JPH0635651B2 - Method for forming titanium nitride thin film - Google Patents

Method for forming titanium nitride thin film

Info

Publication number
JPH0635651B2
JPH0635651B2 JP2895985A JP2895985A JPH0635651B2 JP H0635651 B2 JPH0635651 B2 JP H0635651B2 JP 2895985 A JP2895985 A JP 2895985A JP 2895985 A JP2895985 A JP 2895985A JP H0635651 B2 JPH0635651 B2 JP H0635651B2
Authority
JP
Japan
Prior art keywords
thin film
sample
titanium
incident
titanium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2895985A
Other languages
Japanese (ja)
Other versions
JPS61190064A (en
Inventor
泰雄 鈴木
靖典 安東
潔 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2895985A priority Critical patent/JPH0635651B2/en
Publication of JPS61190064A publication Critical patent/JPS61190064A/en
Publication of JPH0635651B2 publication Critical patent/JPH0635651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、窒素イオン照射とチタン蒸着との併用によ
って試料に窒化チタン薄膜を形成する方法に関する。
TECHNICAL FIELD The present invention relates to a method for forming a titanium nitride thin film on a sample by using nitrogen ion irradiation and titanium vapor deposition in combination.

〔従来の技術〕 窒化チタンを試料としての基板上に蒸着する方法とし
て、数mTorrから数Torrの窒素雰囲気中でチタ
ンを溶解、蒸発させて堆積させるPVD法や、TiOl3
のチタン系ガスと窒素あるいは窒素系ガスとの混合ガス
を1000℃前後の高温下で反応させて基板表面上に堆
積させるCVD法等がある。
[Prior Art] As a method of depositing titanium nitride on a substrate as a sample, a PVD method of dissolving and evaporating titanium in a nitrogen atmosphere of several mTorr to several Torr, and a titanium-based gas such as TiO 3 are used. There is a CVD method or the like in which nitrogen or a mixed gas of a nitrogen-based gas is reacted at a high temperature of about 1000 ° C. and deposited on the substrate surface.

しかし、PVD法においては、堆積膜の試料面での付着
強度が劣るという問題があり、CVD法においては、高
温下で処理するため試料(母材)の物性変化を伴うとい
う問題がある。
However, the PVD method has a problem that the adhesion strength of the deposited film on the sample surface is inferior, and the CVD method has a problem that the physical properties of the sample (base material) are changed because the processing is performed at a high temperature.

一方、それらの問題点を解決する方法として、窒素イオ
ン照射とチタン蒸着とを併用して試料に窒化チタン薄膜
を形成する方法が開発されている。それを第1図を参照
して説明すると、高真空の雰囲気中において、試料支持
台1に取り付けられた試料2に対して、イオン源4から
のイオンビーム(窒素イオンビーム)3を照射すると共
に、蒸発源5からの蒸発物質(チタン)6を蒸着させ
る。これによって、試料2の温度上昇を少なくしながら
強固な薄膜を形成することができる。
On the other hand, as a method for solving these problems, a method of forming a titanium nitride thin film on a sample by using nitrogen ion irradiation and titanium vapor deposition in combination has been developed. This will be described with reference to FIG. 1. In a high vacuum atmosphere, a sample 2 mounted on a sample support 1 is irradiated with an ion beam (nitrogen ion beam) 3 from an ion source 4 and , The evaporation material (titanium) 6 from the evaporation source 5 is deposited. As a result, a strong thin film can be formed while reducing the temperature rise of the sample 2.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述のような窒素イオン照射とチタン蒸着とを併用する
方法においては、従来、試料2への単位時間当たりの窒
素イオンの入射数が増すにつれて、形成薄膜中の窒化チ
タンTiNの割合が増すということが知られていた。
In the method using both nitrogen ion irradiation and titanium vapor deposition as described above, conventionally, as the number of incident nitrogen ions to the sample 2 per unit time increases, the proportion of titanium nitride TiN in the formed thin film increases. Was known.

しかしながら、試料2への窒素イオンの入射数を増す場
合には、イオン源4の消費電力が増大すると共に、試料
2に投入されるパワーも増大して試料2の温度上昇が大
きくなるという問題が生じてくる。
However, when the number of incident nitrogen ions to the sample 2 is increased, the power consumption of the ion source 4 is increased and the power input to the sample 2 is also increased, resulting in a large temperature rise of the sample 2. Will occur.

