JPH0250948A - Conjugated super hard material - Google Patents

Conjugated super hard material

Info

Publication number
JPH0250948A
JPH0250948A JP20000188A JP20000188A JPH0250948A JP H0250948 A JPH0250948 A JP H0250948A JP 20000188 A JP20000188 A JP 20000188A JP 20000188 A JP20000188 A JP 20000188A JP H0250948 A JPH0250948 A JP H0250948A
Authority
JP
Japan
Prior art keywords
base material
composite
ion
compound layer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20000188A
Other languages
Japanese (ja)
Other versions
JPH0588307B2 (en
Inventor
Tokiaki Hayashi
林 常昭
Shuji Hida
修司 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP20000188A priority Critical patent/JPH0250948A/en
Publication of JPH0250948A publication Critical patent/JPH0250948A/en
Publication of JPH0588307B2 publication Critical patent/JPH0588307B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the adhesive strength of a coating having high hardness and excellent in oxidation resistance by coating the surface of a sintered hard alloy of the prescribed composition with a layer of combined compound composed of the nitride of Ti, Zr, and Hf by an ion beam mixing method. CONSTITUTION:A sintered hard alloy as a base material has a composition consisting of the carbides, nitrides, and carbonitrides of the group IVa, Va, and VIa metals and one or more elements among Ni, Co, and Fe. The surface of the above sintered hard alloy is coated, by means of an ion beam mixing method, with a layer of a combined compound represented by (TixZryHfz)Nv, where x+y+z=1, x=0.4 to 0.95, y=0.05 to 0.5, z=0.05 to 0.5, and v=0.8 to 1.0 are satisfied. By this method, the surface of the base material can be coated, with superior adhesive strength, with the layer of the combined compound composed of the nitride of the ternary-systen metal combining high hardness with superior oxidation resistance, and, as a result, a conjugated super hard material useful as material for cutting tools, wear-resistant tools, etc., can be provided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複合超硬材料に関し、特に超硬合金の母材表
面に硬質の複合化合物層を被覆した切削・耐摩耗工具等
に有用な複合超硬材料に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a composite cemented carbide material, and in particular to a composite cemented carbide material useful for cutting and wear-resistant tools etc. in which the surface of a cemented carbide base material is coated with a hard composite compound layer. Related to composite carbide materials.

[従来の技術及び課題] 超硬合金の母材表面に耐摩耗性の優れたTi1Z r 
−、Hfの窒化物を被覆した切削・耐摩耗工具は、該母
材のみからなる切削・耐摩耗工具に比べて更に寿命向上
を達成することかできる。しかしながら、工具の使用形
態の多様化等によりその使用条件がより苛酷になるに伴
い、更に高性能化、超寿命化が要望されてきている。
[Prior art and problems] Ti1Z r with excellent wear resistance on the surface of the cemented carbide base material
A cutting/wear-resistant tool coated with -, Hf nitride can achieve a further improvement in life compared to a cutting/wear-resistant tool made only of the base material. However, as the usage conditions of tools become more severe due to the diversification of usage patterns, there is a demand for even higher performance and longer tool life.

このような要望から、最近、各種の耐摩耗性に富む炭化
物、窒化物及び酸化物の多層膜、複合膜のコーティング
技術か開発されている。その中で、特公昭61−548
72号公報にはHf及びTiの複合化合物(Hf −T
i )C1(Hf −Ti )N。
In response to such demands, coating techniques for multilayer films and composite films of various types of highly wear-resistant carbides, nitrides, and oxides have recently been developed. Among them, Tokuko Sho 61-548
Publication No. 72 describes a composite compound of Hf and Ti (Hf-T
i) C1(Hf-Ti)N.

(Hf −Ti )CN(7)被覆層を減圧CVD法で
被覆することが開示されている。しかしながら、かかる
2種金属の窒化物複合被覆層では母材に対する密着性や
耐摩耗性等において必ずしも充分満足するものではなか
った。
It is disclosed that a (Hf-Ti)CN(7) coating layer is coated by a low pressure CVD method. However, such two-metal nitride composite coating layers have not always been fully satisfactory in terms of adhesion to the base material, abrasion resistance, and the like.

