JPS61190064A - Formation of thin titanium nitride film - Google Patents
Formation of thin titanium nitride filmInfo
- Publication number
- JPS61190064A JPS61190064A JP2895985A JP2895985A JPS61190064A JP S61190064 A JPS61190064 A JP S61190064A JP 2895985 A JP2895985 A JP 2895985A JP 2895985 A JP2895985 A JP 2895985A JP S61190064 A JPS61190064 A JP S61190064A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- incident
- titanium
- thin film
- titanium nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、窒素イオン照射とチタン蒸着との併用によ
って試料に窒化チタン薄膜を形成する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a titanium nitride thin film on a sample by combining nitrogen ion irradiation and titanium vapor deposition.
窒化チタンを試料としての基板上に蒸着する方法として
、数mTOrrから数Torrの窒素雰囲気中でチタン
を溶解、蒸発させて堆積させるPVD法や、T t C
1z等のチタン系ガスと窒素あるいは窒素系ガスとの混
合ガスを1000℃前後の高温下で反応させて基板表面
上に堆積させるCVD法等がある。Methods for depositing titanium nitride on a substrate as a sample include the PVD method in which titanium is melted and evaporated and deposited in a nitrogen atmosphere of several mTorr to several Torr, and T t C.
There is a CVD method in which titanium-based gas such as 1z and nitrogen or a mixed gas of nitrogen-based gas are reacted at a high temperature of around 1000° C. and deposited on the substrate surface.
しかし、PVD法においては、堆積膜の試料面での付着
強度が劣るという問題があり、CVD法においては、高
温下で処理するため試料(母材)の物性変化を伴うとい
う問題がある。However, the PVD method has a problem in that the adhesion strength of the deposited film on the sample surface is poor, and the CVD method has a problem in that the physical properties of the sample (base material) change due to processing at high temperatures.
一方、それらの問題点を解決する方法として、窒素イオ
ン照射とチタン蒸着とを併用して試料に窒化チタン薄膜
を形成する方法が開発されている。On the other hand, as a method to solve these problems, a method has been developed in which a titanium nitride thin film is formed on a sample using a combination of nitrogen ion irradiation and titanium vapor deposition.
それを第1図を参照して説明すると、高真空の雰囲気中
において、試料支持台1に取り付けられた試料2に対し
て、イオン源4からのイオンビーム(窒素イオンビーム
)3を照射すると共に、蒸発源5からの蒸発物質(チタ
ン)6を蒸着させる。To explain this with reference to FIG. 1, an ion beam (nitrogen ion beam) 3 from an ion source 4 is irradiated onto a sample 2 attached to a sample support stand 1 in a high vacuum atmosphere. , an evaporative material (titanium) 6 from an evaporation source 5 is deposited.
これによって、試料2の温度上昇を少なくしながら強固
な薄膜を形成することができる。Thereby, a strong thin film can be formed while reducing the temperature rise of the sample 2.
上述のような窒素イオン照射とチタン蒸着とを併用する
方法においては、従来、試料2への単位時間当たりの窒
素イオンの入射数が増すにつれて、形成薄膜中の窒化チ
タンTiNの割合が増すということが知られていた。In the method of combining nitrogen ion irradiation and titanium vapor deposition as described above, conventionally, as the number of nitrogen ions incident on the sample 2 per unit time increases, the proportion of titanium nitride TiN in the formed thin film increases. was known.
しかしながら、試料2への窒素イオンの入射数を増す場
合には、イオン源4の消費電力が増大すると共に、試料
2に投入されるパワーも増大して試料2の温度上昇が大
きくなるという問題が生じてくる。However, when increasing the number of nitrogen ions incident on the sample 2, the power consumption of the ion source 4 increases, and the power input to the sample 2 also increases, resulting in a large temperature rise in the sample 2. It arises.
従ってこの発明は、そのような問題点を解決しつつ窒化
チタンTiNの割合を増すことができる窒化チタン薄膜
形成方法を提供することを目的とする。Therefore, an object of the present invention is to provide a method for forming a titanium nitride thin film that can increase the proportion of titanium nitride TiN while solving such problems.
