JPH0397847A - Formation of boron nitride film - Google Patents

Formation of boron nitride film

Info

Publication number
JPH0397847A
JPH0397847A JP23376389A JP23376389A JPH0397847A JP H0397847 A JPH0397847 A JP H0397847A JP 23376389 A JP23376389 A JP 23376389A JP 23376389 A JP23376389 A JP 23376389A JP H0397847 A JPH0397847 A JP H0397847A
Authority
JP
Japan
Prior art keywords
boron nitride
ions
nitride film
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23376389A
Other languages
Japanese (ja)
Inventor
Satoru Nishiyama
哲 西山
Hiroya Kirimura
浩哉 桐村
Kiyoshi Ogata
潔 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP23376389A priority Critical patent/JPH0397847A/en
Publication of JPH0397847A publication Critical patent/JPH0397847A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a high quality boron nitride film on a base body by sputtering a sputtering target consisting of boron nitride with an ion beam, depositing sputtered particles on the base body and irradiating the boron nitride with hydrogen ions. CONSTITUTION:The sputtering target 3 consisting of the boron nitride is sputtered by the ion beam obtd. by ionizing an inert gas with a sputtering ion source 4 in a vacuum vessel (not shown). The sputtered particles are deposited on the surface of the base body 2 disposed to face the sputtering target 3. The base body is irradiated with the ions contg. the hydrogen ions obtd. by passing gas contg. gaseous hydrogen through an ion source 5. The deposited boron nitride mentioned above is pushed into the base body 2 by the irradiation with the ions to form the thin film having a good adhesive property. Further, the formation of c-BN and w-BN is accelerated by the hydrogen ions and the high-quality boron nitride film is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 二の発明は、たとえば半導体分野における絶縁欣や工具
分野における耐摩耗性被覆膜に用いられる窒化ホウ素股
の形戒方法に関するものである.〔従来の技術〕 窒化ホウ素は、結晶構造によって主に3種類に分けられ
る.それらは、立方品窒化ホウ素(以下’C−BNJと
いう.),六方最密充填窒化ホウ素(以下rw−BNJ
という.).およびグラファイトと同じ構造をもつ六方
品窒化ホウ素(以下rh−BNJという.)である.こ
のなかで、C一BNは、高熱伝導性、高絶縁性、高硬度
および化学的な安定性に優れており、半導体分野におけ
る絶縁膜や工具分野における耐J9!耗性m覆膜への応
用が注目されている.またw−BNもc−BNと同様に
高熱伝導性や高硬度の特性を有し、上記分野への応用が
期待されている. 基体表面に窒化ホウ素膜を形成させる方法としては、化
学蒸着(CVD)法および物理蒸着(PVD)法がある
,CVD法としては、ハロゲン化ホウ素,ジボラン等の
ホウ素含有物質のガスとアンモニア等の混合ガスを反応
室に導入して、加熱された基体上で反応させる方法があ
る.しかしながら、このCVD法では基体を約1000
゜C近くまで加熱しなければ、基体上にc−BNを含有
する窒化ホウ素膜を形成できないため、CVD法で用い
られる基体はこの高温下まで特性の劣化しないことが必
要である,したがって、例えば現在切削工具として広く
用いられている高速度工具鋼(ハイスw4)のような1
000゜C以下(500〜600゜C)で軟化してしま
う基体は用いることができないという問題がある. PVD法としては、札ガスと窒素ガスを1昆合させたガ
スをイオン化して加速させて窒化ホウ素ターゲノトをス
バノタさせ、基体表面に窒化ホウ素膜を堆積するイオン
スパッタリング法、基体表面にホウ素膜を蒸着法によっ
て形成した後、イオン化した窒素ガスまたは窒素ガスと
不活性ガスを基体表面に照射するイオンミキシング法等
がある.しかしながら、イオンスバノタリング法では、
基体に照射されるイオンの運動エネルギーが数CV−数
百eV程度の比較的低い範囲にあり、このためイオン種
の基体内部への注入は期待し得す、したがって膜と基体
との密着性が悪いという問題がある. イオン毒キシング法では、数十eV〜数百keV以上の
運動エネルギーをもつイオンを用いるため、蒸M物質(
ホウ素)がイオンと衝突、反跳によって基体内部まで侵
入し、膜と基体の間に優れた密着性を得ることができる
.しかしc−BNw−BNの膜を形成するには、7N.
着されるホウ素と照射される窒素イオンとの組成比(ホ
ウ素/窒素イオン粒子比)をイオンの加速エネルギーに
よって適宜調整することが必要であるが、L記方法では
、基体表面にホウ素膜を蒸着法によって形成した後、イ
オン化した窒素ガスまたは窒素ガスと不活性ガスを基体
表面に照射するため、前記組成比を制御することが困難
であり、形成された窒化ホウ素膜中には、c−BNやw
−BNとともに軟質なh−BNや未反応ホウ素も含有し
、その結果として良質な膜質を得ることができなかった
.上記問題を解決する方法として、例えば特公昭60−
63372号、特公昭60−181262号に開示され
た方法がある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The second invention relates to a method for shaping boron nitride strips used, for example, for insulation in the semiconductor field and wear-resistant coatings in the tool field. [Prior art] Boron nitride is mainly divided into three types depending on its crystal structure. They are cubic boron nitride (hereinafter referred to as 'C-BNJ), hexagonal close-packed boron nitride (hereinafter referred to as rw-BNJ).
That's what it means. ). and hexagonal boron nitride (hereinafter referred to as rh-BNJ), which has the same structure as graphite. Among these, C-BN is excellent in high thermal conductivity, high insulation, high hardness, and chemical stability, and is used as an insulating film in the semiconductor field and in the tool field with J9! Its application to abrasive m-coatings is attracting attention. Also, like c-BN, w-BN has high thermal conductivity and high hardness, and is expected to be applied to the above fields. Methods for forming a boron nitride film on the surface of a substrate include chemical vapor deposition (CVD) and physical vapor deposition (PVD).The CVD method uses boron-containing gas such as boron halide and diborane, and ammonia, etc. There is a method in which a mixed gas is introduced into a reaction chamber and reacted on a heated substrate. However, in this CVD method, the substrate is
Since a boron nitride film containing c-BN cannot be formed on a substrate unless it is heated to near °C, it is necessary that the substrate used in the CVD method do not deteriorate in characteristics even at this high temperature. 1, such as high-speed tool steel (high speed steel W4), which is currently widely used as cutting tools.
There is a problem in that a substrate that softens at temperatures below 000°C (500 to 600°C) cannot be used. The PVD method includes the ion sputtering method in which a mixture of gas and nitrogen gas is ionized and accelerated to form a boron nitride target, and a boron nitride film is deposited on the surface of the substrate. There is an ion mixing method in which the substrate surface is formed by vapor deposition and then irradiated with ionized nitrogen gas or nitrogen gas and an inert gas. However, in the ion sva notaring method,
The kinetic energy of the ions irradiated to the substrate is in a relatively low range of several CV to several hundred eV, so it can be expected that the ion species will be implanted into the interior of the substrate, and therefore the adhesion between the membrane and the substrate will be improved. The problem is that it's bad. In the ion poisoning method, ions with kinetic energy of tens of eV to hundreds of keV or more are used, so vaporized M substances (
Boron) penetrates into the interior of the substrate through collision with ions and recoil, allowing excellent adhesion between the membrane and the substrate. However, in order to form a film of c-BNw-BN, 7N.
It is necessary to appropriately adjust the composition ratio of boron to be deposited and nitrogen ions to be irradiated (boron/nitrogen ion particle ratio) by the acceleration energy of the ions, but in method L, a boron film is deposited on the surface of the substrate. After forming the boron nitride film by the method, the surface of the substrate is irradiated with ionized nitrogen gas or nitrogen gas and an inert gas, so it is difficult to control the composition ratio, and the formed boron nitride film contains c-BN. Ya lol
-BN as well as soft h-BN and unreacted boron were contained, and as a result, it was not possible to obtain a good film quality. As a method to solve the above problem, for example,
There are methods disclosed in Japanese Patent Publication No. 63372 and Japanese Patent Publication No. 60-181262.