また、特公昭61−57904号公報にはTi 、 Z
r 。
Also, in Japanese Patent Publication No. 61-57904, Ti, Z
r.

Hf’等の金属蒸気雰囲気中にて母材表面に窒素イオン
を照射するイオンミキシング手法に似た方法により被膜
を被覆することが開示されている。しかしなから、かか
る公報の実施例には単独の金属の窒化物の事例しかなく
、複数金属の窒化物からなる複合化合物層の形成、及び
その物性については全く記載されていない。
It has been disclosed that a coating is applied by a method similar to an ion mixing method in which the surface of a base material is irradiated with nitrogen ions in an atmosphere of metal vapor such as Hf'. However, the examples in this publication only include examples of nitrides of a single metal, and do not describe at all the formation of a composite compound layer consisting of nitrides of multiple metals and its physical properties.

本発明は、上記従来の課題を解決するためになされたも
ので、高硬質で耐酸化性に優れた三元系金属の窒化物か
らなる複合化合物層が母材としての超硬合金表面に密着
性よく被覆された複合超硬材料を提供しようとするもの
である。
The present invention was made to solve the above-mentioned conventional problems, and a composite compound layer made of nitrides of ternary metals with high hardness and excellent oxidation resistance adheres to the surface of the cemented carbide as a base material. The present invention aims to provide a composite carbide material coated with good properties.

[課題を解決するための手段] 本発明は、周期律表のIVa、Va、VIa族金属の炭
化物、窒化物、炭窒化物とNI Co及びFBの少な(
とも1種以上とからなる超硬合金の表面にイオンビーム
ミキシング法により下記式(I)にて表わされる複合化
合物層を被覆したことを特徴とする複合超硬材料である
[Means for Solving the Problems] The present invention provides carbides, nitrides, and carbonitrides of metals from groups IVa, Va, and VIa of the periodic table, and small amounts of NI Co and FB (
This is a composite cemented carbide material characterized in that the surface of a cemented carbide made of one or more of the following compounds is coated with a composite compound layer represented by the following formula (I) by an ion beam mixing method.

C(Tj ) x  (Zr ) y  (Hf ) 
z )  (N) v但し、式中のX、ySZ、vはX
 +y+Z =l、0.4  ≦X  ≦0.95.0
.05≦y  ≦0.5 .0.05≦z  ≦0.5
.0.8≦v≦1.0を満足するものである。
C(Tj) x (Zr) y (Hf)
z ) (N) v However, in the formula, X, ySZ, and v are X
+y+Z =l, 0.4 ≦X ≦0.95.0
.. 05≦y≦0.5. 0.05≦z≦0.5
.. It satisfies 0.8≦v≦1.0.

上記複合化合物層を表わす式(I)中のX、y12及び
Vを限定したのは、次のような理由によるものである。
The reasons for limiting X, y12 and V in formula (I) representing the composite compound layer are as follows.

即ち、Xの値を0.4未満にすると耐酸化性の優れた複
合化合物層を得ることができす、かといってXの値が0
.95を越えると複合化合物中の他の金属(Zr SH
f’ )の量が少なくなって硬度等か低下するからであ
る。yの値を0.05未満すると、Zrの固溶における
硬度向上効果が低下し、かといつとyの値か0.5を越
えると耐酸化性や硬度か低下するからである。Zの値を
0.05未満にすると、H「の固溶における硬度向上効
果が低下し、かといつとZの値が0.5を越えると耐酸
化性や硬度が低下するからである。■の値を0.8未滴
にすると、複合化合物層の欠陥量が増大して硬度や靭性
が低下し、かといって■の値が1.0を越えると金属欠
陥による硬度低下を招くからである。
That is, if the value of X is less than 0.4, a composite compound layer with excellent oxidation resistance can be obtained, but if the value of
.. When it exceeds 95, other metals (Zr SH
This is because the amount of f') decreases, resulting in a decrease in hardness, etc. This is because if the value of y is less than 0.05, the effect of improving hardness due to solid solution of Zr decreases, and if the value of y exceeds 0.5, the oxidation resistance and hardness decrease. This is because when the value of Z is less than 0.05, the hardness improving effect of solid solution of H is reduced, and when the value of Z exceeds 0.5, oxidation resistance and hardness are reduced. If the value of (■) is less than 0.8, the amount of defects in the composite compound layer will increase and the hardness and toughness will decrease.On the other hand, if the value of (■) exceeds 1.0, the hardness will decrease due to metal defects. be.