この発明の窒化チタン薄膜形成方法は、薄膜形成の条件
として、試料への単位時間当たりの窒素イオンの入射数
とチタン原子の入射数との割合N/ T iがN /
T i≦1.0、その際の試料の雰囲気窒素ガス圧が5
X 10−5〜2 X 10−’T o r r。In the method for forming a titanium nitride thin film of the present invention, the ratio of the number of incident nitrogen ions to the number of incident titanium atoms per unit time to the sample, N/Ti, is N/
T i≦1.0, the atmospheric nitrogen gas pressure of the sample at that time is 5
X 10-5~2 X 10-'T o r r.
試料へのチタン原子の入射数が毎秒3X10”〜3X1
0”個/ C1l+” 、窒素イオンのエネルギーが1
0〜30KeVの領域を使用する。The number of titanium atoms incident on the sample is 3X10” to 3X1 per second.
0”/C1l+”, the energy of nitrogen ions is 1
The range from 0 to 30 KeV is used.
上述のような条件においては、試料への単位時間当たり
の窒素イオンの入射数とチタン原子の入射数との割合N
/ T iが1以下でも、従来と同等以上に窒化チタ
ンが形成される。Under the above conditions, the ratio of the number of nitrogen ions incident on the sample to the number of titanium atoms incident per unit time is N
Even when /T i is 1 or less, titanium nitride is formed at a rate equal to or higher than that of the conventional method.
この実施例においても、第1図に示したのと同様の構成
をした装置を用いる。この場合、例えば、チタン蒸着は
電子線加熱式蒸発源を用い、窒素イオンはイオン源から
引き出されたそのままのイオンビームを用いる。そして
、チタン蒸発量は蒸発源の電子線パワーにより、窒素イ
オンビーム量はイオン源内に導入する窒素ガス圧とイオ
ン源内で生じさせるアーク放電のパワーによりそれぞれ
規定する。また、試料の雰囲気には窒素ガスを供給する
。In this embodiment as well, an apparatus having a configuration similar to that shown in FIG. 1 is used. In this case, for example, an electron beam heating type evaporation source is used for titanium evaporation, and an ion beam extracted from the ion source is used for nitrogen ions. The amount of titanium evaporated is determined by the electron beam power of the evaporation source, and the amount of nitrogen ion beam is determined by the nitrogen gas pressure introduced into the ion source and the power of arc discharge generated within the ion source. Further, nitrogen gas is supplied to the atmosphere of the sample.
そして、薄膜形成の条件として、試料への単位時間当た
りの窒素イオンの入射数とチタン原子の入射数との割合
N / T iがN/Ti51.0、その際の試料の雰
囲気窒素ガス圧が5X]、0−5〜2XIO−4Tor
r、試料へのチタン原子の入射数が毎秒3 x 10”
〜3 x 10”個/Cm”、窒素イオンのエネルギ
ーが10〜30KeVの領域を使用する。The conditions for thin film formation are that the ratio N/Ti of the number of incident nitrogen ions to the number of incident titanium atoms per unit time to the sample is N/Ti51.0, and the atmospheric nitrogen gas pressure of the sample at that time is 5X], 0-5~2XIO-4Tor
r, the number of titanium atoms incident on the sample is 3 x 10” per second
~3 x 10''pieces/Cm'' and the energy of nitrogen ions is used in the range of 10 to 30 KeV.
上述のような条件における、試料への単位時間当たりの
窒素イオンの入射数とチタン原子の入射数との割合(入
射粒子数の割合)N/Tiに対する形成薄膜中の窒化チ
タンと酸化チタンとの割合TEN/TiOをX線光電子
分析法(XPS)で測定した結果を第2図に示す。N/
Ti>1の領域が従来の方法によるものであり、N /
T i≦1の領域がこの発明の方法によるものである
。Under the above conditions, the ratio of the number of incident nitrogen ions to the number of incident titanium atoms per unit time to the sample (ratio of the number of incident particles) is the ratio of titanium nitride and titanium oxide in the formed thin film to N/Ti. The results of measuring the ratio TEN/TiO by X-ray photoelectron spectroscopy (XPS) are shown in FIG. N/
The region where Ti>1 is based on the conventional method, and N/
The region where T i ≦1 is obtained by the method of the present invention.