従ってこの発明は、そのような問題点を解決しつつ窒化
チタンTiNの割合を増すことができる窒化チタン薄膜形
成方法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a titanium nitride thin film forming method capable of increasing the proportion of titanium nitride TiN while solving such problems.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の窒化チタン薄膜形成方法は、薄膜形成の条件
として、試料への単位時間当たりの窒素イオンの入射数
とチタン原子の入射数との割合N/TiがN/Ti≦1.
0、その際の試料の雰囲気窒素ガス圧が5×10−5
2×10−4Torr、試料へのチタン原子の入射数が
毎秒3×1022〜3×1023個/cm2、窒素イオン
のエネルギーが10〜30KeVの領域を使用する。
According to the titanium nitride thin film forming method of the present invention, as a condition for forming the thin film, the ratio N / Ti of the number of incident nitrogen ions to the sample per unit time to the number of incident titanium atoms is N / Ti ≦ 1.
0, the atmosphere nitrogen gas pressure of the sample at that time is 5 × 10 −5
The region of 2 × 10 −4 Torr, the number of incident titanium atoms to the sample is 3 × 10 22 to 3 × 10 23 atoms / cm 2 , and the energy of nitrogen ions is 10 to 30 KeV.

〔作用〕[Action]

上述のような条件においては、試料への単位時間当たり
の窒素イオンの入射数とチタン原子の入射数との割合N
/Tiが1以上でも、従来と同等以上に窒化チタンが形成
される。
Under the above-described conditions, the ratio N between the number of incident nitrogen ions and the number of incident titanium atoms per unit time N
Even if / Ti is 1 or more, titanium nitride is formed to a level equal to or higher than the conventional one.

〔実施例〕〔Example〕

この実施例においても、第1図に示したのと同様の構成
をした装置を用いる。この場合、例えば、チタン蒸着は
電子線加熱式蒸発源を用い、窒素イオンはイオン源から
引き出されたそのままのイオンビームを用いる。そし
て、チタン蒸発量は蒸発源の電子線パワーにより、窒素
イオンビーム量はイオン源内に導入する窒素ガス圧とイ
オン源内で生じさせるアーク放電のパワーによりそれぞ
れ規定する。また、試料の雰囲気には窒素ガスを供給す
る。
Also in this embodiment, an apparatus having the same structure as that shown in FIG. 1 is used. In this case, for example, titanium vapor deposition uses an electron beam heating evaporation source, and nitrogen ions use the ion beam as it is extracted from the ion source. Then, the titanium evaporation amount is defined by the electron beam power of the evaporation source, and the nitrogen ion beam amount is defined by the pressure of the nitrogen gas introduced into the ion source and the power of arc discharge generated in the ion source. In addition, nitrogen gas is supplied to the atmosphere of the sample.

そして、薄膜形成の条件として、試料への単位時間当た
りの窒素イオンの入射数とチタン原子の入射数との割合
N/TiがN/Tl≦1.0、その際の試料の雰囲気窒素ガ
ス圧が5×10−5〜2×10−4Torr、試料への
チタン原子の入射数が毎秒3×1022〜3×1023
個/cm2、窒素イオンのエネルギーが10〜30KeV
の領域を使用する。
Then, as a condition for forming a thin film, the ratio N / Ti of the number of incident nitrogen ions to the sample per unit time to the number of incident titanium atoms is N / Tl ≦ 1.0, and the atmospheric nitrogen gas pressure of the sample at that time Is 5 × 10 −5 to 2 × 10 −4 Torr, and the number of incident titanium atoms to the sample is 3 × 10 22 to 3 × 10 23 per second.
/ Cm 2 , the energy of nitrogen ions is 10 to 30 KeV
Use the area of.