上記複合化合物層の形成手段としては、■タゲットを用
いてイオンビームスパッタで蒸着と窒素イオンの照射を
同時に行なうイオンミキシング法、■電子ビーム蒸着源
による真空蒸着と窒素イオンの照射を同時に行なうイオ
ンミキシング法を採用することかできる。
Methods for forming the above composite compound layer include: (1) ion mixing method in which vapor deposition and nitrogen ion irradiation are simultaneously performed by ion beam sputtering using a target; (2) Ion mixing method in which vacuum evaporation and nitrogen ion irradiation are simultaneously performed using an electron beam evaporation source. law can be adopted.

上記■のイオンミキシング法でのイオンビームスパッタ
においては、溶解法や粉末冶金法によりTj SZr、
Hf’を目的とする組成に容易かつ精度よく作製された
ターゲットを使用できるため、前記式(I)にて表わさ
れる複合化合物層を再現性よく形成することが可能とな
る。スパッタ用のイオンビームとしては、通常、Arイ
オンが使用される。また、スパッタイオン源のイオン加
速電圧、イオン電流を制御することにより簡単かつ広範
囲でスパッタ速度を選択することが可能となる。
In the ion beam sputtering using the ion mixing method mentioned above, Tj SZr,
Since it is possible to use a target that is easily and accurately produced with a composition intended for Hf', it becomes possible to form a composite compound layer represented by the above formula (I) with good reproducibility. Ar ions are usually used as the ion beam for sputtering. Furthermore, by controlling the ion acceleration voltage and ion current of the sputter ion source, it becomes possible to easily select the sputtering speed over a wide range.

一方、照射する窒素イオンは独立のイオン源から供給さ
れ、加速電圧、イオン電流の制御により照射量等を広い
範囲で調節することが可能である。
On the other hand, the nitrogen ions to be irradiated are supplied from an independent ion source, and the irradiation amount etc. can be adjusted over a wide range by controlling the acceleration voltage and ion current.

更に、別のイオン源からイオンアシストを行なうこと、
母材である超硬合金を保持するホルダを回転すること、
窒素イオンを該母材に対して所定の角度を持たせて照射
すること等により複合化合物層における柱状結晶の防止
効果、結晶粒の微細化、結晶物性の向上等を達成するこ
とが可能となる。
Furthermore, performing ion assist from another ion source,
Rotating the holder that holds the cemented carbide base material;
By irradiating nitrogen ions at a predetermined angle to the base material, it is possible to prevent columnar crystals in the composite compound layer, refine crystal grains, improve crystal physical properties, etc. .

上記■のイオンミキシング法での電子ビーム蒸着源によ
る真空蒸着においては、トリプルハース方式で電子ビー
ム溶解することによりTj 、Zr、Hrを目的とする
組成に容易かつ精度よく真空蒸着できるため、前記式(
I)にて表わされる複合化合物層を再現性よく形成する
ことが可能となる。
In vacuum evaporation using an electron beam evaporation source in the ion mixing method described in (2) above, Tj, Zr, and Hr can be easily and accurately vacuum evaporated to the desired composition by electron beam melting using the triple hearth method. (
It becomes possible to form a composite compound layer represented by I) with good reproducibility.

一方、照射する窒素イオンは既述した■の場合と同様で
ある。
On the other hand, the nitrogen ions to be irradiated are the same as in the case (2) described above.

[作用] 本発明によれば、周期律表の■a、Va、Vla族金属
の炭化物、窒化物、炭窒化物とNi 、 C。
[Function] According to the present invention, carbides, nitrides, and carbonitrides of metals in Groups ■a, Va, and Vla of the periodic table, and Ni and C.

及びFBの少なくとも1種以上とからなる超硬合金の表
面にイオンビームミキシング法により式(1)にて表わ
される複合化合物層を被覆することによって、高硬質で
耐酸化性に優れた三元系金属の窒化物からなる複合化合
物層が母材としての超硬合金表面に密着性よく被覆され
、切削・耐摩耗工具等に有用な複合超硬材料を得ること
かできる。
By coating the surface of a cemented carbide consisting of at least one or more of FB and FB with a composite compound layer represented by formula (1) using an ion beam mixing method, a ternary system with high hardness and excellent oxidation resistance can be obtained. A composite compound layer made of metal nitride is coated on the surface of the cemented carbide as a base material with good adhesion, and a composite cemented carbide material useful for cutting, wear-resistant tools, etc. can be obtained.

[実施例] 以下、本発明の実施例を詳細に説明する。[Example] Examples of the present invention will be described in detail below.

実施例] まず、wc−e%Co超硬合金の母材をイオンビームス
パッタ蒸着機能を備えたイオン注入装置のチャンバ内に
設置した。つついて、チャンバ内のガスを真空排気して
該チャンバ内をlXl0−’torrの窒素雰囲気とし
、スパッタイオン源よりArイオンを引き出してT j
o、 6 Z ro、 3Hfo1組成のターゲットに
照射して前記母材表面に蒸着速度4.0人/seeでス
パッタ蒸着しながら、別のイオン源から窒素イオンを該
母材表面に照射するイオンミキシングにより母材表面に
複合化合物層を被覆して複合超硬材料を製造した。なお
、前記Arスパッタにあたっては加速電圧3 k V 
s ビーム電流2Aの条件で行ない、一方窒素イオンの
照射にあたっては加速電圧10k V、ビーム電流密度
0.25m A / crAの条件で行なった。
Example] First, a base material of wc-e%Co cemented carbide was placed in a chamber of an ion implanter equipped with an ion beam sputter deposition function. Then, the gas in the chamber is evacuated to create a nitrogen atmosphere of lXl0-'torr, and Ar ions are extracted from the sputtering ion source to T j
Ion mixing in which nitrogen ions are irradiated onto the surface of the base material from another ion source while sputter deposition is performed on the base material surface at a deposition rate of 4.0 people/see by irradiating a target with a composition of: A composite cemented carbide material was manufactured by coating the surface of the base material with a composite compound layer. In addition, for the Ar sputtering, an accelerating voltage of 3 kV
The irradiation with nitrogen ions was carried out under the conditions of an acceleration voltage of 10 kV and a beam current density of 0.25 mA/crA.

比較例1 まず、WC−6%Co超硬合金の母材をマグネトロンス
パッタ装置のチャンバ内に設置した。つついて、チャン
バ内のガスを真空排気して該チャンバ内をアルゴンと窒
素の混合雰囲気とし、スパッタ電圧800■でT 1o
6Z ro、 3Hfo、 +組成のタゲットを使用し
て前記母材表面にスパッタ蒸着して母材表面に厚さ7μ
mの複合化合物層を被覆して複合超硬材料を製造した。
Comparative Example 1 First, a base material of WC-6% Co cemented carbide was placed in a chamber of a magnetron sputtering device. Then, the gas in the chamber was evacuated to create a mixed atmosphere of argon and nitrogen, and sputtering was performed at T 1o at a sputtering voltage of 800 cm.
Using a target with a composition of 6Z ro, 3Hfo, +, sputter deposition was performed on the base material surface to a thickness of 7μ.
A composite superhard material was manufactured by coating m composite compound layers.

なお、母材の温度は300°Cとした。Note that the temperature of the base material was 300°C.

しかして、上述した各装置がら取出した本実施例1及び
比較例1の複合超硬材料についてE P M A (E
 1ectron probe X −raymycr
oanalyser )により表面の複合化合物層の組
成を定量分析したところ、実施例1では(T jo、 
6Z ro、 3Hfo、 +) N O,95、比較
例1では(T io、 6Z ro、 3Hfo、 +
) N o、 erであった。また、各複合超硬材料の
硬さを測定したところ、実施例1ではHv=3800K
g/mm2、比較例1ではHv=2800/(g/ m
m 2であった。更に、本実施例1の複合超硬材料によ
りHB=280のSNCMB鋼をV=180 m/mi
n 、 f =0.25mm/rev St =1.5
 mm(1回の切削時での切込み量)の条件で切削した
時の耐摩耗性を調べたところ、10分間でVB−0,1
2mmであった。これに対し、比較例1の複合超硬材料
を用いて同様な耐摩耗性を調べたところ、表面の複合化
合物層が剥離して、その耐摩耗効果を発揮することかで
きなかった。
Therefore, E P M A (E
1ectron probe X-raymycr
When the composition of the composite compound layer on the surface was quantitatively analyzed using an analyzer (T jo,
6Z ro, 3Hfo, +) N O,95, in Comparative Example 1 (T io, 6Z ro, 3Hfo, +
) No, it was er. In addition, when the hardness of each composite carbide material was measured, in Example 1, Hv = 3800K
g/mm2, Hv=2800/(g/m2 in Comparative Example 1)
It was m2. Furthermore, using the composite carbide material of Example 1, the SNCMB steel with HB=280 was heated to V=180 m/mi.
n, f = 0.25 mm/rev St = 1.5
We investigated the wear resistance when cutting under the conditions of mm (depth of cut in one cutting) and found that VB-0.1 in 10 minutes.
It was 2 mm. On the other hand, when similar wear resistance was investigated using the composite cemented carbide material of Comparative Example 1, the composite compound layer on the surface peeled off and the material could not exhibit its wear resistance effect.

実施例2 ます、WC−B%Co超硬合金の母材を真空蒸着機能を
有するイオン注入装置のチャンバ内に設置し、真空引き
した後、EB蒸着法のトリプルハス方式により3個のル
ツボからTjを3.3人/seCの蒸着速度で、Zrを
2.2人/seeの蒸着速度でHfを2.1人/sec
の蒸着速度で夫々母材表面に真空蒸着を行ないながら、
イオン源より窒素イオンを引出し該母材表面に照射する
イオンミキシングを行なった。同時に、別のイオン源か
ら窒素イオンを引出しイオンビームアンストを行ない、
母材表面に厚さ7.5μmの複合化合物層を被覆して複
合超硬材料を製造した。なお、前記窒素イオン照射にあ
たっては加速電圧20kV、イオンビム電流密度0.5
mA/cmの条件で行ない、一方窒素イオンビームアシ
ストにあたっては加速電圧200V、ビーム電流密度0
.3mA/crjの条件で行なった。
Example 2 First, a base material of WC-B%Co cemented carbide was placed in the chamber of an ion implanter with a vacuum evaporation function, and after being evacuated, it was deposited from three crucibles using the triple hash method of EB evaporation. Tj at a deposition rate of 3.3 people/sec, Zr at a deposition rate of 2.2 people/see, and Hf at 2.1 people/sec.
While performing vacuum deposition on the surface of each base material at a deposition rate of
Ion mixing was performed by extracting nitrogen ions from an ion source and irradiating them onto the surface of the base material. At the same time, nitrogen ions are extracted from another ion source and an ion beam strike is performed.
A composite superhard material was manufactured by coating the surface of the base material with a composite compound layer having a thickness of 7.5 μm. The nitrogen ion irradiation was performed at an acceleration voltage of 20 kV and an ion beam current density of 0.5.
mA/cm, while for nitrogen ion beam assist, the acceleration voltage was 200 V and the beam current density was 0.
.. The test was carried out under the condition of 3 mA/crj.

比較例2 まず、WC−G%Co超硬合金の母材を市販のAREイ
オンブレーティング装置のチャンバ内に設置した。つづ
いて、チャンバ内のガスを真空排気し、実施例2と同様
にトリプルハース方式による3個のルツボからTi X
Zr、Hfを蒸着させながら窒素雰囲気中でイオンブレ
ーティングを行なって前記母材表面に厚さ75μmの複
合化合物層を被覆して複合超硬材料を製造した。
Comparative Example 2 First, a base material of WC-G%Co cemented carbide was placed in the chamber of a commercially available ARE ion blating device. Next, the gas in the chamber was evacuated, and Ti
Ion blating was performed in a nitrogen atmosphere while Zr and Hf were being vapor-deposited to coat the surface of the base material with a composite compound layer having a thickness of 75 μm to produce a composite superhard material.

しかして、上述した各装置から取出した本実施例2及び
比較例2の複合超硬材料についてEPMAにより表面の
複合化合物層の組成を定量分析したところ、実施例2て
は(T jo6Z ro、 3] 0 Hfo、 +) N O,95比較例2ては(T io
、 6Z ro、 3Hfo、 +) N O,9であ
った。また、各複合超硬材料の硬さを測定したところ、
実施例2ではHv−3850/(9/ mm ” 、比
較例2ではHv = 2500/(g/ mm 2であ
った。更に、本実施例2の複合超硬材料によりHB=2
80のSNCMS鋼をV=180 m/min 。
When the composition of the composite compound layer on the surface of the composite carbide materials of Example 2 and Comparative Example 2 taken out from each of the above-mentioned devices was quantitatively analyzed by EPMA, it was found that Example 2 was (T jo6Z ro, 3 ] 0 Hfo, +) N O, 95 Comparative Example 2 (T io
, 6Z ro, 3Hfo, +) NO,9. In addition, when we measured the hardness of each composite carbide material,
In Example 2, Hv = 2500/(g/mm 2), and in Comparative Example 2, Hv = 2500/(g/mm 2).
80 SNCMS steel at V=180 m/min.

f = 0.25mm/ rev 、 t = 1.5
 Mの条件で切削した時の耐摩耗性を調べたところ、1
0分間でVB−0,10Mであった。これに対し、比較
例2の複合超硬材料を用いて同様な耐摩耗性を調べたと
ころ、10分間でV B = 0.25mmと耐摩耗性
か劣るばかりか、試験後の複合化合物層の一部に剥離が
認められた。
f = 0.25mm/rev, t = 1.5
When we investigated the wear resistance when cutting under the conditions of M, we found that 1
It was VB-0.10M in 0 minutes. On the other hand, when similar abrasion resistance was investigated using the composite cemented carbide material of Comparative Example 2, not only was the abrasion resistance inferior with V B = 0.25 mm after 10 minutes, but the composite compound layer after the test Peeling was observed in some parts.

[発明の効果] 以上詳述した如く、本発明によれば高硬質で耐酸化性に
優れた三元系金属の窒化物からなる複合化合物層が母材
としての超硬合金表面に密着性よく被覆された切削・耐
摩耗工具等に有用な複合超硬材料を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, a composite compound layer made of a nitride of a ternary metal that is highly hard and has excellent oxidation resistance has good adhesion to the surface of a cemented carbide as a base material. A composite carbide material useful for coated cutting and wear-resistant tools can be provided.

出願人代理人 弁理士  鈴江武彦 ] 1Applicant's agent: Patent attorney: Takehiko Suzue ] 1

Claims (1)

【特許請求の範囲】 周期律表のIVa、Va、VIa族金属の炭化物、窒化物、
炭窒化物とNi、Co及びFeの少なくとも1種以上と
からなる超硬合金の表面にイオンビームミキシング法に
より下記式( I )にて表わされる複合化合物層を被覆
したことを特徴とする複合超硬材料。 〔(Ti)_x(Zr)_y(Hf)_z〕(N)_v
・・・( I ) 但し、式中のx、y、z、vはx+y+z=1、0.4
≦x≦0.95、0.05≦y≦0.5、0.05≦z
≦0.5、0.8≦v≦1.0を満足するものである。
[Claims] Carbides and nitrides of metals from groups IVa, Va, and VIa of the periodic table;
A composite superalloy characterized in that the surface of a cemented carbide comprising carbonitride and at least one of Ni, Co and Fe is coated with a composite compound layer represented by the following formula (I) by an ion beam mixing method. hard material. [(Ti)_x(Zr)_y(Hf)_z](N)_v
...(I) However, x, y, z, v in the formula are x+y+z=1, 0.4
≦x≦0.95, 0.05≦y≦0.5, 0.05≦z
It satisfies ≦0.5, 0.8≦v≦1.0.
JP20000188A 1988-08-12 1988-08-12 Conjugated super hard material Granted JPH0250948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20000188A JPH0250948A (en) 1988-08-12 1988-08-12 Conjugated super hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20000188A JPH0250948A (en) 1988-08-12 1988-08-12 Conjugated super hard material

Publications (2)

Publication Number Publication Date
JPH0250948A true JPH0250948A (en) 1990-02-20
JPH0588307B2 JPH0588307B2 (en) 1993-12-21

Family

ID=16417145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20000188A Granted JPH0250948A (en) 1988-08-12 1988-08-12 Conjugated super hard material

Country Status (1)

Country Link
JP (1) JPH0250948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364900A (en) * 1993-04-08 1994-11-15 Asahi Kasei Kogyo Kabushiki Kaisha Stabilized acetal resin compositions
WO2002090859A1 (en) * 2001-05-08 2002-11-14 Tinox Gmbh Heat-exchanging device comprising a surface-coated wall separating medium 1 from medium 2
JPWO2009025112A1 (en) * 2007-08-22 2010-11-18 住友電気工業株式会社 Surface coated cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364900A (en) * 1993-04-08 1994-11-15 Asahi Kasei Kogyo Kabushiki Kaisha Stabilized acetal resin compositions
WO2002090859A1 (en) * 2001-05-08 2002-11-14 Tinox Gmbh Heat-exchanging device comprising a surface-coated wall separating medium 1 from medium 2
JPWO2009025112A1 (en) * 2007-08-22 2010-11-18 住友電気工業株式会社 Surface coated cutting tool
JP5662680B2 (en) * 2007-08-22 2015-02-04 住友電気工業株式会社 Surface coated cutting tool

Also Published As

Publication number Publication date
JPH0588307B2 (en) 1993-12-21

Similar Documents

Publication Publication Date Title
EP2276874B1 (en) A coated cutting tool and a method of making thereof
EP1988190A2 (en) Coated cutting tool
EP2201154B1 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
JPH0588310B2 (en)
US10669622B2 (en) Coated cutting tool and a method for coating the cutting tool
JP3480086B2 (en) Hard layer coated cutting tool
CN110945156A (en) Coated cutting tool and method of making same
KR20100034013A (en) Tool with multilayered metal oxide coating and method for producing the coated tool
JP3572728B2 (en) Hard layer coated cutting tool
CN108559957A (en) A kind of titanium alloy cutting cutter material and preparation method thereof with PVD coatings
JP2009034811A (en) Cemented carbide insert for parting, grooving and threading
JP4968674B2 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in high-speed cutting and method for manufacturing the same
JPH04297568A (en) Surface coated member excellent in wear resistance and formation of film
JP5035980B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JPH0250948A (en) Conjugated super hard material
JP5035979B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP3572732B2 (en) Hard layer coated cutting tool
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JPH08199340A (en) Coated hard alloy
JPH08281502A (en) Crystal orientating coated tool
JP3358696B2 (en) High strength coating
JPH02138458A (en) Laminated hard material and production thereof
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JPH06316756A (en) Corrosion and wear resistant coating film