従来、窒素イオンの入射数が増すにつれて形成薄膜中の
窒化チタンTiNの割合が増すことのみが知られていた
のに対して、今回種々実験した結果、上述のような条件
においては、入射粒子数の割合N / T iが1以下
でも従来と同等以上に目的とする窒化チタンT i N
が形成されることが分かった。Previously, it was only known that as the number of incident nitrogen ions increased, the proportion of titanium nitride TiN in the formed thin film increased, but as a result of various experiments this time, under the above conditions, the number of incident particles increases. Even if the ratio N/Ti is 1 or less, the target titanium nitride TiN is equivalent to or higher than conventional
was found to be formed.
この場合、入射粒子数の割合N / T iがN/Ti
51.oであるという条件により、窒素イオンの必要数
を減少させることができ、これによって装置、具体的に
はイオン源の消費電力を減少させることができる。In this case, the ratio N/Ti of the number of incident particles is N/Ti
51. o condition allows the required number of nitrogen ions to be reduced, thereby reducing the power consumption of the device, and in particular the ion source.
またそれに伴って、薄膜形成時に試料に投入されるパワ
ーも減少させることができるため、試料の温度上昇を抑
制してその物性変化を抑制することもできる。しかもこ
れによって試料からの制約が少なくなるので、この薄膜
形成方法の適用範囲を大きく広げることができ、例えば
、プラスティック、シリコンゴム、高分子フィルム等に
も薄膜形成することが可能となる。In addition, since the power applied to the sample during thin film formation can also be reduced accordingly, it is also possible to suppress the temperature rise of the sample and suppress changes in its physical properties. Moreover, this reduces restrictions from the sample, so the range of application of this thin film forming method can be greatly expanded, and for example, it becomes possible to form thin films on plastics, silicone rubber, polymer films, and the like.
更に、形成される薄膜の膜厚はチタンで決まるため膜厚
を増やそうとする場合はチタンを増やす必要があるが、
第2図から分かるようにこの発明においては、従来と違
って、チタンを増やせば入射粒子数の割合N / T
iが下がって目的とする窒化チタンTiNが増大するた
め、所定の膜厚の窒化チタンを速やかに形成することが
でき、これによって生産性が向上する。Furthermore, the thickness of the thin film formed is determined by titanium, so if you want to increase the film thickness, it is necessary to increase the amount of titanium.
As can be seen from Figure 2, in this invention, unlike the conventional method, by increasing the amount of titanium, the ratio of the number of incident particles N/T
Since i decreases and the target titanium nitride TiN increases, titanium nitride with a predetermined thickness can be quickly formed, thereby improving productivity.
以上のようにこの発明においては、従来と同等以上に形
成薄膜中の窒化チタンTiNの割合を増すことができる
と共に、装置の消費電力を減少させることができ、かつ
試料の温度上昇を抑制することもできる。更に、薄膜の
生産性を向上させることもできる。As described above, in the present invention, it is possible to increase the proportion of titanium nitride TiN in the formed thin film to a greater extent than the conventional one, reduce the power consumption of the apparatus, and suppress the temperature rise of the sample. You can also do it. Furthermore, productivity of thin films can also be improved.
第1図は、窒素イオン照射とチタン蒸着とを併用した窒
化チタン薄膜形成方法に用いる装置を示す概略図である
。第2図は、薄膜形成時の窒素イオンとチタン原子の入
射数の割合N / T iに対する形成薄膜中の窒化チ
タンと酸化チタンの割合Ti N / T i Oの測
定結果を示す図である。FIG. 1 is a schematic diagram showing an apparatus used in a method for forming a titanium nitride thin film using both nitrogen ion irradiation and titanium vapor deposition. FIG. 2 is a diagram showing the measurement results of the ratio of titanium nitride and titanium oxide in the formed thin film, Ti N /T i O, with respect to the ratio N / Ti of the number of incident nitrogen ions and titanium atoms during thin film formation.