この方法は、ホウ素を含有する謂発材を加熱してホウ素
原子を基体表面に蒸着させるとともに、窒素を含むイオ
ン種を基体表面に照射し、窒化ホウ素膜を形成する方法
である. この方法によれば、窒素イオンの加速エネルギーを適宜
調整し前記蜆威比を制御することができ、またイオンの
加速エネルギーも数百keVに及ぶため、c  BNま
たはw−BNを含む窒化ホウ素膜を形或でき、膜と基体
との間に優れた密着性を得ることができる. 〔発明が解決しようとする課題〕 しかしながらこの方法で形成された窒化ホウ素膜にも、
c −BNやw−B Nとともにh−BNも含まれてお
り、したがっていわばe−BNやWBNとh 一B N
との混在膜が得られるに過ぎない。
In this method, boron atoms are deposited on the substrate surface by heating a so-called starting material containing boron, and ion species containing nitrogen are irradiated onto the substrate surface to form a boron nitride film. According to this method, the acceleration energy of nitrogen ions can be adjusted appropriately to control the above-mentioned force ratio, and since the acceleration energy of ions also reaches several hundreds of keV, the boron nitride film containing c-BN or w-BN can be It is possible to obtain excellent adhesion between the film and the substrate. [Problem to be solved by the invention] However, the boron nitride film formed by this method also has
Along with c-BN and w-BN, h-BN is also included, so it can be said that e-BN and WBN and h-BN
However, only a mixed film is obtained.

h−B Nは高潤滑性および低硬度などのc−BNやw
−BNとは相反する性質を有しており、このため上記方
法で形成した窒化ホウ素膜では、CBSやw−B Nの
特徴を充分に発揮させることができず、結果として良好
な膜質を得ることができなかった. 高熱伝導性および高硬度を有するc −BNあるいはw
−BNの窒化ホウ素股の応用を考慮するとそれ以外の戒
分、例えばh−BNや未反応ホウ素の窒化ホウ素膜中ヘ
の混入量はできるだけ少ない方が好ましい. また上記方法では、ホウ素を含む蒸発材を加熱し基体表
面に蒸着させる際、ホウ素の熱伝導性が悪いことに起因
するホウ素蒸発材の突沸や蒸発速度の不安定が生しやす
いという問題があった。
h-BN is similar to c-BN and w, which have high lubricity and low hardness.
-It has properties that are contradictory to that of BN, and for this reason boron nitride films formed by the above method cannot fully exhibit the characteristics of CBS and w-BN, resulting in good film quality. I couldn't do it. c-BN or w with high thermal conductivity and high hardness
Considering the application of -BN to boron nitride, it is preferable that the amount of other substances such as h-BN and unreacted boron mixed into the boron nitride film be as small as possible. In addition, the above method has the problem that when heating the evaporation material containing boron and depositing it on the substrate surface, bumping of the boron evaporation material and instability of the evaporation rate are likely to occur due to the poor thermal conductivity of boron. Ta.

この発明の目的は、上述の技術的課題を解決し、膜質を
格段に向上することができる窒化ホウ素膜の形或方法を
提供することである. 〔課題を解決するための手段〕 この発明の窒化ホウ素膜の形戒方法は、窒化ホウ素から
なるスバノタターゲソトをイオンビームによってスバソ
タさせ、このスバノタ粒子の堆積と基体表面に水素イオ
ンを含むイオンを照1・↑することを併用して基体表面
に窒化ホウ素膜を形戒することを特徴とする. 第1図は、この発明の実施のために用いられる’iA膜
形成装置の構成例を示す概念図である。窒化ホウ素膜を
形成するべき基体2はホルダ1に固定される.この基体
2と対向した位置にスバノタターゲット3とイオン源5
が配置される.さらにスバノタターゲノト3の対向位置
にはスペックイオン源4が配置される.またホルダlの
両側には、基体2に蒸着される窒化ホウ素膜の付着量を
計測する膜厚モニタ6とイオン源5から基体2に照射さ
れるイオン量を計測するビームモニタ7が配置される.
ホルダl,スパッタターゲット3 スパンタイオン源4
,およびイオン源5などは図示しない真空容器に収めら
れており、この真空容器は威膜に適した圧力に保たれる
. このような薄膜形成装置によって、先ずスパッタイオン
源4から不活性ガスのイオンが窒化ホウ素からなるスバ
ノクターゲット3に照射される.そしてこのイオンによ
ってスパンタされたスパッタ粒子により窒化ホウ素膜が
基体2の表面に堆積される. 上記不活性ガスとは、He(ヘリウム), Ne(ネオ
ン), Ar (アルゴン).  Kr (クリプトン
),Xe(キセノン)などのうち少なくとも一種以上の
不活性ガスであり、またスパンタターゲント3のスパッ
タ効率を良好するためには、スパンタイオン源4による
イオン種を2keV以上のエネルギーで加速するのが好
ましい。.またスパンタターゲット3は、例えばh−B
N粉末を焼結させたものでも良く、特に限定されるもの
ではないが、窒化ホウ素以外の不純物、例えば焼結助剤
などの少ない、窒化ホウ素の純度の高いものが好ましい
. このスパンタによる窒化ホウ素膜の堆積と併用して、イ
オン源5により水素ガスを含むガスをイオン化し加速し
て基体2の表面に照射する.このイオン−a5に供給さ
れるガスは、例えば窒素ガスと水素ガスまたは窒素ガス
と水素ガスと少なくとも一種以上の不活性ガスなど水素
ガスを含むガス、または水素ガスのみでも良い.すなわ
ち前記ガスは水素イオンを供給できるガスであることが
必要である.この場合水素イオンを供給できるガスとし
て、例えばNHユ (アンモニア)2B.H,(ジボラ
ン),B.NffH& (ボラジン)などの水素化合物
があり、窒素イオンを供給できるガスとして例えばNH
!  (アンモニア)などの窒素化合物があるが、窒化
ホウ素膜に水素イオンと窒票イオンが及ぼす効果をイオ
ン単独で調整し、この窒化ホウ素膜の窒素とホウ素の組
成比を一定にするためには、窒素イオンは窒素ガス、水
素イオンは水素ガスでイオン源5に供給され、この分圧
比などにより窒素ガスと水素ガスの混合比を調整するの
が好ましい. このイオン′a5によるイオンの加速エネルギーはI0
0eV〜50keV未満の範囲が好ましい.これはl0
0eV以下の加速エネルギーをもつイオンでは、基体と
薄膜との間のイオンによる密着性が悪くなり、50ke
V以上の加速エネルギーをもつイオンでは、窒化ホウ素
膜内へのイオンの欠陥生戒が多くなるためである. なおこのイオン源5によるイオン照射はスパンタによる
基体2の表面への窒化ホウ素膜の堆積と同時または交互
に行われても良く、さらに連続的でも間欠的であっても
良い。
An object of the present invention is to provide a form and method of a boron nitride film that can solve the above-mentioned technical problems and significantly improve film quality. [Means for Solving the Problems] The method of forming a boron nitride film of the present invention is to sow a target material made of boron nitride with an ion beam, and deposit the particles and ions containing hydrogen ions on the surface of the substrate. The feature is that a boron nitride film is formed on the substrate surface by using both 1 and ↑. FIG. 1 is a conceptual diagram showing an example of the configuration of an 'iA film forming apparatus used for carrying out the present invention. A substrate 2 on which a boron nitride film is to be formed is fixed to a holder 1. Subanota target 3 and ion source 5 are placed in a position facing this base 2.
is placed. Furthermore, a spec ion source 4 is arranged at a position opposite to the Subanota target node 3. Further, on both sides of the holder l, a film thickness monitor 6 for measuring the amount of boron nitride film deposited on the substrate 2 and a beam monitor 7 for measuring the amount of ions irradiated onto the substrate 2 from the ion source 5 are arranged. ..
Holder 1, sputter target 3, sputter ion source 4
, and the ion source 5 are housed in a vacuum container (not shown), and this vacuum container is maintained at a pressure suitable for the membrane. With such a thin film forming apparatus, first, ions of an inert gas are irradiated from a sputtering ion source 4 onto a Subanok target 3 made of boron nitride. A boron nitride film is deposited on the surface of the substrate 2 by sputtered particles sputtered by these ions. The above-mentioned inert gases include He (helium), Ne (neon), Ar (argon). It is an inert gas of at least one kind of Kr (krypton), Xe (xenon), etc., and in order to improve the sputtering efficiency of the spun target 3, the ion species from the spun target ion source 4 must be energized with an energy of 2 keV or more. It is preferable to accelerate with .. Further, the spanner target 3 is, for example, h-B
It may be made by sintering N powder, and is not particularly limited, but it is preferable to use boron nitride with a high purity and less impurities other than boron nitride, such as sintering aids. In conjunction with the deposition of the boron nitride film by the spunter, the ion source 5 ionizes and accelerates a gas containing hydrogen gas and irradiates it onto the surface of the substrate 2. The gas supplied to the ion-a5 may be a gas containing hydrogen gas, such as nitrogen gas and hydrogen gas, nitrogen gas, hydrogen gas, and at least one inert gas, or hydrogen gas alone. In other words, the gas needs to be capable of supplying hydrogen ions. In this case, as a gas capable of supplying hydrogen ions, for example, NHyu(ammonia)2B. H, (diborane), B. There are hydrogen compounds such as NffH& (borazine), and gases that can supply nitrogen ions include, for example, NH
! There are nitrogen compounds such as (ammonia), but in order to adjust the effect of hydrogen ions and nitrogen ions on the boron nitride film by using ions alone, and to keep the composition ratio of nitrogen and boron in the boron nitride film constant, Nitrogen ions are supplied to the ion source 5 as nitrogen gas, and hydrogen ions are supplied as hydrogen gas to the ion source 5, and the mixing ratio of nitrogen gas and hydrogen gas is preferably adjusted by the partial pressure ratio. The acceleration energy of this ion 'a5 is I0
A range of 0 eV to less than 50 keV is preferable. This is l0
For ions with an acceleration energy of 0 eV or less, the adhesion between the substrate and the thin film due to the ions deteriorates, and the
This is because ions with an acceleration energy of V or higher cause more ion defects to enter the boron nitride film. The ion irradiation by the ion source 5 may be performed simultaneously or alternately with the deposition of the boron nitride film on the surface of the substrate 2 by the spanner, and may be continuous or intermittent.

また基体2の表面の窒化ホウ素膜の付着量に対するイオ
ンa5からのイオン照射M(イオン照射量/窒化ホウ素
原子比)は200%以下(O%を除く)に抑えるのが好
ましい.これは前記イオン照射量が200%を超えると
窒化ホウ素膜内の欠陥生戒が多くなったり、窒化ホウ素
膜のスパッタ作用が過大に生じるためである. さらに必要に応じて基体2を加熱、冷却しても良く、加
熱により基体2ζこ対する窒化ホウ素膜の密着性および
窒化ホウ素膜の結晶性を向上させることができ、また冷
却により威膜中の基体2のイオン照射によって生じる熱
的撰傷を防ぐことができる. 〔作用〕 この発明の窒化ホウ素膜の形戒方法によれば、基体2の
表面では、スバンタイオン源4によるイオンによってス
パンタされたスパッタターゲット3の窒化ホウ素がイオ
ン源5からのイオンにより基体2の内部に押し込まれ、
またイオン源5のイオンが、基体2の内部に侵入するこ
とによって、基体2の材料とスパッタされた窒化ホウ素
とイオン源5によるイオンとが混合層を形成して、基体
2と窒化ホウ素膜とが強固な密着性を得ることができる
Further, it is preferable that the ion irradiation M (ion irradiation amount/boron nitride atomic ratio) from ions a5 to the amount of boron nitride film deposited on the surface of the substrate 2 is suppressed to 200% or less (excluding O%). This is because if the ion irradiation dose exceeds 200%, defects in the boron nitride film increase and the sputtering effect of the boron nitride film becomes excessive. Furthermore, the substrate 2 may be heated or cooled as necessary.Heating can improve the adhesion of the boron nitride film to the substrate 2ζ and the crystallinity of the boron nitride film, and cooling can improve the adhesion of the boron nitride film to the substrate 2ζ. Thermal damage caused by ion irradiation in step 2 can be prevented. [Operation] According to the method for forming a boron nitride film of the present invention, on the surface of the substrate 2, the boron nitride of the sputter target 3 sputtered by the ions from the Subanta ion source 4 is absorbed into the interior of the substrate 2 by the ions from the ion source 5. pushed into
Further, as the ions from the ion source 5 enter the inside of the base 2, the material of the base 2, the sputtered boron nitride, and the ions from the ion source 5 form a mixed layer, and the base 2 and the boron nitride film are bonded together. can obtain strong adhesion.

またイオンの5から基体2の表面乙こ照射される水素イ
オンは、基体2の表面に堆積した窒化ホウ素膜中に存在
するSPまたはSP”混成軌道を持った核(これらは、
非立力品窒化ホウ素を戒長さセる。)と反応して、これ
らをSP’結合の核に変換して、c−BNの生威を促進
する。さらに、前記水素イオンは、水素−ホウ素化合物
や水素窒化ホウ素を生威することにより、膜中のh−B
Nを選択的に除去する働きをも有している.さらにまた
、膜中の未反応ホウ素を除去して股を清浄化する働きも
有し、ホウ素と窒素とが結合する際にSP’結合を生し
るのに充分な励起状態のエネルギーを与える. これにより膜中にc−BNやw−BNの占める割合が大
きくなり、膜の1、Y性がc−BNやw−BNに支配さ
れた窒化ホウ素膜を形或することができる. (実施例〕 尖施−拠ユー 第1図に示した薄膜形成装置を用いて、真空容器(図示
せず)を真空度2X10−’Torr!こ排気した後、
基体2としてガラス板(コーニング社製7059)を用
い、スバノタターゲノト3としてh−B Nからなる純
度99%の焼結体を用いた。
In addition, the hydrogen ions irradiated onto the surface of the substrate 2 from the ions 5 are generated by nuclei with SP or SP” hybrid orbitals present in the boron nitride film deposited on the surface of the substrate 2.
Use non-strength boron nitride for long periods of time. ), converting them into SP'-bonded nuclei and promoting the viability of c-BN. Furthermore, the hydrogen ions generate h-B in the film by generating hydrogen-boron compounds and hydrogen boron nitride.
It also has the function of selectively removing N. Furthermore, it also has the function of cleaning the membrane by removing unreacted boron in the film, and provides sufficient excited state energy to form an SP' bond when boron and nitrogen bond together. This increases the proportion of c-BN and w-BN in the film, making it possible to form a boron nitride film in which the 1, Y properties of the film are dominated by c-BN and w-BN. (Example) Using the thin film forming apparatus shown in FIG.
A glass plate (7059, manufactured by Corning Inc.) was used as the substrate 2, and a 99% pure sintered body made of h-BN was used as the substrate 3.

そしてスパッタイオン′rX4により不活性ガスイオン
としてArイオンを10keVの加速エネルギーでスバ
ノタターゲソト3に照射した。なおこのArイオンの照
射角度は、スバノタターゲ,1−3の垂線に対し、入射
角45度である.またスバノタターゲット3の垂線と基
体2の垂線のなす角度は45度に調整した. そして前記スバンタイオンa4によるArイオンの照射
と同時にイオン源5乙こ水素ガスと窒東ガスを供給し、
前記ガスのイオンを基体2に照射した.前記ガスの分圧
比(水素ガス/窒素ガス)は50%、その全圧はIXI
O−’Torrになるよう供給した.このイオン源5に
よるイオンは基体2に垂直に照射され、この際の加速エ
ネルギーは5kaVである. なお基体2に蒸着される窒化ホウ素原子を膜厚モニタ6
で計測し、基体2に照射されるイオン量をビームモニタ
7で計測して、イオン/窒化ホウ素原了一比を50%に
なるように設定した。
Then, Ar ions as inert gas ions were irradiated onto the Subanota target soto 3 with an acceleration energy of 10 keV using sputter ions 'rX4. Note that the irradiation angle of this Ar ion is an incident angle of 45 degrees with respect to the perpendicular to the Subanote target, 1-3. In addition, the angle between the perpendicular line of Subanota target 3 and the perpendicular line of base body 2 was adjusted to 45 degrees. At the same time as Ar ion irradiation by the Subanta ion a4, hydrogen gas and Nitto gas are supplied to the ion source 5,
Substrate 2 was irradiated with ions of the gas. The partial pressure ratio of the gas (hydrogen gas/nitrogen gas) is 50%, and its total pressure is IXI
The voltage was supplied to O-'Torr. Ions from this ion source 5 are irradiated perpendicularly to the substrate 2, and the acceleration energy at this time is 5 kaV. Note that the boron nitride atoms deposited on the substrate 2 are monitored by a film thickness monitor 6.
The amount of ions irradiated onto the substrate 2 was measured using a beam monitor 7, and the ion/boron nitride ratio was set to 50%.

このようにして基体2の表面に窒化ホウ素膜を!μm堆
積させ、この窒化ホウ素膜のX線回折を測定したところ
、c一BNの回折ピークに該当する回折角43.3゜と
w−BNの回折ピークに該当する回折角4 2. 7 
8”に回折ピークを検出した。
In this way, a boron nitride film is formed on the surface of the substrate 2! When the X-ray diffraction of this boron nitride film was measured after depositing 2.0 μm, the diffraction angle was 43.3°, which corresponds to the diffraction peak of c-BN, and the diffraction angle was 43.3°, which corresponds to the diffraction peak of w-BN. 7
A diffraction peak was detected at 8".

夫−施例−え 1記実施例lにおいて、イオン#5に供給するガスを水
素ガスと窒素ガスとアルゴンガスとし、他は同様の条件
で基体2の表面に1μmの窒化ホウ素膜を形我した. 上記供給ガスはその分圧比を水素ガス:窒素ガス:アル
ゴンガスー1:2:lでかつ全圧=2,OX t (1
’To r rである. この窒化ホウ素膜のX線回折を測定したところ、c−B
Nの回折ピークに該当する回折角43.3゜のみに回折
ピークを検出した。
Example 1 In Example 1, the gases supplied to ion #5 were hydrogen gas, nitrogen gas, and argon gas, and a 1 μm boron nitride film was formed on the surface of the substrate 2 under the same conditions. did. The above supply gas has a partial pressure ratio of hydrogen gas: nitrogen gas: argon gas - 1:2:l, and total pressure = 2, OX t (1
'To r r. When X-ray diffraction of this boron nitride film was measured, c-B
A diffraction peak was detected only at a diffraction angle of 43.3°, which corresponds to the diffraction peak of N.

此(劃IL 上記実施例lにおいて、イオン源5に供給するガスを水
素ガスを除いた窒素ガスとアルゴンガスとし、他は同様
の条件で基体2の表面に1lImの窒化ホウ素膜を形成
した. 上記供給ガスはその分圧比を窒素ガス:アルゴンガスー
1=1でかつ全圧−1. O X 1 0 −’Tor
rである。
In Example 1 above, the gases supplied to the ion source 5 were nitrogen gas and argon gas except for hydrogen gas, and a 1 lIm boron nitride film was formed on the surface of the substrate 2 under the same conditions as above. The above supply gas has a partial pressure ratio of nitrogen gas: argon gas - 1 = 1 and a total pressure of -1.
It is r.

この窒化ホウ素膜のX線回折を測定したところ、h−B
Nの回折ピークに該当する回折角4 3. 9 6゜と
c−BNの回折ピークに該当する回折角43.3゜に回
折ピークを検出した. 〔発明の効果〕 この発明の窒化ホウ素膜の形戒方法によれば、加速され
たイオンで窒化ホウ素からなるスバソタターゲットをス
パンタさせ、このスバソク粒子によって窒化ホウ素膜を
基体の表面に堆積させるため、従来の技術のようなホウ
素を含む蒸発材を加熱し基体表面に蒸着させる際の、ホ
ウ素の熱伝導性が悪いことに起因するホウ素著発材の突
沸や菌発速度の不安定が生しやすいという問題が解決で
きる. また前記スパンタによる基体表面の窒化ホウ素膜の堆積
と併用して、水素イオンを含むイオンを基体表面に照射
するため、この水素イオンが、基体の表面に堆積した窒
化ホウ素膜中に存在するSPまたはSP2混成軌道を持
った核と反応して、これらをSP’結合の核に変換して
、c−BNの生成を促進し、さらに膜中のh−BNや未
反応水素を選択的に除去することによって、膜の特性は
c−BNやw−BNに支配されるようになり、高熱伝導
性、高絶縁性、高硬度、および高い化学的安定性を有し
、その結果半導体分野における絶縁膜および工具分野に
おける耐摩托性被覆膜として極めて有用な窒化ホウ素膜
を形成することができる.
When we measured the X-ray diffraction of this boron nitride film, we found that h-B
Diffraction angle corresponding to the diffraction peak of N 4 3. A diffraction peak was detected at a diffraction angle of 96° and 43.3°, which corresponds to the diffraction peak of c-BN. [Effects of the Invention] According to the method for forming a boron nitride film of the present invention, accelerated ions are used to sputter a subasota target made of boron nitride, and the boron nitride film is deposited on the surface of a substrate by the subaso particles. When an evaporation material containing boron is heated and evaporated onto the surface of a substrate, as in the conventional technology, bumping of the boron-based material and instability of the bacterial growth rate occur due to the poor thermal conductivity of boron. The problem of ease can be solved. In addition, in conjunction with the deposition of the boron nitride film on the substrate surface by the spunter, the substrate surface is irradiated with ions containing hydrogen ions, so that the hydrogen ions are used to irradiate SP or SP present in the boron nitride film deposited on the substrate surface. Reacts with nuclei with SP2 hybrid orbitals, converting them to SP' bond nuclei, promoting the production of c-BN, and selectively removing h-BN and unreacted hydrogen in the film. As a result, the properties of the film are dominated by c-BN and w-BN, and it has high thermal conductivity, high insulation property, high hardness, and high chemical stability, and as a result, it is used as an insulating film in the semiconductor field. It is also possible to form a boron nitride film that is extremely useful as an abrasion-resistant coating film in the tool field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施のために用いられるyl膜形
成装置の概念図である。 2・・・基体、3・・・スパッタターゲット、4・・・
スパフタイオン源、 5・・・イオン源
FIG. 1 is a conceptual diagram of an yl film forming apparatus used for carrying out the present invention. 2...Base, 3...Sputter target, 4...
Spaftian ion source, 5... ion source

Claims (1)

【特許請求の範囲】[Claims]  窒化ホウ素からなるスパッタターゲットをイオンビー
ムによってスパッタさせ、このスパッタ粒子の堆積と水
素イオンを含むイオンの照射とを併用して、基体表面に
窒化ホウ素膜を形成することを特徴とする窒化ホウ素膜
の形成方法。
A boron nitride film characterized in that a sputter target made of boron nitride is sputtered with an ion beam, and a boron nitride film is formed on a substrate surface by combining the deposition of sputtered particles and irradiation with ions containing hydrogen ions. Formation method.
JP23376389A 1989-09-07 1989-09-07 Formation of boron nitride film Pending JPH0397847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23376389A JPH0397847A (en) 1989-09-07 1989-09-07 Formation of boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23376389A JPH0397847A (en) 1989-09-07 1989-09-07 Formation of boron nitride film

Publications (1)

Publication Number Publication Date
JPH0397847A true JPH0397847A (en) 1991-04-23

Family

ID=16960193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23376389A Pending JPH0397847A (en) 1989-09-07 1989-09-07 Formation of boron nitride film

Country Status (1)

Country Link
JP (1) JPH0397847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621027A (en) * 1991-10-04 1994-01-28 Matsushita Electric Ind Co Ltd Method for removing damage of material
JP2009503268A (en) * 2005-08-01 2009-01-29 サン−ゴバン グラス フランス Method of applying scratch-resistant coating
CN111676450A (en) * 2020-06-24 2020-09-18 吉林大学 Hexagonal boron nitride thick film based on ion beam sputtering deposition and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621027A (en) * 1991-10-04 1994-01-28 Matsushita Electric Ind Co Ltd Method for removing damage of material
JP2009503268A (en) * 2005-08-01 2009-01-29 サン−ゴバン グラス フランス Method of applying scratch-resistant coating
CN111676450A (en) * 2020-06-24 2020-09-18 吉林大学 Hexagonal boron nitride thick film based on ion beam sputtering deposition and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4656052A (en) Process for production of high-hardness boron nitride film
WO1988010321A1 (en) Process for the deposition of diamond films
JPH0351787B2 (en)
JPH0259862B2 (en)
JPH0397847A (en) Formation of boron nitride film
JPH0259864B2 (en)
JP2611521B2 (en) Method of forming boron nitride thin film
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JP3254727B2 (en) Method for forming boron nitride-containing film
JPS60181262A (en) Production of boron nitride film having high hardness
JP3898622B2 (en) Carbon film forming method and apparatus, and carbon film and product coated with the carbon film
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JP2535886B2 (en) Carbon-based film coating method
JPH07150337A (en) Production of nitride film
JPH05320870A (en) Substrate coated with boron nitride containing film and its manufacture
JPH0649637B2 (en) High hardness boron nitride synthesis method
JPH0515788B2 (en)
JP3491288B2 (en) Boron nitride-containing film-coated substrate and method for producing the same
JP2611522B2 (en) Method of forming boron nitride thin film
JP2861753B2 (en) Substrate coated with boron nitride containing film
JP2587636B2 (en) Diamond synthesis method and equipment
JPH03153861A (en) Base body coated with boron nitride film and its production
JPH07102359A (en) Production of chromium nitride film-coated substrate
JPS62256794A (en) Formation of thin diamond film
JPS61219709A (en) Preparation of diamondlike carbon