間化合物薄膜層とを具備したことを
特徴とする複合材料である。
[Means for Solving the Problems] The present invention provides l+ of pt ions or both Pt and Al ions.
A base material made of Ti or a Ti alloy on which a Pt phase or a Pt-Al phase has been formed on the surface by humans, and a Pt
This is a composite material characterized by comprising a TiAf-based gold intermetallic compound thin film layer coated on a surface on which a phase or a PL-Al phase is formed.

上記Ti合金としては、例えばTiにA、ff、■、M
o、CrSMn、Feなとの遷移金属、及びこれらの遷
移金属と共に含有されるC10からなる組成を挙げるこ
とができる。
As the above Ti alloy, for example, Ti has A, ff, ■, M
Examples include compositions consisting of transition metals such as o, CrSMn, and Fe, and C10 contained together with these transition metals.

上記Ti AJ系金属間化合物としては、Ti3Al、
Tj Al、TiAl3等を挙げることかできる。特に
、TjAl系金属間化合物の薄膜層による尚温での耐酸
化性はその表面にAJ2203保護彼膜か形成されるこ
とによってなされることから、該Ti AJ系金属間化
合物としてはAImの多いTiAl、Ti AJ3を用
いることか望ましい。こうしたTi AJ系金属間化合
物の薄膜層の基材表面への被覆手段としては、各種のC
VD法、又は真空薄石法、高周波スパッタリング法、マ
クネトロンスパッタリング法、イオンビームスパッタリ
ング法なとのPVD法、或いは蒸着とイオン注入とを同
時に行なうイオンミキシング法等を採用し得るが、基材
界面での密着性を向−1−させる観点から前記イオンミ
キシング法が好適である。
The Ti AJ-based intermetallic compound mentioned above includes Ti3Al,
Tj Al, TiAl3, etc. can be mentioned. In particular, since the oxidation resistance of a thin film layer of a TjAl-based intermetallic compound at still temperatures is achieved by the formation of an AJ2203 protective film on its surface, the TiAJ-based intermetallic compound should be TiAl with a large amount of AIm. , Ti AJ3 is preferably used. As a means for coating the substrate surface with such a thin film layer of Ti AJ-based intermetallic compound, various C
VD method, PVD method such as vacuum thin stone method, high frequency sputtering method, Macnetron sputtering method, ion beam sputtering method, or ion mixing method in which vapor deposition and ion implantation are performed simultaneously, etc. can be adopted, but the substrate interface The ion mixing method is preferred from the viewpoint of improving the adhesion.

また、本発明は−1−記基材表面にSi  Sc、Y、
LaXCe及びHfから選はれる1種又は2種以上をイ
オン注入されたTj Al基金属間化合物の薄膜層を被
覆したことを特徴とする複合材料である。
Further, the present invention provides SiSc, Y,
This composite material is coated with a thin film layer of a Tj Al-based intermetallic compound ion-implanted with one or more selected from LaXCe and Hf.

[作用] 本発明によれば、Ti又はTi合金からなる基材におけ
るptイオン又はptとAlの両イオンの注入によりp
t相もしくはPL −Al相が形成された表面にTi 
AJ系金属間化合物の薄膜層を被覆することによって、
高温酸化性雰囲気に曝した場合に該薄層膜から拡散され
るAlは前記基材表面のpt相もしくはPt −Al相
と反応してPt−AJ化合物として固定化するため、該
薄膜層中のAJの基材側への拡散を防止できる。その結
果、Ti AJ系金属間化合物の2層膜層中に充分な量
のAJ!を含有させることができるため、高温酸化性雰
囲気下においてTi A、e系金属間化合物の薄膜層の
表層に酸化保護被膜として寄与するA I 20 Bを
形成でき、Ti又はTi合金の優れた軽量性、耐熱性と
共にTi Af3f属間化合物の薄膜層による高温耐酸
化性が効果的に付与された複合材料を得ることかできる
。また、M、利表面へのpt相もしくはPt−Al相の
形成を、イオン注入手段により行なうことによって基材
表面に高純度のpt相もしくはPt −Al2相を形成
できること、所定な原子数単位でかつ目的とした濃度分
布を有するpt相もしくはPt −A、12相を精度よ
く形成できること、Pt−Al2相を形成する際にpt
とAlを各々独立的に制御して導入できること、等の利
点を有する。更に、Ti Al3金属間化合物の薄膜層
をイオンミキシング法により基材表面に形成することに
よって、基材表面でのミキシング作用により薄膜層の基
材に対する密着性を向上できる。しかも、基材と薄膜層
との間にそれらの組成的傾斜構造を有する中間層を形成
できるため、応力歪みを緩和できる。
[Function] According to the present invention, by implanting pt ions or both pt and Al ions into a base material made of Ti or a Ti alloy, p
Ti on the surface where the t phase or PL-Al phase is formed.
By coating with a thin layer of AJ-based intermetallic compound,
When exposed to a high-temperature oxidizing atmosphere, Al diffused from the thin film reacts with the pt phase or Pt-Al phase on the surface of the base material and is fixed as a Pt-AJ compound. Diffusion of AJ toward the base material side can be prevented. As a result, a sufficient amount of AJ! Therefore, it is possible to form A I 20 B that serves as an oxidation protective film on the surface layer of the thin film layer of Ti A, e-based intermetallic compound in a high-temperature oxidizing atmosphere. It is possible to obtain a composite material which is effectively imparted with high-temperature oxidation resistance due to the thin film layer of the TiAf3f intermetallic compound as well as heat resistance. In addition, it is possible to form a highly purified pt phase or Pt-Al2 phase on the surface of the base material by forming the pt phase or Pt-Al phase on the substrate surface by ion implantation, and that In addition, it is possible to form a pt phase or a Pt-A,12 phase with a desired concentration distribution with high precision, and when forming a Pt-Al2 phase,
It has advantages such as being able to independently control and introduce Al and Al. Furthermore, by forming a thin film layer of the TiAl3 intermetallic compound on the surface of the base material by an ion mixing method, the adhesion of the thin film layer to the base material can be improved by the mixing action on the surface of the base material. Furthermore, since an intermediate layer having a compositionally graded structure can be formed between the base material and the thin film layer, stress strain can be alleviated.

また、基材表面にSi、5cSy、、La、Ce及びH
rから選ばれる1種又は2種以上をイオン注入されたT
i AI!系金属間化合物の薄膜層を被覆することによ
って、高温酸化性雰囲気で該薄膜層表面に形成された耐
酸化性保護被膜としてのA l! 203層の該薄膜層
に対する密着性を前記81等のイオン注入成分により向
上できる。しかも、かかるA12203層の密着性向上
成分はTi A、f’系金金属間化合物薄膜層自体の耐
酸化性を阻害させないために該薄膜層に対して微量添加
する必要かあるが、イオン注入手法を採用することによ
って該成分を微量かつ正確に薄膜層に導入することか可
能となる。
In addition, Si, 5cSy, La, Ce and H are added to the surface of the base material.
T ion-implanted with one or more selected from r
i AI! By coating a thin film layer of intermetallic compound, Al! as an oxidation-resistant protective coating is formed on the surface of the thin film layer in a high temperature oxidizing atmosphere. The adhesion of the 203 layer to the thin film layer can be improved by the ion implantation component such as 81 mentioned above. Furthermore, it is necessary to add a small amount of the adhesion-improving component of the A12203 layer to the TiA, f'-based gold intermetallic compound thin film layer in order not to impede the oxidation resistance of the thin film layer itself. By employing this method, it becomes possible to introduce the component into the thin film layer in a trace amount and accurately.

「発明の実施例] 以下、本発明の実施例を詳細に説明する。“Embodiments of the invention” Examples of the present invention will be described in detail below.

実施例1 まず、純Tiを加工して90mm X ’aomm X
 5 mmの板利を製作し7た後、この板材の片面を鏡
面研磨した。
Example 1 First, pure Ti was processed to a size of 90mm x 'aomm
After manufacturing a 5 mm board, one side of the board was mirror polished.

つついて、この板材を蒸イご1とイオン注入機能を同−
真空内に有する真空チャンバ内に設置した後、質量分離
されたAズイオンを加速電圧801(eV。
This plate material has the same ion implantation function as the steamer.
After being placed in a vacuum chamber in a vacuum, the mass-separated Az ions are accelerated at an accelerating voltage of 801 (eV).

ドース量1. M 10” /crAの条件で、Ptイ
オンを加速電圧11301ceV、ドース量0.5 X
 1017 /cdの条件で夫々板材にイオンl十人し
た。ひきつづき、同一チャンハ内においてTi Al 
(1:I )合金のターゲットにスパッタ電圧3kV、
電流密度2.5 m A / cMの条件でArイオン
を衝突させてTi Aff1合金を板材にスパンタリン
グ蒸着を行ないなから、別のイオン源から電圧100V
、電流密度0.3mA/cnの条件で板材をArイオン
アシスト処理を行なって板材のPt −A、ff相か形
成された表面に厚さ3μmのTi AJ金合金らなる薄
膜層を形成して複合材料を製造した。
Dose amount 1. Under the conditions of M 10”/crA, Pt ions were accelerated at a voltage of 11301ceV and a dose of 0.5X.
Ten ions were applied to each plate under the condition of 1017/cd. Continuing, TiAl in the same chamber
(1:I) sputtering voltage 3kV on alloy target,
The Ti Aff1 alloy was sputter-deposited on the plate material by colliding Ar ions at a current density of 2.5 mA/cM, and then a voltage of 100 V was applied from another ion source.
The plate material was subjected to Ar ion assist treatment at a current density of 0.3 mA/cn, and a thin film layer of TiAJ gold alloy with a thickness of 3 μm was formed on the surface of the plate material on which the Pt-A, ff phase was formed. A composite material was produced.

真空チャンバから取出した複合材料を肉眼及び光学顕微
鏡で観察した。その結果、複合材料表面に形成されたT
j A、ll’合金薄膜層のクラ・ンク、剥離等の欠陥
は全く認められなかった。
The composite material taken out from the vacuum chamber was observed with the naked eye and with an optical microscope. As a result, T formed on the surface of the composite material
j A, ll' No defects such as cracking or peeling of the alloy thin film layer were observed.

実施例2 ます、T1合金(B A)−4V−Ti)を加工して3
Gmm X 30mm X 5 mmの板材を製作した
後、この板材の片面を鏡面研磨した。つづいて、この板
材を蒸着とイオン注入機能を同−真空内に有する真空チ
ャンバ内に設置した後、質量分離されたPtイオンを加
速電圧IBOkeV、  ドーズ量0.5 X 10”
 /clの条件て板材にイオン注入した。
Example 2 First, T1 alloy (B A)-4V-Ti) was processed and 3
After producing a plate material of Gmm x 30 mm x 5 mm, one side of this plate material was mirror polished. Next, this plate material was placed in a vacuum chamber that has vapor deposition and ion implantation functions in the same vacuum, and then the mass-separated Pt ions were heated at an acceleration voltage of IBOkeV and a dose of 0.5 x 10".
Ions were implanted into the plate material under the condition of /cl.

ひきつつき、同一チャンバ内においてEB蒸着法のトリ
プルハース方式によりT1を3.8人/secの蒸着速
度で、Alを5.7 A / seeの蒸着速度で夫々
板材のイオン注入層表面に真空蒸着を行ないなから、パ
ケット型イオン源によりArイオンを加速電圧10k 
e V、電流75m Aの条件で板材に照射して、厚さ
3μmのTi Al!3合金からなる薄膜層を形成して
複合材料を製造した。
Then, in the same chamber, T1 was vacuum-deposited on the surface of the ion-implanted layer of the plate material at a deposition rate of 3.8 people/sec and Al at a deposition rate of 5.7 A/see using the triple hearth method of EB evaporation. Ar ions are accelerated at a voltage of 10k using a packet type ion source.
The plate material was irradiated under the conditions of e V and a current of 75 m A to form a 3 μm thick TiAl! A composite material was manufactured by forming a thin film layer consisting of three alloys.

真空チャンバから取出した複合材料を肉眼及び光学顕微
鏡で観察した。その結果、複合材料表面に形成されたT
i Al!合金薄膜層のクラック、剥離等の欠陥は全く
認められなかった。
The composite material taken out from the vacuum chamber was observed with the naked eye and with an optical microscope. As a result, T formed on the surface of the composite material
iAl! No defects such as cracks or peeling of the alloy thin film layer were observed.

比較例] まず、実施例]と同様な純Tiからなる板材の鏡面研磨
したj′1面にPLめっきを施し、Alの1120°C
てのパンク処理を行ない、更にptめっきを施した後、
1150°Cての拡散処理を施した。つづいて、この板
材を蒸着とイオン注入機能を同−真空内に有する真空チ
ャンバ内に設置した後、実施例1と同様な方法によりp
tとA、fl’が拡散処理された板材表面に厚さ3μm
のTi Al合金からなる薄膜層を形成して複合材料を
製造した。
Comparative Example] First, PL plating was applied to the mirror-polished j′1 surface of a plate material made of pure Ti similar to Example],
After performing puncture treatment and further applying PT plating,
Diffusion treatment was performed at 1150°C. Subsequently, this plate material was placed in a vacuum chamber having vapor deposition and ion implantation functions in the same vacuum, and then plating was carried out in the same manner as in Example 1.
t, A, and fl' have a thickness of 3 μm on the diffusion-treated plate surface.
A composite material was manufactured by forming a thin film layer of Ti Al alloy.

比較例2 まず、実施例2と同様なTi合金からなる板材の鏡面研
磨した片面にptめっきを施し、A、II’の120°
Cでのバック処理を行ない、更にptめっきを施した後
、1150°Cでの拡散処理を施した。つづいて、この
板4」を蒸着とイオン注入機能を同−真空内に有する真
空チャンバ内に設置した後、実施例2と同様な方法によ
り板材のPt 、!=Alか拡散処理された表面に厚さ
3μmのTi Af3T3合金なる薄膜層を形成して複
合材料を製造した。
Comparative Example 2 First, PT plating was applied to one mirror-polished surface of a plate material made of a Ti alloy similar to that in Example 2.
After performing back treatment with C and further PT plating, diffusion treatment was performed at 1150°C. Subsequently, this plate 4 was placed in a vacuum chamber having vapor deposition and ion implantation functions in the same vacuum, and then Pt,! = A composite material was manufactured by forming a thin film layer of TiAf3T3 alloy with a thickness of 3 μm on the surface treated with Al diffusion treatment.

しかして、本実施例1.2及び比較例1.2の複合材料
を900°Cの高温酸化雰囲気中に80時間放置して高
温酸化試験を行ない、試験後の各複合材料の外観を調べ
た。その結果を後掲する第1表に示す。
Therefore, a high temperature oxidation test was conducted by leaving the composite materials of Example 1.2 and Comparative Example 1.2 in a high temperature oxidation atmosphere at 900°C for 80 hours, and the appearance of each composite material after the test was examined. . The results are shown in Table 1 below.

実施例3 実施例1と同様な方法により純T1からなる板材の鏡面
研磨した片面にA、f?イオン及びptイオンを注入し
た後、板材のPt −Al1相か形成された表面に厚さ
3μmのTi A、ff合金からなる薄膜層を形成した
。つついて、Yイオンを加速電圧120 k e V、
電流0.4mA、 ドーズ量5 XIO” /ajの条
件で薄膜層にイオン注入して複合材料を製造した。
Example 3 A, f? After implanting the ions and pt ions, a thin film layer of TiA, ff alloy having a thickness of 3 μm was formed on the surface of the plate material on which the Pt-Al1 phase was formed. The Y ions were accelerated at a voltage of 120 k e V.
A composite material was manufactured by implanting ions into the thin film layer under conditions of a current of 0.4 mA and a dose of 5 XIO''/aj.

しかして、本実施例3及び前述した実施例1の複合材料
を酸化雰囲気下において900℃まで昇温し、この後常
温まで下げる急熱急冷操作を10回繰返す高温酸化試験
を行ない、試験後の各複合材料の酸化に伴う重量増及び
外観を調べた。その結果を後掲する第2表に示す。
Therefore, a high-temperature oxidation test was conducted on the composite materials of Example 3 and Example 1 described above, in which the temperature was raised to 900°C in an oxidizing atmosphere, and then the rapid heating and cooling operation was repeated 10 times. The weight increase and appearance due to oxidation of each composite material were investigated. The results are shown in Table 2 below.

実施例4 実施例1と同様な方法により純Tjからなる板材の鏡面
研磨した片面にAJイオン及びptイオンを注入した後
、板材のPt −Al相か形成された表面に厚さ3μ■
1のTi Aj!合金からなる薄膜層を形成した。つづ
いて、Siイオンを加速電圧12[) k e V、電
流0.5mA、ドーズm2 X 10’ ” / ti
の条件で薄膜層にイオン注入し、更にCeイオンを加速
電圧160 k e V、電流0.1mA、ドース量2
 X 101” / (:Aの条件で薄膜層にイオン注
入して腹合材料を製造した。
Example 4 After AJ ions and PT ions were implanted into one mirror-polished surface of a plate made of pure Tj by the same method as in Example 1, a 3 μm thick layer was implanted on the surface of the plate on which the Pt-Al phase was formed.
1 Ti Aj! A thin film layer of the alloy was formed. Next, Si ions were accelerated at a voltage of 12 [) ke V, a current of 0.5 mA, and a dose of m2 x 10'''/ti.
Ions were implanted into the thin film layer under the conditions of
X 101''/(: A material was manufactured by implanting ions into the thin film layer under the conditions of A.

しかして、本実施例4及び前述した実施例1の複合材料
を酸化雰囲気下において900℃まで昇温し、この後常
温まで下げる急熱急冷操作を20回繰返す高温酸化試験
を行ない、試験後の各複合H料の酸化に伴う重量増及び
外観を調べた。その結果を後掲する第3表に示す。
Therefore, a high-temperature oxidation test was performed on the composite materials of Example 4 and Example 1 described above, in which the temperature was raised to 900°C in an oxidizing atmosphere, and then the rapid heating and cooling operation was repeated 20 times. The weight increase and appearance due to oxidation of each composite H material were investigated. The results are shown in Table 3 below.

以上、後掲する第1表から第3表より明らかなように本
実施例1〜4の複合材料は、優れた高温耐酸化性を有す
ることがわかる。また、板材上のTi A、ff金属間
化合物からなる薄膜層にYイオンを注入した実施例3の
複合材料は、同処理を施さない実施例1の複合材料に比
べて苛酷な条件下の高温酸化雰囲気においてより優れた
耐酸化性を有することがわかる。史に、板材上のTi 
Al金属間化合物からなる薄膜層にSiイオン及びCe
イオンを注入した実施例4の複合制料は、同処理を施さ
ない実施例]の複合材料に比べてより苛酷な条件下の高
温酸化雰囲気において一層優れた耐酸化性を有すること
がわかる。
As mentioned above, as is clear from Tables 1 to 3 below, it can be seen that the composite materials of Examples 1 to 4 have excellent high-temperature oxidation resistance. In addition, the composite material of Example 3, in which Y ions were implanted into the thin film layer made of TiA, ff intermetallic compound on the plate material, could withstand high temperatures under harsh conditions compared to the composite material of Example 1, which was not subjected to the same treatment. It can be seen that it has better oxidation resistance in an oxidizing atmosphere. Historically, Ti on plate material
Si ions and Ce are added to the thin film layer made of Al intermetallic compound.
It can be seen that the composite material of Example 4 in which ions were implanted has better oxidation resistance in a high-temperature oxidizing atmosphere under more severe conditions than the composite material of Example 4 which was not subjected to the same treatment.

[発明の効果] 以」−詳述した如く、本発明によれば軽量性、耐熱性に
優れていると共に、高温下での耐酸化性が著しく改善さ
れ、航空機や宇宙関連の各種部品として極めて有用な複
合材料を提供できる。
[Effects of the Invention] As described in detail, the present invention has excellent lightness and heat resistance, as well as markedly improved oxidation resistance at high temperatures, making it extremely useful as various parts for aircraft and space. It can provide useful composite materials.

第1表 第3表Table 1 Table 3

Claims (2)

【特許請求の範囲】[Claims] (1)Ptイオン又はPtとAlの両イオンの注入によ
り表面にPt相もしくはPt−Al相が形成されたTi
又はTi合金からなる基材と、この基材のPt相もしく
はPt−Al相が形成された表面に被覆されたTiAl
系金属間化合物の薄膜層とを具備したことを特徴とする
複合材料。
(1) Ti on which a Pt phase or a Pt-Al phase is formed on the surface by implanting Pt ions or both Pt and Al ions.
Or a base material made of a Ti alloy and a TiAl coated on the surface of this base material on which a Pt phase or a Pt-Al phase is formed.
A composite material comprising a thin film layer of an intermetallic compound.
(2)TiAl系金属間化合物の薄膜層は、Si、Sc
、Y、La、Ce及びHfから選ばれる1種又は2種以
上をイオン注入したものからなることを特徴とする請求
項1記載の複合材料。
(2) The thin film layer of TiAl-based intermetallic compound is Si, Sc
2. The composite material according to claim 1, wherein the composite material is ion-implanted with one or more selected from , Y, La, Ce, and Hf.
JP16616088A 1988-07-04 1988-07-04 Composite material Granted JPH0215164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16616088A JPH0215164A (en) 1988-07-04 1988-07-04 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16616088A JPH0215164A (en) 1988-07-04 1988-07-04 Composite material

Publications (2)

Publication Number Publication Date
JPH0215164A true JPH0215164A (en) 1990-01-18
JPH0587592B2 JPH0587592B2 (en) 1993-12-17

Family

ID=15826183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16616088A Granted JPH0215164A (en) 1988-07-04 1988-07-04 Composite material

Country Status (1)

Country Link
JP (1) JPH0215164A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100166A (en) * 1989-09-14 1991-04-25 Kobe Steel Ltd Wear resistant ti or ti alloy member
JPH03193859A (en) * 1989-12-22 1991-08-23 Nippon Steel Corp Structural material of ti-al intermetallic compound improved in oxidation resistance and production thereof
EP1505171A1 (en) * 2003-08-05 2005-02-09 General Electric Company Ion implantation of turbine engine rotor component
CN108504977A (en) * 2018-04-28 2018-09-07 江西科技师范大学 A kind of preparation method of titanium alloy high temperature coatings

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100166A (en) * 1989-09-14 1991-04-25 Kobe Steel Ltd Wear resistant ti or ti alloy member
JPH03193859A (en) * 1989-12-22 1991-08-23 Nippon Steel Corp Structural material of ti-al intermetallic compound improved in oxidation resistance and production thereof
EP1505171A1 (en) * 2003-08-05 2005-02-09 General Electric Company Ion implantation of turbine engine rotor component
US7455890B2 (en) * 2003-08-05 2008-11-25 General Electric Company Ion implantation of turbine engine rotor component
CN108504977A (en) * 2018-04-28 2018-09-07 江西科技师范大学 A kind of preparation method of titanium alloy high temperature coatings

Also Published As

Publication number Publication date
JPH0587592B2 (en) 1993-12-17

Similar Documents

Publication Publication Date Title
JPH0344484A (en) Aluminum treated coating for superalloy
JPH08225959A (en) Method of coating super alloy product with heat-insulating film and heat-insulating film
MXPA06014883A (en) High strength ni-pt-al-hf bondcoat .
JPH02138459A (en) Laminated hard material and production thereof
US5556713A (en) Diffusion barrier for protective coatings
CN109628921A (en) The method for preparing CoCrAlY coating based on laser melting coating and pulsed electron beam
US4935193A (en) Method for producing a layer protective against oxidation
Smeggil et al. The oxidation behavior of some FeCrAlY, FeCrAl, and yttrium ion‐implanted FeCrAl alloys compared and contrasted
JPH0215164A (en) Composite material
RU2213802C2 (en) Method of applying coating on alloys
RU2742919C2 (en) Method for protecting a detail made of a single-crystal, hafnium-free nickel-based superalloy from corrosion and oxidation
WO1990004044A1 (en) Surface treatment of metals and alloys
Majni et al. Interdiffusion of thin Cr and Au films deposited on silicon
JPH0587591B2 (en)
JP2903105B2 (en) Manufacturing method of oxidation resistant coating layer
JP3170678B2 (en) Nb alloy heat-resistant member and method for manufacturing the member
KR100421948B1 (en) Titanium aluminides having a composite coating layer
JPH05320863A (en) Alloy member resistant against heat and corrosion and its production
KR101628969B1 (en) Method for coating material of ceramic for reducing oxidation on the surface of graphite or C/C composite and the coating material of ceramic coated graphite or C/C composite thereby
JPH0317267A (en) Production of gradient functional material
JP2001226761A (en) Oxidation resistant film structure for niobium type heat resistant material and method of its deposition
JPH02185964A (en) Composite material and production thereof
Stupik et al. The interfacial mixing of silicon coatings on niobium metal: a comparative study
JP2781778B2 (en) SiC fiber / Ti alloy composite and method for producing the same
JP2545731B2 (en) Method for producing intermetallic compound-coated composite by vapor phase method