上述のような条件における、試料への単位時間当たりの
窒素イオンの入射数とチタン原子の入射数との割合(入
射粒子数の割合)N/Tiに対する形成薄膜中の窒化チタ
ンと酸化チタンとの割合TiN/TiOをX線光電子分析法
(XPS)で測定した結果を第2図に示す。N/Ti>1
の領域が従来の方法によるものであり、N/Ti≦1の領
域がこの発明の方法によるものである。
Under the above conditions, the ratio of the number of incident nitrogen ions to the sample per unit time and the number of incident titanium atoms (ratio of the number of incident particles) N / Ti to titanium nitride and titanium oxide in the formed thin film The result of measuring the ratio TiN / TiO by X-ray photoelectron spectroscopy (XPS) is shown in FIG. N / Ti> 1
The area of 1 is obtained by the conventional method, and the area of N / Ti≤1 is obtained by the method of the present invention.

従来、窒素イオンの入射数が増すにつれて形成薄膜中の
窒化チタンTiNの割合が増すことのみが知られていたの
に対して、今回種々実験した結果、上述のような条件に
おいては、入射粒子数の割合N/Tiが1以下でも従来と
同等以上に目的とする窒化チタンTiNが形成されること
が分かった。
Conventionally, it was known only that the proportion of titanium nitride TiN in the formed thin film increased as the number of incident nitrogen ions increased, but as a result of various experiments this time, the number of incident particles was increased under the above conditions. It has been found that even if the ratio N / Ti is less than or equal to 1, the target titanium nitride TiN is formed to be equal to or more than the conventional one.

この場合、入射粒子数の割合N/TiがN/Ti≦1.0で
あるという条件により、窒素イオンの必要数を減少させ
ることができ、これによって装置、具体的にはイオン源
の消費電力を減少させることができる。
In this case, the required number of nitrogen ions can be reduced under the condition that the ratio N / Ti of the number of incident particles is N / Ti ≦ 1.0, which allows the power consumption of the device, specifically, the ion source to be reduced. Can be reduced.

またそれに伴って、薄膜形成時に試料に投入されるパワ
ーも減少させることができるため、試料の温度上昇を抑
制してその物性変化を抑制することもできる。しかもこ
れによって試料からの制約が少なくなるので、この薄膜
形成方法の適用範囲を大きく広げることができ、例え
ば、プラスティック、シリコンゴム、高分子フィルム等
にも薄膜形成することが可能となる。
Further, along with this, the power applied to the sample at the time of forming the thin film can be reduced, so that the temperature rise of the sample can be suppressed and the change in the physical properties thereof can also be suppressed. In addition, since the restrictions from the sample are reduced by this, the range of application of this thin film forming method can be greatly expanded, and it becomes possible to form a thin film on, for example, plastic, silicon rubber, polymer film, or the like.

更に、形成される薄膜の膜厚はチタンで決まるため膜厚
を増やそうとする場合はチタンを増やす必要があるが、
第2図から分かるようにこの発明においては、従来と違
って、チタンを増やせば入射粒子数の割合N/Tiが下が
って目的とする窒化チタンTiNが増大するため、所定の
膜厚の窒化チタンを速やかに形成することができ、これ
によって生産性が向上する。
Furthermore, since the thickness of the thin film to be formed is determined by titanium, it is necessary to increase titanium when increasing the thickness,
As can be seen from FIG. 2, in the present invention, unlike the prior art, if the amount of titanium is increased, the ratio N / Ti of the number of incident particles is decreased and the target titanium nitride TiN is increased. Can be formed quickly, which improves productivity.

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明においては、従来と同等以上に形
成薄膜中の窒化チタンTiNの割合を増すことができると
共に、装置の消費電力を減少させることができ、かつ試
料の温度上昇を抑制することもできる。更に、薄膜の生
産性を向上させることもできる。
As described above, in the present invention, it is possible to increase the proportion of titanium nitride TiN in the formed thin film to a level equal to or higher than the conventional one, reduce the power consumption of the device, and suppress the temperature rise of the sample. You can also Furthermore, the productivity of the thin film can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は、窒素イオン照射とチタン蒸着とを併用した窒
化チタン薄膜形成方法に用いる装置を示す概略図であ
る。第2図は、薄膜形成時の窒素イオンとチタン原子の
入射数の割合N/Tiに対する形成薄膜中の窒化チタンと
酸化チタンの割合TiN/TiOの測定結果を示す図である。 2……試料、4……イオン源、5……蒸発源
FIG. 1 is a schematic diagram showing an apparatus used for a titanium nitride thin film forming method using both nitrogen ion irradiation and titanium vapor deposition. FIG. 2 is a diagram showing the measurement results of the ratio TiN / TiO of titanium nitride and titanium oxide in the formed thin film with respect to the ratio N / Ti of the incident number of nitrogen ions and titanium atoms during thin film formation. 2 ... sample, 4 ... ion source, 5 ... evaporation source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒素イオン照射とチタン蒸着との併用によ
って試料に窒化チタン薄膜を形成する方法において、薄
膜形成の条件として、試料への単位時間当たりの窒素イ
オンの入射数とチタン原子の入射数との割合N/TiがN
/Ti≦1.0、その際の試料の雰囲気窒素ガス圧が5×
10−5〜2×10−4Torr、試料へのチタン原子
の入射数が毎秒3×1022〜3×1023個/cm2
窒素イオンのエネルギーが10〜30KeVの領域を使
用することを特徴とする窒化チタン薄膜形成方法。
1. A method for forming a titanium nitride thin film on a sample by using nitrogen ion irradiation and titanium vapor deposition in combination, the conditions for forming the thin film are as follows: the number of incident nitrogen ions and the number of incident titanium atoms per unit time on the sample. And the ratio N / Ti is N
/Ti≦1.0, the nitrogen gas pressure in the sample atmosphere is 5 ×
10 −5 to 2 × 10 −4 Torr, the number of incident titanium atoms to the sample is 3 × 10 22 to 3 × 10 23 atoms / cm 2 ,
A method for forming a titanium nitride thin film, characterized in that a region of nitrogen ion energy of 10 to 30 KeV is used.
JP2895985A 1985-02-15 1985-02-15 Method for forming titanium nitride thin film Expired - Fee Related JPH0635651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2895985A JPH0635651B2 (en) 1985-02-15 1985-02-15 Method for forming titanium nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2895985A JPH0635651B2 (en) 1985-02-15 1985-02-15 Method for forming titanium nitride thin film

Publications (2)

Publication Number Publication Date
JPS61190064A JPS61190064A (en) 1986-08-23
JPH0635651B2 true JPH0635651B2 (en) 1994-05-11

Family

ID=12262952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2895985A Expired - Fee Related JPH0635651B2 (en) 1985-02-15 1985-02-15 Method for forming titanium nitride thin film

Country Status (1)

Country Link
JP (1) JPH0635651B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086170B2 (en) * 1986-12-23 1996-01-24 松下電工株式会社 TiN colored film forming device
JPH0745706B2 (en) * 1988-06-10 1995-05-17 日本真空技術株式会社 Method for forming titanium nitride thin film
KR100228224B1 (en) * 1997-03-26 1999-11-01 홍상복 The coating method for hard black color layer by using ion beam

Also Published As

Publication number Publication date
JPS61190064A (en) 1986-08-23

Similar Documents

Publication Publication Date Title
US5009923A (en) Method of forming diamond film
JP2003524704A (en) Method for depositing thin film of indium oxide or indium tin oxide on polymer substrate
JPH0635651B2 (en) Method for forming titanium nitride thin film
JPH0524230B2 (en)
JP2875892B2 (en) Method of forming cubic boron nitride film
Knorr et al. Texture development in thin metallic films
JP3227795B2 (en) Method for controlling crystal orientation of aluminum film
JPS6326349A (en) Formation of cubic boron nitride film
JP2844779B2 (en) Film formation method
JPH04285154A (en) Formation of carbon thin film
JPH05295522A (en) Formation of thin film
JPS6176662A (en) Method and device for forming thin film
JPS61201772A (en) Method and device for forming thin film
JPH01261214A (en) Production of diamond-containing or hard carbon film
JPH04333561A (en) Formation of nitride film
JPS63262457A (en) Preparation of boron nitride film
JPH08269693A (en) Formation of thin film
JPH01172564A (en) Formation of film at high speed
JP2636577B2 (en) Method of forming titanium nitride film
JPH0372070A (en) Method for vapor-depositing compound at high rate
JPS63254726A (en) X-ray exposure mask and manufacture thereof
JPH04333562A (en) Formation of nitride film
JPS61201770A (en) Formation of oriented organic thin film
JPS63206464A (en) Inline type composite surface treatment device
Gusev et al. Texture of Vacuum Condensates Deposited From Aluminum Atomic Fluxes and Vapour Plasma

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees