JPH01172564A - Formation of film at high speed - Google Patents

Formation of film at high speed

Info

Publication number
JPH01172564A
JPH01172564A JP33117387A JP33117387A JPH01172564A JP H01172564 A JPH01172564 A JP H01172564A JP 33117387 A JP33117387 A JP 33117387A JP 33117387 A JP33117387 A JP 33117387A JP H01172564 A JPH01172564 A JP H01172564A
Authority
JP
Japan
Prior art keywords
vacuum
film
irradiation
crucible
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33117387A
Other languages
Japanese (ja)
Inventor
Masato Kiuchi
正人 木内
Mamoru Sato
守 佐藤
Kaneyoshi Fujii
藤井 兼栄
Korekazu Yoshida
吉田 云一
Yoichi Hashimoto
陽一 橋本
Noritaka Maeyama
前山 能孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Electric Corp filed Critical Agency of Industrial Science and Technology
Priority to JP33117387A priority Critical patent/JPH01172564A/en
Publication of JPH01172564A publication Critical patent/JPH01172564A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a metallic vacuum-deposited film at high speed without applying excessive energy to a vacuum deposition source by simultaneously irradiating the ions of an inert element at the time of vacuum-depositing a metal onto the surface of a work by a vacuum vapor deposition method. CONSTITUTION:The inside of a vacuum vessel 11 is evacuated through an outlet 10, and one kind among inert gases of Ar, Xe, Kr, Ne, etc., is introduced through a gas- introducing hole 8 to form a reduced-pressure atmosphere of the order of 10<-4>torr. The inert gas is formed into positive ions by means of an electron shower from an electron radiation source 7 and then accelerated by means of an accelerating electrode 6 on which a negative voltage of 1-80kV is impressed, with which the surface of a substrate 2 is irradiated by 1X10<12>-1X10<15>ion/mm<2>.sec quantity of irradiation. Simultaneously, a metal 5, such as Ti and Al, in a crucible 4 is heated and evaporated by means of an electron beam gun 3, by which a vacuum-deposited film of Ti or Al is formed at a speed as high as 5-200Angstrom /sec. By this method, the metallic vacuum- deposited film can be formed at high speed by means of inert gas ion irradiation without applying excessive energy to the metal 5 in the crucible and, as a result, the early damage of the crucible 4 due to excessive energy can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子2情報、光学1機械などの薄膜形成をそ
の工程に有する産業に広く用いることが可能な高速被膜
形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a high-speed film forming method that can be widely used in industries that involve forming thin films in their processes, such as electronics, information, optics, and machinery.

〔従来の技術〕[Conventional technology]

第2図は例えば金属表面技術、第30巻、第5号、22
5頁〜231頁(1979年)に示された真空蒸着法の
概要図で、図において、1は被膜、2は基板、すなわち
被加工物、4はるつぼ、5は蒸着用原料、10は排気系
、11は各部材を収容する真空容器、3はヒータである
Figure 2 shows, for example, Metal Surface Technology, Volume 30, No. 5, 22.
This is a schematic diagram of the vacuum evaporation method shown on pages 5 to 231 (1979). In the figure, 1 is a coating, 2 is a substrate, that is, a workpiece, 4 is a crucible, 5 is a raw material for evaporation, and 10 is an exhaust gas. 11 is a vacuum container housing each member, and 3 is a heater.

次に動作について説明する。まず真空容器11内を排気
系10にて真空にした後、るつぼ4を加熱し、蒸着用原
料5を蒸発させて被加工物2上に堆積させる。この時、
必要に応じてヒータ13にて被加工物2を加熱して膜形
成することもある。
Next, the operation will be explained. First, the inside of the vacuum container 11 is evacuated by the exhaust system 10, and then the crucible 4 is heated to evaporate the vapor deposition raw material 5 and deposit it on the workpiece 2. At this time,
If necessary, the workpiece 2 may be heated with the heater 13 to form a film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の方法では、成膜速度は蒸着用原料の温度、即ち蒸
気圧によって一義的に定められていた。高速で蒸着を行
うためにはるつぼへの入熱を増やす必要があり、蒸着源
に加わるエネルギーが大きくなり、るつぼ等の蒸発源の
寿命が短くなるという問題があった。
In conventional methods, the film formation rate was uniquely determined by the temperature of the vapor deposition raw material, that is, the vapor pressure. In order to perform high-speed vapor deposition, it is necessary to increase the heat input to the crucible, which increases the energy applied to the vapor deposition source, resulting in a problem that the life of the vapor source such as the crucible is shortened.

この発明は上記のような従来の問題点を解決するために
なされたもので、るつぼ等の蒸着源に無理な入力を加え
ることなく、高速で成膜できる方法を得ることを目的と
している。
This invention was made to solve the above-mentioned conventional problems, and aims to provide a method that can form a film at high speed without applying excessive input to a vapor deposition source such as a crucible.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる高速被膜形成方法は真空中で単数また
は複数個の構成原子よりなる金属蒸気を5〜200Å/
sの蒸着速度で被加工物上に堆積させ、不活性ガスイオ
ンビームを加速電圧1〜80kVで加速し、照射量lX
l0”〜lXl0”1ons/LllII12・sec
で照射し、成膜速度を高めるようにしたものである。
The high-speed film forming method according to the present invention is to apply a metal vapor consisting of one or more constituent atoms in a vacuum at a rate of 5 to 200 Å/
The inert gas ion beam is accelerated at an acceleration voltage of 1 to 80 kV, and the irradiation dose is 1X.
l0"~lXl0"1ons/LllII12・sec
irradiation to increase the film formation rate.

〔作用〕 この発明においては、金属蒸気の蒸着と同時に、不活性
ガスイオンビームを被加工物上に照射するので、イオン
ビームが金属及び被膜表面を励起し、核形成、成長のた
めの活性なサイトを多数作り出すため、高速で成膜する
ことができる。
[Operation] In this invention, an inert gas ion beam is irradiated onto the workpiece at the same time as metal vapor deposition, so the ion beam excites the metal and coating surface and generates active molecules for nucleation and growth. Since a large number of sites are created, the film can be formed at high speed.

〔実施例〕〔Example〕

以下、この発明の一実施例による高速被膜形成方法をチ
タンの蒸着を例にとって図とともに説明する。第1図は
この発明の一実施例による高速被膜形成方法を実施する
ための成膜装置の断面構成図で、図において、1. 2
. 4. 5及び10〜11は第2図に示した従来の装
置と同−又は相当部分を示す。3はチタン材料5の蒸発
用E B (Elec−tron Beam)ガン、4
はるつぼ、6はイオン加速電極、7はアルゴンガスをイ
オン化するための電子放射源である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A high-speed film forming method according to an embodiment of the present invention will be described below with reference to the drawings, taking titanium vapor deposition as an example. FIG. 1 is a cross-sectional configuration diagram of a film forming apparatus for carrying out a high-speed film forming method according to an embodiment of the present invention, and in the figure, 1. 2
.. 4. 5 and 10 to 11 indicate the same or equivalent parts as the conventional device shown in FIG. 3 is an E B (Elec-tron Beam) gun for evaporating titanium material 5;
A crucible, 6 an ion accelerating electrode, and 7 an electron radiation source for ionizing argon gas.

次に上記装置を用いた高速被膜形成方法について説明す
る。まず真空容器11内をI O−’Torrオーダに
まで真空引きした後、ガス導入口8からアルゴンガスを
導入し、10−’Torrオーダに保つ。
Next, a high-speed film forming method using the above-mentioned apparatus will be explained. First, the inside of the vacuum container 11 is evacuated to the order of IO-'Torr, and then argon gas is introduced from the gas inlet 8 to maintain the vacuum at the order of 10-'Torr.

次いで、電子放射源7からの電子シャワーを浴びせるこ
とによってアルゴンガス粒子をプラスイオン化した後、
加速電極6に負電圧を印加することによって加速して基
板2表面にアルゴンイオンを照射する。この時るっぽ4
内に収容されたチタン材料5をEBガン3を使って加熱
、蒸発させて基板2の表面に堆積させることによって、
チタンの蒸着とアルゴンの照射とを同時に行う。
Then, after positively ionizing the argon gas particles by showering them with electrons from the electron radiation source 7,
Argon ions are accelerated by applying a negative voltage to the accelerating electrode 6 to irradiate the surface of the substrate 2 with argon ions. At this time Rupo 4
By heating and evaporating the titanium material 5 housed inside using the EB gun 3 and depositing it on the surface of the substrate 2,
Titanium vapor deposition and argon irradiation are performed simultaneously.

ここで、従来の真空蒸着法(即ちアルゴンイオンの照射
なし)による成膜速度と本発明による成膜速度とを被加
工物に堆積した膜厚を測ることによって比較してみる。
Here, the film formation speed according to the conventional vacuum evaporation method (that is, without argon ion irradiation) and the film formation speed according to the present invention will be compared by measuring the thickness of the film deposited on the workpiece.

−例として、チタンの蒸着速度30人八へc、蒸着時間
1000秒を一定とし、アルゴンイオンの照射なしと、
アルゴンイオンの加速電圧10kV、照射ffi 3.
lX 10 ”1ons/m1112・secの照射を
行いつつチタンを蒸着した場合について次の結果を得た
。なおチタンの蒸着速度30Å/sは水晶振動式の膜厚
計14によって藤着中常にモニタし、るつぼ人熱情を制
御することによって行った。アルゴン照射なしの場合に
は、堆積したチタンの膜厚が3μmであった。これに対
してアルゴン照射を行った場合には膜厚が3.6μmと
なり、アルゴン照射なしに対して約20%も蒸着速度が
大きくなったことが確認された。このときのチタンの蒸
着速度は5〜200人八ec、へルゴンイオンの照射量
(電子放射源7の調節により制御できる)はI X 1
0 ”〜1 ×10 ”1ons/mが・5eCsアル
ゴンイオンの加速電圧は1〜80kV程度が適当でこの
範囲内で成膜条件を変化させることによって成膜速度を
制御することができる。チタンの蒸着速度を5人/se
c以下にすると処理速度が遅く、工業的意味が薄く、ま
た不純物の混入割合も高くなる。逆にチタンの蒸着速度
を200人/sec以上とすることは蒸着源として極め
て大がかりな装置が必要となり、これまた実用的でなく
、さらにこのような高速成膜を実施すると、膜そのもの
のバッキング密度が低下し、真空蒸着膜の本来の特徴で
ある膜の緻密さが損なわれてしまう、アルゴンイオンの
照射量に関しては、1×1012以下とすると、アルゴ
ンイオンの絶対量がチタン原子に対して不足し、高速化
が達成されない。逆に、1×10′5以上とすると、被
加工物温度が上がり過ぎ、形状精度を損なう材料の変質
劣化をきたす等の不具合を生じ好ましくない。アルゴン
イオンの加速エネルギーを1kV以下とすると、実効的
にチタンの表面の励起を行えなくなり、逆に加速エネル
ギーを80kV以上とすると、被加工物の温度上昇によ
る形状精度の低下、および堆積したチタンのスパッタが
激しくなることによる表面荒れを引き起こし、好ましく
ない。
- As an example, the titanium deposition rate is 30cm, the deposition time is constant at 1000 seconds, and there is no argon ion irradiation.
Argon ion acceleration voltage 10kV, irradiation ffi 3.
The following results were obtained when titanium was deposited while irradiating at lX 10"1 ons/m1112 seconds.The titanium deposition rate of 30 Å/s was constantly monitored during deposition using a quartz crystal film thickness gauge 14. , by controlling the crucible's passion. Without argon irradiation, the deposited titanium film thickness was 3 μm. On the other hand, with argon irradiation, the film thickness was 3.6 μm. It was confirmed that the evaporation rate was approximately 20% higher than that without argon irradiation.The evaporation rate of titanium at this time was 8 ec for 5 to 200 people, and the irradiation amount of ergon ions (electron radiation source 7) controllable by adjustment) is I X 1
0" to 1.times.10" 1 ons/m.5 eCs The accelerating voltage of argon ions is suitably about 1 to 80 kV, and the film forming rate can be controlled by changing the film forming conditions within this range. Titanium deposition rate 5 people/se
If it is less than c, the processing speed will be slow, it will have little industrial significance, and the proportion of impurities will be high. On the other hand, increasing the titanium deposition rate to 200 persons/sec or more requires extremely large-scale equipment as a deposition source, which is also impractical, and furthermore, if such high-speed film formation is performed, the backing density of the film itself will increase. Regarding the irradiation dose of argon ions, which decreases the density of the film and impairs the density of the film, which is the original characteristic of vacuum-deposited films, if the irradiation amount of argon ions is set to 1 x 1012 or less, the absolute amount of argon ions is insufficient relative to the titanium atoms. However, speedup is not achieved. On the other hand, if it is 1×10'5 or more, the temperature of the workpiece will rise too much, resulting in problems such as deterioration and deterioration of the material, which impairs shape accuracy, which is undesirable. If the acceleration energy of argon ions is set to 1 kV or less, the surface of titanium cannot be effectively excited; on the other hand, if the acceleration energy is set to 80 kV or more, the shape accuracy decreases due to the temperature rise of the workpiece, and the deposited titanium This is undesirable because it causes surface roughness due to increased sputtering.

このように、本実施例によれば、不活性ガスイオンビー
ムを被加工物上に照射することにより、金属及び被膜表
面を励起するようにしたので、従来に比し高速で成膜を
行うことができる。
In this way, according to this example, the metal and coating surfaces are excited by irradiating the workpiece with an inert gas ion beam, so that film formation can be performed at a higher speed than in the past. Can be done.

また上記実施例方法により成膜を行うと、金属の蒸着と
同時にある成膜条件の範囲内では不活性元素イオンを被
加工物表面に照射しているため、成長途上にある膜表面
に存在する酸素等の不純物質をイオンビームのスパッタ
効果によって除去しながら膜形成を行うこととなり、高
純度の金属被膜を形成することができるものである。即
ち、上記実施例で高純度の膜を得られる場合についてチ
タンの蒸着を例にとって説明する。
Furthermore, when a film is formed using the method of the above example, inert element ions are irradiated onto the surface of the workpiece within certain film forming conditions at the same time as the metal evaporation. Film formation is performed while impurities such as oxygen are removed by the sputtering effect of the ion beam, making it possible to form a highly pure metal film. That is, a case in which a highly pure film can be obtained in the above embodiment will be explained by taking titanium vapor deposition as an example.

まず真空容器11内を10−’Torrオーダにまで真
空引きした後、ガス導入口8からアルゴンガスをi人し
、10−’Torrオーダに保つ。このアルゴンガス粒
子を電子放射源7からの電子シャワーを浴びせることに
よってプラスイオン化した後、加速電極6に負電圧を印
加することによって加速して基板2表面に照射する。こ
の時るつぼ4内に収容されたチタン材料5をEBガン3
を使って加熱・蒸発させて基板2の表面に堆積させるこ
とによって、チタンの蒸着とアルゴンの照射とを同時に
行う。ここまでは上述の成膜動作と同様である。
First, the inside of the vacuum container 11 is evacuated to the order of 10-' Torr, and then argon gas is supplied from the gas inlet 8 to maintain the vacuum at the order of 10-' Torr. After positively ionizing the argon gas particles by showering them with electrons from the electron radiation source 7, they are accelerated by applying a negative voltage to the accelerating electrode 6 and irradiated onto the surface of the substrate 2. At this time, the titanium material 5 housed in the crucible 4 is transferred to the EB gun 3.
By heating and evaporating titanium and depositing it on the surface of the substrate 2 using titanium, vapor deposition of titanium and irradiation of argon are performed simultaneously. The process up to this point is the same as the film forming operation described above.

−例として、チタンの蒸着速度を30人八へc。- As an example, increase the deposition rate of titanium to 30 to 8 c.

アルゴンイオン照射量を2.2X I Ol3tons
/mm2・513C−、アルゴンイオンの加速電圧を1
0kVとすると、被加工物表面部に形成されるチタン膜
中に含まれる酸素濃度はアルゴンイオンの照射を行わず
にチタンの蒸着のみを蒸着速度30人/secで行って
形成したチタン膜中に含まれる酸素濃度の5分の1以下
という低い値であることを確認した。
Argon ion irradiation dose 2.2X I Ol3tons
/mm2・513C-, acceleration voltage of argon ion is 1
When the voltage is 0 kV, the oxygen concentration in the titanium film formed on the surface of the workpiece is as follows: It was confirmed that the concentration of oxygen was as low as one-fifth of the oxygen concentration contained therein.

なお、チタンの蒸着速度は、水晶振動子式の膜厚計によ
って常時モニタし、るつぼ入熱量の調整を行うことによ
って常に一定値に保ちながら膜形成を行った。また、成
膜開始直前の真空容器11内の到達真空度は3 X 1
0−’Torrであった。このときのアルゴンイオンの
照射量(電子放射源7の調整により制御できる)はlX
l0”〜3X1014ions7mm” ’ sec 
、アルゴンイオンの加速電圧は5〜60kV程度が適当
である。アルゴンイオンの照射量をlXl0”以下にす
るとアルゴンイオンの絶対量が少ないことからアルゴン
イオンによる清浄化の効果が薄れ、高純度化が達成され
ない。
The deposition rate of titanium was constantly monitored using a crystal oscillator-type film thickness meter, and the film was formed while being kept at a constant value by adjusting the amount of heat input to the crucible. In addition, the ultimate vacuum degree in the vacuum container 11 immediately before starting film formation is 3 x 1
It was 0-'Torr. The amount of argon ion irradiation at this time (which can be controlled by adjusting the electron radiation source 7) is lX
l0"~3X1014ions7mm"' sec
The appropriate accelerating voltage for argon ions is about 5 to 60 kV. If the irradiation amount of argon ions is less than 1X10'', the cleaning effect of argon ions will be weakened because the absolute amount of argon ions will be small, and high purity will not be achieved.

逆に照射量を3×10′4以上にすると基板温度が上が
り過ぎ、基板の形状精度を損なうことになり、また材料
の変質、劣化、膜の付着力の低下を招き好ましくない。
On the other hand, if the irradiation amount is 3.times.10'4 or more, the temperature of the substrate will rise too much, which will impair the precision of the shape of the substrate, and will also cause deterioration and deterioration of the material, and a decrease in the adhesion of the film, which is undesirable.

アルゴンイオンの加速電圧を5kV以下にすると、アル
ゴンイオンによるスパッタ効率が低下し、蒸着表面清浄
化の効果が薄れ、膜の高純度化が達成できない。逆に加
速電圧を60kV以上にすると被加工物の温度上昇によ
る形状精度の低下、材料の変質、劣化、および堆積した
チタンを激しくスパッタすることによる膜表面の荒れを
引き起こし、また大規模なイオン源が必要となり、実用
的ではない。
When the accelerating voltage of argon ions is set to 5 kV or less, the sputtering efficiency of argon ions decreases, the effect of cleaning the vapor deposition surface is weakened, and high purity of the film cannot be achieved. On the other hand, if the accelerating voltage is set to 60 kV or more, the temperature of the workpiece will rise, resulting in a decrease in shape accuracy, alteration and deterioration of the material, and roughening of the film surface due to vigorous sputtering of the deposited titanium. is necessary and is not practical.

また上記実施例では金属上記にチタンを用いる場合を示
したが、アルミニウムを使用しても同様の効果が得られ
る。また不活性ガスとしてアルゴン100%ガスを使用
する例を示したが、この他にアルゴンと他の不活性ガス
(Ne、Kr、Xe)との混合ガスを用いてもよい。な
おこれらの点は上述の高純度膜を形成する際にも適用で
きる。但し高速成膜の場合アルゴン:不活性ガス=40
〜100%:60〜O%とするのが実用上好ましい。
Further, in the above embodiment, titanium is used as the metal layer, but the same effect can be obtained even if aluminum is used. Further, although an example is shown in which 100% argon gas is used as the inert gas, a mixed gas of argon and other inert gases (Ne, Kr, Xe) may also be used. Note that these points can also be applied when forming the above-mentioned high-purity film. However, in the case of high-speed film formation, argon: inert gas = 40
~100%: Practically preferred to be 60~0%.

またアルゴン以外の不活性ガスでも同様の効果が期待で
きる。
Similar effects can also be expected with inert gases other than argon.

また金属上記の発生には、真空蒸着法、スパッタ法、イ
オンブレーティング法、クラスタイオンビーム法などを
利用してもよく、この点も上記高純度膜形成に利用でき
る。
Furthermore, vacuum evaporation method, sputtering method, ion blating method, cluster ion beam method, etc. may be used to generate the metal, and this point can also be used to form the high purity film.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明にかかる高連破膜形成方
法によれば、真空中で単数または複数個の構成原子より
なる金属蒸気を5〜200Å/sの蒸着速度で被加工物
上に蒸着すると同時に、蒸着したいる被加工物上にアル
ゴンを含む不活性ガスイオンビームを加速電圧1〜80
kVで加速し、照射f1×1012〜1×10′5io
ns/llll11!・secで照射するようにしたの
で、るつぼ等の金属蒸気発生源に無理な負荷を加えるこ
となく、高速で蒸着することができる効果がある。
As explained above, according to the method for forming a highly ruptured film according to the present invention, a metal vapor consisting of one or more constituent atoms is deposited on a workpiece in vacuum at a deposition rate of 5 to 200 Å/s. At the same time, an inert gas ion beam containing argon is applied to the workpiece to be deposited at an accelerating voltage of 1 to 80.
Accelerate at kV, irradiate f1 x 1012 ~ 1 x 10'5io
ns/llll11!・Since the irradiation is performed at sec, there is an effect that vapor deposition can be performed at high speed without adding an unreasonable load to the metal vapor generation source such as a crucible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による高速被膜形成方法に
使用する成膜装置の断面構成図、第2図は従来の成膜装
置の断面構成図である。 1は被膜、2は被加工物、10は真空排気、11は真空
容器、15はチタン蒸気、16はアルゴンを含む不活性
ガ不イオンビームである。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view of a film forming apparatus used in a high-speed film forming method according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional film forming apparatus. 1 is a film, 2 is a workpiece, 10 is a vacuum pump, 11 is a vacuum container, 15 is a titanium vapor, and 16 is an inert gas non-ion beam containing argon. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)真空中にて単数または複数個の構成原子よりなる
金属蒸気を5〜200Å/sの蒸着速度で被加工物上に
蒸着すると同時に、蒸着している被加工物上に不活性ガ
スイオンビームを加速電圧1〜80kVで加速し、照射
量1×10^1^2〜1×10^1^5ions/mm
^2・secで照射することを特徴とする高速被膜形成
方法。
(1) A metal vapor consisting of one or more constituent atoms is deposited onto the workpiece in vacuum at a deposition rate of 5 to 200 Å/s, and at the same time, inert gas ions are placed on the workpiece being deposited. The beam is accelerated with an acceleration voltage of 1 to 80 kV, and the irradiation amount is 1 x 10^1^2 to 1 x 10^1^5 ions/mm.
A high-speed film forming method characterized by irradiation at ^2 seconds.
(2)金属蒸気としてTi、Alを、不活性ガスとして
Ar、Ne、Kr、Xeを用いることを特徴とする特許
請求の範囲第1項記載の高速被膜形成方法。
(2) The high-speed film forming method according to claim 1, characterized in that Ti and Al are used as the metal vapor and Ar, Ne, Kr, and Xe are used as the inert gas.
(3)金属蒸気の蒸着に、真空蒸着法、スパッタ法、イ
オンブレーティング法、クラスタイオンビーム法のいず
れかを用いることを特徴とする特許請求の範囲第1項又
は第2項記載の高速被膜形成方法。
(3) The high-speed coating according to claim 1 or 2, wherein any one of a vacuum evaporation method, a sputtering method, an ion blating method, and a cluster ion beam method is used for vapor deposition of the metal vapor. Formation method.
JP33117387A 1987-12-26 1987-12-26 Formation of film at high speed Pending JPH01172564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33117387A JPH01172564A (en) 1987-12-26 1987-12-26 Formation of film at high speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33117387A JPH01172564A (en) 1987-12-26 1987-12-26 Formation of film at high speed

Publications (1)

Publication Number Publication Date
JPH01172564A true JPH01172564A (en) 1989-07-07

Family

ID=18240698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33117387A Pending JPH01172564A (en) 1987-12-26 1987-12-26 Formation of film at high speed

Country Status (1)

Country Link
JP (1) JPH01172564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705834C1 (en) * 2018-10-29 2019-11-12 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method of applying coatings on articles made from materials intensely oxidised in air, and plant for its implementation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196721A (en) * 1984-10-17 1986-05-15 Agency Of Ind Science & Technol Film forming method
JPS61201772A (en) * 1985-03-04 1986-09-06 Nippon Telegr & Teleph Corp <Ntt> Method and device for forming thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196721A (en) * 1984-10-17 1986-05-15 Agency Of Ind Science & Technol Film forming method
JPS61201772A (en) * 1985-03-04 1986-09-06 Nippon Telegr & Teleph Corp <Ntt> Method and device for forming thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705834C1 (en) * 2018-10-29 2019-11-12 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method of applying coatings on articles made from materials intensely oxidised in air, and plant for its implementation

Similar Documents

Publication Publication Date Title
KR930021814A (en) Continuous thin film formation method
JPH01172564A (en) Formation of film at high speed
US5024721A (en) Method of forming metal surface thin film having high corrosion resistance and high adhesion
JPH01172563A (en) Formation of high-purity film
JPH0663087B2 (en) Method for forming titanium nitride film
JPS63262457A (en) Preparation of boron nitride film
JPH02163366A (en) Formation of chromium layer onto iron or steel product surface
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPH02156066A (en) Method for cleaning base material
JP2525910B2 (en) Laser excited thin film formation method
JPS6320445A (en) Ion plating
JPH03159978A (en) Method for forming metallic film onto ceramic surface by ion mixing method
JP2844779B2 (en) Film formation method
JPH04285154A (en) Formation of carbon thin film
JPS6176662A (en) Method and device for forming thin film
JP3031551B2 (en) Method for producing vapor-deposited film having gas barrier properties
JPS61124561A (en) Manufacture of compound thin film
JPH0635651B2 (en) Method for forming titanium nitride thin film
JP2636577B2 (en) Method of forming titanium nitride film
JPH048506B2 (en)
JPS63254726A (en) X-ray exposure mask and manufacture thereof
JPS58100672A (en) Method and device for formation of thin film
JP3389639B2 (en) Control method of internal stress of film
JPH02259063A (en) Formation of metallic film
JPH0397847A (en) Formation of boron nitride film