JPH02138459A - Laminated hard material and production thereof - Google Patents

Laminated hard material and production thereof

Info

Publication number
JPH02138459A
JPH02138459A JP28973588A JP28973588A JPH02138459A JP H02138459 A JPH02138459 A JP H02138459A JP 28973588 A JP28973588 A JP 28973588A JP 28973588 A JP28973588 A JP 28973588A JP H02138459 A JPH02138459 A JP H02138459A
Authority
JP
Japan
Prior art keywords
base material
composite
coating film
hard material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28973588A
Other languages
Japanese (ja)
Other versions
JPH0588310B2 (en
Inventor
Tokiaki Hayashi
林 常昭
Shuji Hida
修司 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP28973588A priority Critical patent/JPH02138459A/en
Publication of JPH02138459A publication Critical patent/JPH02138459A/en
Publication of JPH0588310B2 publication Critical patent/JPH0588310B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To simply produce a laminated hard material with a well adhered multiple coating film having superior oxidation and machining resistances by coating a base material with a multiple coating film having (Ti, Al) N type structure contg. Al whose content has been stepwise or continuously increased from the base material side. CONSTITUTION:Ti and Al are vapor-deposited on a base material and simultaneously the base material is irradiated with nitrogen ions from an ion source. By this ion mixing method, a multiple coating film having (Ti, Al) N type structure contg. Al whose content has been stepwise or continuously increased from the base material side is formed on the base material. The cracking and peeling of the coating film due to an extreme difference in compsn. at the interface between the base material and the coating film is prevented and a laminated hard material suitable for wear resistant parts, a cutting tool, etc., is simply obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複合硬質材料及びその製造方法に関し、特に
耐酸化性の優れた複合硬質材料及びその製造方法に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hard composite material and a method for manufacturing the same, and particularly to a hard composite material with excellent oxidation resistance and a method for manufacturing the same.

[従来の技術及び課題] 耐熱性が高く、硬質であるTiNは、従来より種々の基
材上に被覆してその特長である耐熱性、耐摩耗性を基材
に付与することが行われ、かつ各方面で実用化されてい
る。特に、高速度鋼、超硬合金にTi N膜を被覆した
複合硬質材料は耐摩耗部品、切削工具等で長年に亙って
実績を上げてきている。しかしながら、工業的利用の面
から更に苛酷な使用条件に耐える複合硬質材料が要望さ
れている。
[Prior Art and Problems] TiN, which has high heat resistance and is hard, has traditionally been coated on various base materials to impart its characteristics of heat resistance and wear resistance to the base materials. And it has been put into practical use in various fields. In particular, composite hard materials such as high-speed steel and cemented carbide coated with a TiN film have been used for many years as wear-resistant parts, cutting tools, and the like. However, from the standpoint of industrial use, there is a demand for composite hard materials that can withstand even more severe usage conditions.

上述した要望から、最近、Ti  (C−N)、(Tf
、Hf)N、(Ti、Zr)N等の3元系の複合材料が
検討され、夫々の元素の特長を生かした特性を有する材
料の開発が行われている。
Due to the above-mentioned demands, recently Ti (C-N), (Tf
, Hf)N, (Ti, Zr)N, and other ternary composite materials are being studied, and materials with characteristics that take advantage of the features of each element are being developed.

一方、(Ti 、l)N系の複合材料はAρ成分を含む
ため、高温での酸化条件下で保護膜であるAl203を
生成することにより耐酸化性の向上が確認されており、
該複合材料を基材被覆した複合硬質材料は、従来の複合
硬質材料(例えば基材上にTiNを被覆したもの)に比
べてクレータ及びフランク摩耗量が少ないため、有望な
切削工具用材料と考えられている。
On the other hand, since (Ti, l)N-based composite materials contain Aρ components, it has been confirmed that they improve oxidation resistance by forming a protective film, Al203, under oxidizing conditions at high temperatures.
A hard composite material in which the composite material is coated on a base material is considered to be a promising material for cutting tools because it has less crater and flank wear than conventional hard composite materials (for example, a base material coated with TiN). It is being

しかしながら、(Ti 、lり Nの特定の組成、例え
ば(50at%Tl−50at%Al)Hの組成の複合
被膜を所望の基材上に直接被覆すると、基材と複合被膜
との化学組成、結晶構造の相違からそれらの界面での構
成ギャップにより密着性が不十分となったり、熱膨張係
数のギャップにより熱応力下で界面から複合被膜が剥離
する等の問題があった。
However, when a composite film with a specific composition of (Ti, 1, 2, 2, 3, 3, 3, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4 There have been problems such as insufficient adhesion due to a structural gap at the interface due to the difference in crystal structure, and a composite coating peeling off from the interface under thermal stress due to a gap in thermal expansion coefficient.

本発明は、上記従来の課題を解決するためになされたも
ので、耐酸化性の優れた(Ti、An))N組成を有す
る複合被膜を基材上にそれら界面でのクラックや剥離発
生等を招くことなく良好に密着させた複合硬質材料、並
びにかかる複合硬質材料を簡単な工程により製造し得る
方法を提供しようとするものである。
The present invention was made in order to solve the above-mentioned conventional problems, and a composite coating having a (Ti, An))N composition with excellent oxidation resistance is coated on a base material, and cracks and peeling occur at the interface between them. It is an object of the present invention to provide a composite hard material that can be adhered well without causing problems, and a method for manufacturing such a composite hard material through simple steps.

[課題を解決するための手段] 本発明は、基材上に、該基材側からAlff1を段階的
もしくは連続的に増加させた(Tl、lりN系の組成構
造を有する複合被膜を被覆したことを特徴とする複合硬
質材料である。
[Means for Solving the Problems] The present invention provides a method of coating a base material with a composite film having a composition structure of Tl, l and N, in which Alff1 is increased stepwise or continuously from the base material side. It is a composite hard material characterized by the following.

上記基材としては、例えば高速度鋼、超硬合金、サーメ
ット等からなるものを挙げることができる。
Examples of the base material include those made of high-speed steel, cemented carbide, cermet, and the like.

また、本発明方法は基材上にT1及びAl1を蒸着する
と同時にイオン源より窒素イオンを照射するイオンミキ
シング法により該基材側からAll量を段階的もしくは
連続的に増加させた(Ti 。
Furthermore, in the method of the present invention, the amount of Al is increased stepwise or continuously from the substrate side using an ion mixing method in which nitrogen ions are irradiated from an ion source at the same time as T1 and Al1 are deposited on the substrate (Ti.

A11))N系の組成構造を有する複合被膜を形成する
ことを特徴とする複合硬質材料の製造方法である。
A11)) A method for producing a composite hard material characterized by forming a composite coating having an N-based composition structure.

上記Ti 、 Altの蒸着手段としては、ターゲット
を利用したイオンビームスパッタ法と、電子ビームによ
る真空蒸着を挙げることができる。前者の方法では、所
定の化学組成を有するTi −A47合金ターゲツトを
利用してもよく、或いはTi及びAI単体の金属ターゲ
ットに順次スパッタイオンビームを照射して合金膜を基
材表面に蒸着してもよい。この場合、スパッタイオンビ
ームの加速電圧、ビーム電流を調節したり、ターゲット
にイオンビームを照射する時間を調節することにより蒸
着組成を制御することが可能となる。また、電子ビーム
を用いる真空蒸着法の場合はダブルハース方式で電子ビ
ームによりTiと1を蒸着するがTiとAlとを連続的
に蒸着することも可能であり、適当な時間間隔をおいて
蒸着することも可能であり、組成制御も可能である。
Examples of the means for depositing Ti and Alt include ion beam sputtering using a target and vacuum deposition using an electron beam. In the former method, a Ti-A47 alloy target having a predetermined chemical composition may be used, or a sputtering ion beam may be sequentially irradiated onto a single metal target of Ti and AI to deposit an alloy film on the surface of the substrate. Good too. In this case, it is possible to control the deposition composition by adjusting the accelerating voltage and beam current of the sputtering ion beam, or by adjusting the time for irradiating the target with the ion beam. In addition, in the case of the vacuum evaporation method using an electron beam, Ti and 1 are evaporated by the electron beam in a double hearth method, but it is also possible to evaporate Ti and Al continuously, and the evaporation can be performed at appropriate time intervals. It is also possible to control the composition.

前記イオン源より照射する窒素イオンは、蒸着と独立し
て操作することが可能である。このため、蒸着量と窒素
イオンの相対的な組成比率は自由に調節でき、目的とす
る所定比率の(Ti 、 AI )Nの被膜を形成する
ことが可能であり、組成を段階的もしくは連続的に制御
することが可能である。
The nitrogen ions irradiated from the ion source can be operated independently of the vapor deposition. Therefore, the amount of evaporation and the relative composition ratio of nitrogen ions can be freely adjusted, and it is possible to form a film of (Ti, AI)N with a desired predetermined ratio, and the composition can be changed stepwise or continuously. It is possible to control the

[作用] 本発明によれば、基材上に、該基材側からAfl量を段
階的もしくは連続的に増加させた(Ti 。
[Function] According to the present invention, the amount of Afl is increased stepwise or continuously on the base material from the base material side (Ti.

Al)N系の組成構造を有する複合被膜を被覆すること
によって、基材と接する複合被膜の界面での極端な組成
の落差に起因する複合被膜のクラックや剥離等の発生を
防止できると共に基材に対する密着性を向上できる。ま
た、複合被膜中の1量を基材側から段階的もしくは連続
的に増加させることによって、最上層側の被膜部分中の
AIのTi リッチ層への拡散を抑制できるため、目的
とした耐酸化性及び切削性能を有する複合被膜を基材上
に被覆した複合硬質材料を得ることができる。
By coating with a composite film having an Al)N-based composition structure, it is possible to prevent the occurrence of cracks and peeling of the composite film due to extreme compositional differences at the interface of the composite film in contact with the base material. can improve adhesion to In addition, by increasing the amount of Al in the composite coating stepwise or continuously from the base material side, it is possible to suppress the diffusion of AI in the uppermost coating part to the Ti-rich layer, thereby achieving the desired oxidation resistance. A composite hard material can be obtained by coating a base material with a composite film having excellent cutting performance and cutting performance.

更に、本発明によれば組成制御、組成の段階的もしくは
連続的な制御が容易なイオンミキシング法を採用してい
るため、既述したような耐酸化性及び切削性能を有する
複合被膜を基材上に対してクラック等を発生せずに良好
に密着、被覆した複合硬質材料を簡単に製造することが
できる。
Furthermore, the present invention employs an ion mixing method that facilitates compositional control and stepwise or continuous control of the composition. It is possible to easily produce a hard composite material that is well adhered to and coated on the surface without causing cracks or the like.

[実施例] 以下、本発明の実施例を詳細に説明する。[Example] Examples of the present invention will be described in detail below.

実施例1 まず、基材としてのaox aox 2 mmの寸法の
高速度鋼板を用意し、この板をイオン照射と蒸着機能を
備えた真空チャンバ内のホルダに保持した。つづいて、
このチャンバ内を5 X lo= torrに真空引き
した後、イオン源から加速電圧5kVのArイオンを引
き出し、前記板に照射して表面清浄化のための前処理を
施した。次いで、Ti及びA、Qをダブルハース方式の
電子ビーム蒸着法で、まず前記高速度鋼板にTiを3.
0人/seeの蒸着速度で蒸着しながら、Alを0〜3
.0人/ seeの蒸着速度で次第に蒸着速度を増大さ
せて、Ti−Alの組成変化がなされた連続膜を形成す
ると同時にイオン源から窒素イオンを加速電圧10kV
、イオン電流密度0.5mA/cdの条件で引き出し、
該連続膜に照射して複合窒化物膜を形成し、最後に(5
0at%↑l−50at%Aρ)Nの組成となるように
条件をコントロールして厚さが4μmの複合被膜を形成
して複合硬質材料を製造した。
Example 1 First, a high-speed steel plate having a size of aox aox 2 mm was prepared as a base material, and this plate was held in a holder in a vacuum chamber equipped with ion irradiation and vapor deposition functions. Continuing,
After the chamber was evacuated to 5×lo=torr, Ar ions were extracted from the ion source at an acceleration voltage of 5 kV, and the plate was irradiated with it to perform a pretreatment for surface cleaning. Next, Ti, A, and Q were first deposited on the high-speed steel plate in 3.5 seconds using a double-hearth electron beam evaporation method.
While depositing Al at a deposition rate of 0 people/see,
.. The deposition rate was gradually increased at a deposition rate of 0 people/see to form a continuous film with a Ti-Al composition change, and at the same time nitrogen ions were accelerated from the ion source at a voltage of 10 kV.
, extracted under the condition of ion current density 0.5 mA/cd,
The continuous film is irradiated to form a composite nitride film, and finally (5
A composite hard material was manufactured by controlling the conditions to have a composition of 0 at%↑l-50 at%Aρ)N to form a composite coating with a thickness of 4 μm.

比較例1 前記実施例1と同様な前処理を施した高速度鋼板にダブ
ルハース方式と窒素イオンの照射により厚さ4μmの(
50at%Ti−50at%Aj7)N(7)組成を持
つ複合被膜を直接形成して複合硬質材料を製造した。な
お、TiとAl1の蒸着速度は夫々3.0人/see、
窒素イオンの照射を加速電圧10kV、イオン電流密度
0.5mA/c−の条件で行なった。
Comparative Example 1 A high-speed steel plate pretreated in the same manner as in Example 1 was coated with a 4 μm thick (
A composite hard material was manufactured by directly forming a composite coating having a composition of 50 at% Ti-50 at% Aj7)N(7). In addition, the deposition rate of Ti and Al1 is 3.0 people/see, respectively.
Nitrogen ion irradiation was performed at an acceleration voltage of 10 kV and an ion current density of 0.5 mA/c.

しかして、真空チャンバから取出した本実施例1及び比
較例1の複合硬質材料を切断し、断面をSEMで観察し
た。その結果、比較例1の複合硬質材料では高速度鋼と
複合被膜の界面に僅かであるがマイクロクラックの発生
が認められた。これに対し、本実施例1の複合硬質材料
では高速度鋼板と複合被膜との界面にも何等の欠陥も観
察されず良好な被覆構造を有することが確認された。
The composite hard materials of Example 1 and Comparative Example 1 taken out from the vacuum chamber were cut, and the cross sections were observed using a SEM. As a result, in the composite hard material of Comparative Example 1, the occurrence of microcracks, although slight, was observed at the interface between the high-speed steel and the composite coating. In contrast, in the composite hard material of Example 1, no defects were observed at the interface between the high-speed steel plate and the composite coating, and it was confirmed that the composite hard material had a good coating structure.

実施例2 一般的なCVD法によりTiN膜が被覆された超硬合金
チップをイオン照射と蒸着機能を備えた真空チャンバ内
のホルダに保持した。つづいて、このチャンバ内を5 
X 10= torrに真空引きした後、イオン源から
加速電圧5kVのArイオンを引き出し、前記チップ表
面に5分間照射して表面清浄化のための前処理を施した
。ひきつづき、75at%T1.−25at%Apのタ
ーゲットにスパッタイオン源より加速電圧3.5kV、
イオン電流2.OAで弓出したArイオンを照射して前
記チップにスパッタ蒸着すると同時に他のイオン源から
窒素イオンを加速電圧10kV、イオン電流密度0.5
mA/cJの条件で引き出し、該スパッタ蒸着膜に照射
して厚さ2μmの(75at%Ti  25at%Aj
7)N組成を有する複合窒化物膜を形成した。次いで、
この複合窒化物膜に別の50at%Tl−50at%A
lのターゲットにスパッタイオン源より加速電圧2.5
k V、イオン電流1,5Aで引出したArイオンを照
射して前記チップにスパッタ蒸着すると同時に他のイオ
ン源から窒素イオンを加速電圧10k V、イオン電流
密度0.5mA/c−の条件で引き出し、該スパッタ蒸
着膜に照射して厚さ約2μmの(50at%Tl−50
at%AΩ)N組成を有する複合窒化物膜を形成して複
合硬質材料を製造した。
Example 2 A cemented carbide chip coated with a TiN film by a general CVD method was held in a holder in a vacuum chamber equipped with ion irradiation and vapor deposition functions. Next, go inside this chamber 5 times.
After evacuation to X 10 = torr, Ar ions were extracted from the ion source at an accelerating voltage of 5 kV, and the chip surface was irradiated for 5 minutes to perform pretreatment for surface cleaning. Continuing, 75at%T1. Acceleration voltage 3.5 kV from sputter ion source to -25 at% Ap target,
Ionic current2. At the same time, nitrogen ions from another ion source were irradiated with OA-produced Ar ions and sputter-deposited on the chip at an acceleration voltage of 10 kV and an ion current density of 0.5.
mA/cJ, and irradiated the sputter-deposited film to form a 2 μm thick film (75 at% Ti 25 at% Aj
7) A composite nitride film having a N composition was formed. Then,
This composite nitride film is coated with another 50 at% Tl-50 at% A.
An acceleration voltage of 2.5 from a sputter ion source to a target of
Ar ions extracted at kV and ion current of 1.5 A were irradiated and sputter-deposited on the chip, and at the same time nitrogen ions were extracted from another ion source at an acceleration voltage of 10 kV and an ion current density of 0.5 mA/c-. , the sputter-deposited film is irradiated to form a film with a thickness of about 2 μm (50 at% Tl-50
A composite hard material was manufactured by forming a composite nitride film having a composition of at%AΩ)N.

比較例2 前記実施例2と同様に表面清浄化処理されたTi N膜
が被覆された超硬合金チップにスパッタ蒸着と窒素イオ
ンの照射により厚さ4μmの(50at%T1−50a
t%AJ7)N組成を有する複合窒化物膜のみを形成し
て複合硬質材料を製造した。
Comparative Example 2 A cemented carbide chip coated with a TiN film subjected to surface cleaning treatment in the same manner as in Example 2 was coated with a 4 μm thick (50 at% T1-50a) by sputter deposition and irradiation with nitrogen ions.
t%AJ7) A composite hard material was manufactured by forming only a composite nitride film having a N composition.

しかして、本実施例2及び比較例2の複合硬質材料ニヨ
リH,−280(7)SNCM8鋼をv −ig。
Therefore, the composite hard material Niyori H, -280 (7) SNCM8 steel of Example 2 and Comparative Example 2 was v-ig.

m/ll1n Sf −0,25mm/rev 、 t
 −1,5mm (1回の切削時での切り込み量)の条
件で切削した時の耐摩耗性を調べた。その結果、本実施
例2の複合硬質材料では10分間テV B= 0.15
Il1m テあったか、比較例2の複合硬質材料では1
0分間でVB−0,25■と劣っており、しかも基材で
あるTiN被覆超硬合金チップと複合窒化物膜との界面
で一部クラックの発生が認められた。
m/ll1n Sf -0,25mm/rev, t
The wear resistance when cutting was conducted under the condition of -1.5 mm (depth of cut in one cutting) was investigated. As a result, in the composite hard material of Example 2, the TE V B = 0.15 for 10 minutes
Il1m Te was warm, 1 for the composite hard material of Comparative Example 2.
It was inferior to VB-0.25■ after 0 minutes, and cracks were partially observed at the interface between the TiN-coated cemented carbide chip as the base material and the composite nitride film.

実施例3 30X 30X 2 mmのTi板を実施例1と同様な
表面清浄化処理を施し、電子ビームによるダブルハース
方式によりTl 、Alの電子ビーム蒸着量をコントロ
ールしながら、同時に窒素イオンを照射して多層の複合
窒化物膜を形成した複合硬質材料を製造した。なお、各
膜の組成、T1及び八ρの蒸着速度、窒素イオンの照射
時の加速電圧、ビーム電流密度を下記第1表に示す。
Example 3 A Ti plate of 30 x 30 x 2 mm was subjected to the same surface cleaning treatment as in Example 1, and was simultaneously irradiated with nitrogen ions while controlling the amount of electron beam evaporation of Tl and Al using a double hearth method using an electron beam. A composite hard material with a multilayered composite nitride film was manufactured using this method. The composition of each film, the deposition rate of T1 and 8ρ, the acceleration voltage during nitrogen ion irradiation, and the beam current density are shown in Table 1 below.

比較例3 aox 30X 2 amのT1板を実施例1と同様な
表面清浄化処理を施した後、該Tf後板上上記第1表の
第3層目の膜形成と同様な方法により厚さ3umの(5
0at%Ti−50at%AjりN組成を有する複合窒
化物膜を直接形成して複合硬質材料を製造した。
Comparative Example 3 A T1 plate of aox 30X 2 am was subjected to the same surface cleaning treatment as in Example 1, and then the thickness was reduced by the same method as the third layer film formation in Table 1 above on the Tf rear plate. 3um(5
A composite hard material was manufactured by directly forming a composite nitride film having a composition of 0 at% Ti-50 at% Aj and N.

しかして、本実施例3及び比較例3の複合硬質材料を夫
々空気中で1700”c、300時間の酸化試験を行な
い、酸化増量を調べた。その結果を下記第2表に示した
Therefore, the composite hard materials of Example 3 and Comparative Example 3 were each subjected to an oxidation test in air at 1700"C for 300 hours to examine the oxidation weight gain. The results are shown in Table 2 below.

第2表 上記第2表から明らがなように、本実施例3の複合硬質
材料は耐酸化性が極めて優れていることがわかる。
Table 2 As is clear from Table 2 above, the hard composite material of Example 3 has extremely excellent oxidation resistance.

なお、上記実施例では基材上に該基材側がらAN量を段
階的もしくは連続的に増大させた(Ti、AΩ)N系の
組成構造を有する複合被膜を被覆した複合硬質材料につ
いて説明したが、基材の種類や結晶構造等により該基材
側からAl量を段階的もしくは連続的に減少させた(T
i 。
In addition, in the above example, a composite hard material was described in which a composite coating having a (Ti, AΩ)N composition structure in which the amount of AN was increased stepwise or continuously from the base material side was coated on the base material. However, depending on the type of base material, crystal structure, etc., the amount of Al was reduced stepwise or continuously from the base material side (T
i.

Al)N系の組成構造を有する複合被膜を基材上に被覆
したり、AfI lを段階的もしくは連続的に増減させ
た複合被膜を基材上に被覆してもよい。
A composite film having an Al)N-based composition structure may be coated on the base material, or a composite film may be coated on the base material in which the amount of AfIl is increased or decreased stepwise or continuously.

[発明の効果] 以上詳述した如く、本発明によれば耐酸化性の優れた(
Ti 、Al2)N組成を有する複合被膜を基材上にそ
れら界面でのクラックや剥離発生等を招くことなく良好
に密着させた耐摩耗部品や切削工具等に好適な複合硬質
材料、並びにかかる複合硬質材料を簡単な工程により製
造し得る方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, a material with excellent oxidation resistance (
A composite hard material suitable for wear-resistant parts, cutting tools, etc., in which a composite coating having a Ti, Al2)N composition is adhered well to a base material without causing cracks or peeling at the interface thereof, and such a composite It is possible to provide a method for manufacturing hard materials through simple steps.

出願人代理人 弁理士 鈴江武彦Applicant's agent: Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1)、基材上に、該基材側からAl量を段階的もしく
は連続的に増加させた(Ti、Al)N系の組成構造を
有する複合被膜を被覆したことを特徴とする複合硬質材
料。
(1) A composite hard material characterized by coating a base material with a composite film having a (Ti, Al)N composition structure in which the amount of Al is increased stepwise or continuously from the base material side. material.
(2)、基材上にTi及びAlを蒸着すると同時にイオ
ン源より窒素イオンを照射するイオンミキシング法によ
り該基材側からAl量を段階的もしくは連続的に増加さ
せた(Ti、Al)N系の組成構造を有する複合被膜を
形成することを特徴とする複合硬質材料の製造方法。
(2) The amount of Al was increased stepwise or continuously from the substrate side using an ion mixing method in which Ti and Al were vapor deposited on the substrate and nitrogen ions were irradiated from an ion source at the same time (Ti, Al)N. 1. A method for producing a composite hard material, which comprises forming a composite film having a compositional structure of a system.
JP28973588A 1988-11-16 1988-11-16 Laminated hard material and production thereof Granted JPH02138459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28973588A JPH02138459A (en) 1988-11-16 1988-11-16 Laminated hard material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28973588A JPH02138459A (en) 1988-11-16 1988-11-16 Laminated hard material and production thereof

Publications (2)

Publication Number Publication Date
JPH02138459A true JPH02138459A (en) 1990-05-28
JPH0588310B2 JPH0588310B2 (en) 1993-12-21

Family

ID=17747075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28973588A Granted JPH02138459A (en) 1988-11-16 1988-11-16 Laminated hard material and production thereof

Country Status (1)

Country Link
JP (1) JPH02138459A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170965A (en) * 1988-12-22 1990-07-02 Sumitomo Metal Mining Co Ltd Oxidation and wear resistant coated steel material
JPH04103755A (en) * 1990-08-23 1992-04-06 Sumitomo Metal Mining Co Ltd Surface coated steel product and its production
JPH0592304A (en) * 1991-05-21 1993-04-16 Nachi Fujikoshi Corp Multilayer coating tool
JPH05285215A (en) * 1992-04-09 1993-11-02 Masaru Yamaoka Equipment coated with film of ti-al-n composition
DE4408250A1 (en) * 1993-07-12 1995-01-19 Oriental Engineering Co Process for coating the surface of a substrate and coating material
US6071374A (en) * 1996-06-26 2000-06-06 Lg Electronics Inc. Apparatus for etching glass substrate
US6197209B1 (en) 1995-10-27 2001-03-06 Lg. Philips Lcd Co., Ltd. Method of fabricating a substrate
US6228211B1 (en) 1998-09-08 2001-05-08 Lg. Philips Lcd Co., Ltd. Apparatus for etching a glass substrate
US6551443B2 (en) 2000-12-30 2003-04-22 Lg.Philips Lcd Co., Ltd. Apparatus for etching glass substrate in fabrication of LCD
US6558776B1 (en) 1998-10-22 2003-05-06 Lg.Philips Lcd Co., Ltd. Glass substrate for liquid crystal display device
US6824618B2 (en) 2001-12-19 2004-11-30 Lg.Philips Lcd., Ltd. Substrate receiving apparatus and method thereof
US6836311B2 (en) 2002-05-23 2004-12-28 Lg. Philips Lcd Co., Ltd. Seal pattern for liquid crystal display device including first, second and third dummy seal patterns in non-active area
US6930748B2 (en) 2000-12-29 2005-08-16 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method for manufacturing the same
US6955840B2 (en) 1997-10-20 2005-10-18 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having thin glass substrate on which protective layer formed and method of making the same
US6958801B2 (en) 2001-11-07 2005-10-25 Lg.Philips Lcd Co., Ltd. Seal pattern for ultra-thin liquid crystal display device
US7014732B2 (en) 2001-12-29 2006-03-21 Lg.Philips Lcd Co., Ltd. Etching apparatus
US7016008B2 (en) 2001-12-18 2006-03-21 Lg.Philips Lcd Co., Ltd. Method of fabricating liquid crystal display device having sealant patterns, dummy patterns, and substrate protective patterns
US7336334B2 (en) 2001-12-06 2008-02-26 Lg.Philips Lcd Co., Ltd. Fabrication method of liquid crystal display device
US7361610B2 (en) 2000-12-27 2008-04-22 Lg.Philips Lcd Co., Ltd. Method of etching a glass substrate
US7388642B2 (en) 2000-11-30 2008-06-17 Lg Display Co., Ltd. Seal pattern for liquid crystal display device and forming method thereof
US7393431B2 (en) 2001-09-25 2008-07-01 Lg Display Co., Ltd. Bubble plate for etching and etching apparatus using the same
US7736461B2 (en) 2002-10-07 2010-06-15 Lg Display Co., Ltd. Cassette for preventing breakage of glass substrate
US8043466B1 (en) 1997-03-21 2011-10-25 Lg Display Co., Ltd Etching apparatus
US8512580B2 (en) 2001-09-21 2013-08-20 Lg Display Co., Ltd. Method of fabricating thin liquid crystal display device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170965A (en) * 1988-12-22 1990-07-02 Sumitomo Metal Mining Co Ltd Oxidation and wear resistant coated steel material
JPH04103755A (en) * 1990-08-23 1992-04-06 Sumitomo Metal Mining Co Ltd Surface coated steel product and its production
JPH0592304A (en) * 1991-05-21 1993-04-16 Nachi Fujikoshi Corp Multilayer coating tool
JPH05285215A (en) * 1992-04-09 1993-11-02 Masaru Yamaoka Equipment coated with film of ti-al-n composition
DE4408250C2 (en) * 1993-07-12 2001-06-13 Oriental Engineering Co Surface layer system for substrates
DE4408250A1 (en) * 1993-07-12 1995-01-19 Oriental Engineering Co Process for coating the surface of a substrate and coating material
US6197209B1 (en) 1995-10-27 2001-03-06 Lg. Philips Lcd Co., Ltd. Method of fabricating a substrate
US6071374A (en) * 1996-06-26 2000-06-06 Lg Electronics Inc. Apparatus for etching glass substrate
US8043466B1 (en) 1997-03-21 2011-10-25 Lg Display Co., Ltd Etching apparatus
US6955840B2 (en) 1997-10-20 2005-10-18 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having thin glass substrate on which protective layer formed and method of making the same
US6228211B1 (en) 1998-09-08 2001-05-08 Lg. Philips Lcd Co., Ltd. Apparatus for etching a glass substrate
US6558776B1 (en) 1998-10-22 2003-05-06 Lg.Philips Lcd Co., Ltd. Glass substrate for liquid crystal display device
US7388642B2 (en) 2000-11-30 2008-06-17 Lg Display Co., Ltd. Seal pattern for liquid crystal display device and forming method thereof
US7361610B2 (en) 2000-12-27 2008-04-22 Lg.Philips Lcd Co., Ltd. Method of etching a glass substrate
US6930748B2 (en) 2000-12-29 2005-08-16 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method for manufacturing the same
US6551443B2 (en) 2000-12-30 2003-04-22 Lg.Philips Lcd Co., Ltd. Apparatus for etching glass substrate in fabrication of LCD
US8512580B2 (en) 2001-09-21 2013-08-20 Lg Display Co., Ltd. Method of fabricating thin liquid crystal display device
US7393431B2 (en) 2001-09-25 2008-07-01 Lg Display Co., Ltd. Bubble plate for etching and etching apparatus using the same
US6958801B2 (en) 2001-11-07 2005-10-25 Lg.Philips Lcd Co., Ltd. Seal pattern for ultra-thin liquid crystal display device
US7068346B2 (en) 2001-11-07 2006-06-27 Lg.Philips Lcd Co., Ltd. Seal pattern for ultra-thin liquid crystal display device
US7336334B2 (en) 2001-12-06 2008-02-26 Lg.Philips Lcd Co., Ltd. Fabrication method of liquid crystal display device
US7016008B2 (en) 2001-12-18 2006-03-21 Lg.Philips Lcd Co., Ltd. Method of fabricating liquid crystal display device having sealant patterns, dummy patterns, and substrate protective patterns
US6824618B2 (en) 2001-12-19 2004-11-30 Lg.Philips Lcd., Ltd. Substrate receiving apparatus and method thereof
US7790052B2 (en) 2001-12-19 2010-09-07 Lg Display Co., Ltd. Substrate receiving method
US7494595B2 (en) 2001-12-29 2009-02-24 Lg Display Co., Ltd. Etching apparatus
US7014732B2 (en) 2001-12-29 2006-03-21 Lg.Philips Lcd Co., Ltd. Etching apparatus
US6836311B2 (en) 2002-05-23 2004-12-28 Lg. Philips Lcd Co., Ltd. Seal pattern for liquid crystal display device including first, second and third dummy seal patterns in non-active area
US6919949B2 (en) 2002-05-23 2005-07-19 Lg.Philips Lcd Co., Ltd. Seal pattern for liquid crystal display device including inner seal with first and second openings
US7736461B2 (en) 2002-10-07 2010-06-15 Lg Display Co., Ltd. Cassette for preventing breakage of glass substrate

Also Published As

Publication number Publication date
JPH0588310B2 (en) 1993-12-21

Similar Documents

Publication Publication Date Title
JPH02138459A (en) Laminated hard material and production thereof
WO2017169498A1 (en) Surface-coated cutting tool and manufacturing method therefor
US7241492B2 (en) Multilayered film having excellent wear resistance, heat resistance and adhesion to substrate and method for producing the same
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
JPH08118106A (en) Cutting tool coated with hard layer
WO2019239654A1 (en) Surface-coated cutting tool and process for producing same
CN112853281B (en) Carbon-based multilayer film and preparation method and application thereof
JP3572728B2 (en) Hard layer coated cutting tool
JP6583763B1 (en) Surface-coated cutting tool and manufacturing method thereof
JPH04297568A (en) Surface coated member excellent in wear resistance and formation of film
JPH0588309B2 (en)
JPH08281502A (en) Crystal orientating coated tool
GB2385062A (en) Method of Applying Hard Coatings
JPH0587591B2 (en)
JPH0250948A (en) Conjugated super hard material
JP3249278B2 (en) Tool cover
JPH0587592B2 (en)
JPS62164869A (en) High hardness coating material and its production
JPH05106022A (en) Manufacture of wear resistant hard film
JPH06316756A (en) Corrosion and wear resistant coating film
JPH02236268A (en) Boron nitride film and formation thereof
JP2024047170A (en) Coated Cutting Tools
JPH0250949A (en) Conjugated super hard material
CN116377384A (en) Hafnium nitride-based coating and preparation method and application thereof
JP2022519709A (en) Coated tools coated with a diffusion barrier layer containing boride