Claims (1)
料に窒化チタン薄膜を形成する方法において、薄膜形成
の条件として、試料への単位時間当たりの窒素イオンの
入射数とチタン原子の入射数との割合N/TiがN/T
i≦1.0、その際の試料の雰囲気窒素ガス圧が5×1
0^−^5〜2×10^−^4Torr、試料へのチタ
ン原子の入射数が毎秒3×10^2^2〜3×10^2
^3個/cm^2、窒素イオンのエネルギーが10〜3
0KeVの領域を使用することを特徴とする窒化チタン
薄膜形成方法。(1) In the method of forming a titanium nitride thin film on a sample using a combination of nitrogen ion irradiation and titanium vapor deposition, the conditions for thin film formation include the number of incident nitrogen ions and the number of incident titanium atoms per unit time on the sample. The ratio N/Ti is N/T
i≦1.0, the atmospheric nitrogen gas pressure of the sample at that time is 5×1
0^-^5~2x10^-^4 Torr, the number of titanium atoms incident on the sample per second is 3x10^2^2~3x10^2
^3 pieces/cm^2, the energy of nitrogen ions is 10-3
A method for forming a titanium nitride thin film, characterized in that a region of 0 KeV is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2895985A JPH0635651B2 (en) | 1985-02-15 | 1985-02-15 | Method for forming titanium nitride thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2895985A JPH0635651B2 (en) | 1985-02-15 | 1985-02-15 | Method for forming titanium nitride thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61190064A true JPS61190064A (en) | 1986-08-23 |
JPH0635651B2 JPH0635651B2 (en) | 1994-05-11 |
Family
ID=12262952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2895985A Expired - Fee Related JPH0635651B2 (en) | 1985-02-15 | 1985-02-15 | Method for forming titanium nitride thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0635651B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63161155A (en) * | 1986-12-23 | 1988-07-04 | Matsushita Electric Works Ltd | Formation of colored tin film |
JPH02163362A (en) * | 1988-06-10 | 1990-06-22 | Ulvac Corp | Formation of thin compound film by ion mixing method |
KR100228224B1 (en) * | 1997-03-26 | 1999-11-01 | 홍상복 | The coating method for hard black color layer by using ion beam |
-
1985
- 1985-02-15 JP JP2895985A patent/JPH0635651B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63161155A (en) * | 1986-12-23 | 1988-07-04 | Matsushita Electric Works Ltd | Formation of colored tin film |
JPH02163362A (en) * | 1988-06-10 | 1990-06-22 | Ulvac Corp | Formation of thin compound film by ion mixing method |
KR100228224B1 (en) * | 1997-03-26 | 1999-11-01 | 홍상복 | The coating method for hard black color layer by using ion beam |
Also Published As
Publication number | Publication date |
---|---|
JPH0635651B2 (en) | 1994-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100336621B1 (en) | Method of depositing an io or ito thin film on polymer substrate | |
JPH0524230B2 (en) | ||
JPS61190064A (en) | Formation of thin titanium nitride film | |
JPH01282175A (en) | Formation of protective film of superconducting material | |
Martin et al. | Control of film properties during filtered arc deposition | |
Medeiros et al. | SixCy thin films deposited at low temperature by DC dual magnetron sputtering: Effect of power supplied to Si and C cathode targets on film physicochemical properties | |
JPS5825041B2 (en) | Method for manufacturing diamond-like carbon film | |
JPS6326349A (en) | Formation of cubic boron nitride film | |
JPH04285154A (en) | Formation of carbon thin film | |
JPH01168857A (en) | Formation of titanium nitride film | |
JPH03153859A (en) | Surface-modified plastic | |
JPH0310074A (en) | Formation of thin film | |
JPS61201772A (en) | Method and device for forming thin film | |
JP2513338B2 (en) | Method for forming boron nitride thin film coated substrate | |
JPH03202468A (en) | Film formation | |
JPS63156325A (en) | Manufacture of thin film and apparatus therefor | |
JPS62232180A (en) | Superconducting material | |
JP3031551B2 (en) | Method for producing vapor-deposited film having gas barrier properties | |
JPS6293366A (en) | Manufacture of boron nitride film | |
JPH048506B2 (en) | ||
JP2636577B2 (en) | Method of forming titanium nitride film | |
JPS58100672A (en) | Method and device for formation of thin film | |
JPH06287743A (en) | Formation of thin film | |
JPS628409A (en) | Formation of transparent conducting metal oxide film | |
JPS6320445A (en) | Ion plating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |