JPS62256794A - Formation of thin diamond film - Google Patents

Formation of thin diamond film

Info

Publication number
JPS62256794A
JPS62256794A JP9888886A JP9888886A JPS62256794A JP S62256794 A JPS62256794 A JP S62256794A JP 9888886 A JP9888886 A JP 9888886A JP 9888886 A JP9888886 A JP 9888886A JP S62256794 A JPS62256794 A JP S62256794A
Authority
JP
Japan
Prior art keywords
substrate
gas
thin film
diamond
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9888886A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogata
潔 緒方
Yasunori Ando
靖典 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP9888886A priority Critical patent/JPS62256794A/en
Priority to DE8787106104T priority patent/DE3775459D1/en
Priority to AU72154/87A priority patent/AU592865B2/en
Priority to EP87106104A priority patent/EP0245688B1/en
Publication of JPS62256794A publication Critical patent/JPS62256794A/en
Priority to US07/544,800 priority patent/US5009923A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently form the title homogeneous diamond film having good adhesion at low processing temp. by vapor-depositing carbon on a substrate in vacuum, and simultaneously projecting a specified ion. CONSTITUTION:The inside of a vacuum vessel contg. a holder 2 provided with the substrate 20 is evacuated to about 10<-3>-10<-7>Torr, and the carbon 6 is vapor-deposited on the substrate 20 from a vaporization source 4. At the same time, a gaseous mixture consisting essentially of at least one kind of gas selected from hydrogen, an inert gas such as Ar, hydrocarbons, and org. compds. and contg. 0.1-10vol% silicic gas such as monosilanes and disilanes is ionized as an ion source 10. The obtained ion 12 is accelerated and projected, and a thin diamond film 24 is formed on the substrate 20 through a mixed layer 22 consisting of the substrate and diamond.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空蒸着とイオン照射との併用によって、
基体上にダイヤモンド薄膜を作製する方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention uses vacuum evaporation and ion irradiation in combination to
This invention relates to a method for producing a diamond thin film on a substrate.

〔従来の技術〕[Conventional technology]

従来、基体上にダイヤモンド薄膜を作製(合成)する手
段としては、炭化水素、有機化合物系のガスを用いたプ
ラズマCVD法、光CVD法等の化学気相成長法が採ら
れていた。
Conventionally, as means for producing (synthesizing) a diamond thin film on a substrate, a chemical vapor deposition method such as a plasma CVD method using a hydrocarbon or organic compound gas or a photoCVD method has been adopted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記のような従来方法には次のような問題が
あった。
However, the conventional method as described above has the following problems.

■ 炭化水素、有機化合物系のガスではダイヤモンドの
結晶成長と同時にグラファイトの析出が生じる。
■ Hydrocarbon and organic compound gases cause graphite precipitation to occur at the same time as diamond crystal growth.

■ 基体およびガス雰囲気を高温加熱(例えば800℃
〜1000℃程度)して処理する必要があるため、基体
として使用できる材質が大幅に限定される。
■ Heating the substrate and gas atmosphere at high temperatures (e.g. 800℃)
Since it is necessary to process the substrate at a temperature of 1,000° C. to 1,000° C., the materials that can be used as the substrate are greatly limited.

■ 気相中で生じるイオンの運動エネルギーは高々数十
〜数百eV程度であるため、基体に到達する際の当該イ
オンのエネルギーは極めて小さく、従ってダイヤモンド
薄膜は基体との密着性が悪く剥離し易い。
■ The kinetic energy of ions generated in the gas phase is at most several tens to hundreds of eV, so the energy of the ions when they reach the substrate is extremely small, so the diamond thin film has poor adhesion to the substrate and may peel off. easy.

そこでこの発明は、上記のような問題点を解決したダイ
ヤモンド薄膜の作製方法を提供すること目的とする。
Therefore, an object of the present invention is to provide a method for manufacturing a diamond thin film that solves the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のダイヤモンド薄膜の作製方法は、真空中で基
体に対して、炭素の蒸着と、水素、不活性ガス、炭化水
素および有機化合物の少なくとも一種から成るガスとケ
イ素系ガスとの混合ガスをイオン化して得られかつ加速
されたイオンの照射とを行うことによって、当該基体上
にダイヤモンド薄膜を作製することを特徴とする。
The method for producing a diamond thin film of the present invention involves vapor deposition of carbon onto a substrate in vacuum, and ionization of a mixed gas of a silicon-based gas and a gas consisting of at least one of hydrogen, an inert gas, a hydrocarbon, and an organic compound. The method is characterized in that a diamond thin film is produced on the substrate by irradiation with ions obtained and accelerated.

〔作用〕[Effect]

基体に炭素蒸着と上記のようなイオン照射とを行うと、
照射イオンは、基体に蒸着されたグラファイト構造の炭
素からダイヤモンド結晶を得るための核形成エネルギー
供給源として作用し、これによって基体上にダイヤモン
ド薄膜が作製される。
When the substrate is subjected to carbon vapor deposition and ion irradiation as described above,
The irradiating ions act as a nucleation energy source to obtain diamond crystals from the graphite-structured carbon deposited on the substrate, thereby creating a thin diamond film on the substrate.

〔実施例〕〔Example〕

第1図は、この発明に係る方法を実施する装置の一例を
示す概略図である。真空容器(図示省略)内に、例えば
ホルダー2に取り付けられて基体(例えば基板)20が
収納されており、当該基体20に向けて蒸発源4および
イオン源10が配置されている。基体20としては、例
えば金属、セラミックス等の種々のものが採り得る。蒸
発源4は例えば電子ビーム蒸発源であり、蒸発材料とし
て炭素6を有しており、それを加熱蒸気化して基体20
の表面に蒸着させることができる。イオン源10は例え
ばパケット型イオン源が好ましく、それによれば供給さ
れたガスGをイオン化して均一で大面積のイオン12を
加速して基体20の表面に向けて照射することができる
ので、一度に大面積の処理が可能になる。尚、14は基
体20上に作製される薄膜の膜厚モニタである。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method according to the invention. A base body (for example, a substrate) 20 is housed in a vacuum container (not shown) attached to, for example, a holder 2, and an evaporation source 4 and an ion source 10 are arranged facing the base body 20. The base body 20 may be made of various materials such as metals and ceramics. The evaporation source 4 is, for example, an electron beam evaporation source, and has carbon 6 as an evaporation material, which is heated and vaporized to form the substrate 20.
can be deposited on the surface of The ion source 10 is preferably a packet type ion source, for example, because it can ionize the supplied gas G, accelerate ions 12 over a uniform large area, and irradiate the ions 12 toward the surface of the base 20. It becomes possible to process large areas. Note that 14 is a film thickness monitor for a thin film produced on the base 20.

イオン源10に供給するガスGとしては、水素、アルゴ
ン等の不活性ガス、炭化水素および有機化合物の少なく
とも一種から成るガスに、即ちこれらの単一ガスまたは
混合ガスに、例えばモノシラン(SiH4)、ジシラン
(SizHa)等のケイ素系ガスを例えばO,1〜10
%(体積%)程度混入した混合ガスを用いる。
The gas G supplied to the ion source 10 is a gas consisting of at least one of hydrogen, an inert gas such as argon, a hydrocarbon, and an organic compound, that is, a single gas or a mixture thereof, such as monosilane (SiH4), Silicon-based gas such as disilane (SizHa), for example, O, 1 to 10
% (volume %) of mixed gas is used.

膜作製に際しては、真空容器内を例えば10−5〜10
−’Torr程度にまで排気した後、蒸発源4からの炭
素6を基体20上に蒸着させるのと同時に、またはそれ
と交互に、イオン源10からのイオン12を基体20に
向けて照射する。その際、基体20に蒸着させる炭素6
と基体20に照射するイオン12との粒子比(組成比)
C/イオンは適当な値を選択して行う。
When preparing the film, the inside of the vacuum container must be heated at a temperature of, for example, 10-5 to 10
After evacuation to about -' Torr, ions 12 from the ion source 10 are irradiated toward the substrate 20 simultaneously with or alternately with carbon 6 from the evaporation source 4 being evaporated onto the substrate 20. At that time, carbon 6 to be deposited on the base 20
Particle ratio (composition ratio) of the ions 12 and the ions 12 irradiated to the base 20
An appropriate value is selected for C/ion.

上記の場合、イオン12は、基体20上に蒸着されたグ
ラファイト構造の炭素6からダイヤモンド結晶を得るた
めの核形成エネルギー供給源として作用し、これによっ
て例えば第2図に示すように、基体20の表面にダイヤ
モンド薄膜24が作製される。しかもその際、照射され
たケイ素はSP3混成軌道しか取らず、グラファイトの
析出を抑制すると共にダイヤモンド形成に有効に作用す
る。
In the above case, the ions 12 act as a nucleation energy source for obtaining diamond crystals from graphitic structured carbon 6 deposited on the substrate 20, thereby e.g. A diamond thin film 24 is formed on the surface. Moreover, at that time, the irradiated silicon takes only SP3 hybrid orbits, which suppresses the precipitation of graphite and effectively acts on diamond formation.

尚、上記イオン12の加速エネルギーは、40KeV程
度以下にするのが好ましい。これは、エネルギーが40
KeV程度を越えると、ダイヤモンド薄膜24の内部に
ダメージ(欠陥部)を発生させると共に、スパンタリン
グ作用が表れてダイヤモンド薄膜20の成膜速度が低下
する場合があるからである。
Note that the acceleration energy of the ions 12 is preferably about 40 KeV or less. This has an energy of 40
This is because, if it exceeds about KeV, damage (defects) may occur inside the diamond thin film 24, and a sputtering effect may appear, resulting in a decrease in the deposition rate of the diamond thin film 20.

また、炭素6の蒸着とイオン12の照射を交互に行う場
合は、炭素6の蒸着を先行させるものとし、しかもその
蒸着膜厚は照射イオン12の飛程(平均射影飛程)程度
とするのが好ましい。そのようにすれば、直前の蒸着膜
だけを不足なくダイヤモンド化することができるからで
ある。必要な膜厚は、膜厚モニタ14によって測定する
ことができる。
In addition, when vapor deposition of carbon 6 and irradiation of ions 12 are performed alternately, the vapor deposition of carbon 6 should be performed first, and the thickness of the vapor deposited film should be about the range (average projected range) of the irradiated ions 12. is preferred. This is because only the immediately preceding vapor deposited film can be completely diamondized. The required film thickness can be measured by the film thickness monitor 14.

また、膜作製時には、基体20を加熱手段(図示省略)
によって数百度程度まで加熱しても良く、そのようにす
ればダイヤモンド形成の反応を促進することができる。
In addition, during film production, the substrate 20 is heated by heating means (not shown).
The diamond-forming reaction can be accelerated by heating the diamond to several hundred degrees Celsius.

上記のような製膜方法の特徴を列挙すれば次のとおりで
ある。
The characteristics of the film forming method as described above are listed below.

■ 照射イオン12中にケイ素を含んでいるため、グラ
ファイトの析出を抑制でき、均質なダイヤモンド薄膜2
4が得られる。
■ Since silicon is included in the irradiated ions 12, precipitation of graphite can be suppressed, resulting in a homogeneous diamond thin film 2.
4 is obtained.

■ 低温処理が可能であるため、基体20として使用で
きる材質の範囲が大幅に広がる。
(2) Since low-temperature treatment is possible, the range of materials that can be used as the base 20 is greatly expanded.

■ 加速されたイオン12を用いるため、例えば第2図
に示すように基体20とダイヤモンド薄膜24との界面
付近に両者の構成vyJ質から成る混合層(ミキシング
層)22が形成され、これが言わば模のような作用をす
るので、ダイヤモンド薄膜24は基体20に対して密着
性が良く剥離しにくい。
(2) Since accelerated ions 12 are used, a mixed layer 22 consisting of the structure of the base 20 and the diamond thin film 24 is formed near the interface between the base 20 and the diamond thin film 24, as shown in FIG. As a result, the diamond thin film 24 has good adhesion to the base 20 and is difficult to peel off.

■ 炭素6の蒸着を併用するため、従来方法に比べて短
時間で大きな膜厚が得られ、ダイヤモンド薄膜240作
製効率が良い。
(2) Since vapor deposition of carbon 6 is also used, a larger film thickness can be obtained in a shorter time than with conventional methods, and the diamond thin film 240 can be produced efficiently.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、低い処理温度で、しか
も均質かつ密着性の良いダイヤモンド薄膜を基体上に効
率良く作製することができる。
As described above, according to the present invention, a homogeneous and highly adhesive diamond thin film can be efficiently produced on a substrate at a low processing temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る方法を実施する装置の一例を
示す概略図である。第2図は、この発明に係る方法によ
ってダイヤモンド薄膜が作製された基体の一例を拡大し
て示す概略断面図である。 4・・・蒸発源、6・・・炭素、10・・・イオン源、
12・・・イオン、20・・・基体、22・・・混合層
、24・・・ダイヤモンド薄膜、G・・・ガス。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method according to the invention. FIG. 2 is a schematic cross-sectional view showing an enlarged example of a substrate on which a diamond thin film is formed by the method according to the present invention. 4... Evaporation source, 6... Carbon, 10... Ion source,
DESCRIPTION OF SYMBOLS 12... Ion, 20... Substrate, 22... Mixed layer, 24... Diamond thin film, G... Gas.

Claims (1)

【特許請求の範囲】[Claims] (1)真空中で基体に対して、炭素の蒸着と、水素、不
活性ガス、炭化水素および有機化合物の少なくとも一種
から成るガスとケイ素系ガスとの混合ガスをイオン化し
て得られかつ加速されたイオンの照射とを行うことによ
って、当該基体上にダイヤモンド薄膜を作製することを
特徴とするダイヤモンド薄膜の作製方法。
(1) Obtained and accelerated by evaporating carbon onto a substrate in vacuum and ionizing a mixed gas of a silicon-based gas and a gas consisting of at least one of hydrogen, an inert gas, a hydrocarbon, and an organic compound. A method for producing a diamond thin film, the method comprising: producing a diamond thin film on the substrate by irradiating the substrate with ions.
JP9888886A 1986-04-28 1986-04-28 Formation of thin diamond film Pending JPS62256794A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9888886A JPS62256794A (en) 1986-04-28 1986-04-28 Formation of thin diamond film
DE8787106104T DE3775459D1 (en) 1986-04-28 1987-04-28 METHOD FOR PRODUCING A DIAMOND LAYER.
AU72154/87A AU592865B2 (en) 1986-04-28 1987-04-28 Method of forming diamond film
EP87106104A EP0245688B1 (en) 1986-04-28 1987-04-28 Method of forming diamond film
US07/544,800 US5009923A (en) 1986-04-28 1990-06-27 Method of forming diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9888886A JPS62256794A (en) 1986-04-28 1986-04-28 Formation of thin diamond film

Publications (1)

Publication Number Publication Date
JPS62256794A true JPS62256794A (en) 1987-11-09

Family

ID=14231676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9888886A Pending JPS62256794A (en) 1986-04-28 1986-04-28 Formation of thin diamond film

Country Status (1)

Country Link
JP (1) JPS62256794A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195094A (en) * 1984-03-15 1985-10-03 Agency Of Ind Science & Technol Production of diamond thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195094A (en) * 1984-03-15 1985-10-03 Agency Of Ind Science & Technol Production of diamond thin film

Similar Documents

Publication Publication Date Title
EP0245688B1 (en) Method of forming diamond film
JPH08232069A (en) Method and apparatus for sublimating solid substance
JPH0259862B2 (en)
JPS62256794A (en) Formation of thin diamond film
JPH04337064A (en) Boron nitride coating member
EP0280198B1 (en) Method of forming diamond film
JPS63206388A (en) Production of diamond thin film
JPS6225249B2 (en)
JPH079059B2 (en) Method for producing carbon thin film
JPS61201693A (en) Production of diamond
JPS63206387A (en) Production of diamond thin film
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPH01162757A (en) Formation of carbon film
JPS63206390A (en) Production of diamond thin film
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JPS63206389A (en) Production of diamond thin film
JP2952683B2 (en) Method for producing nitride film-coated substrate and oxide film-coated substrate
JPS63262457A (en) Preparation of boron nitride film
JPS63254727A (en) X-ray exposure mask and manufacture thereof
JPH0397847A (en) Formation of boron nitride film
JP2587636B2 (en) Diamond synthesis method and equipment
JPS62232180A (en) Superconducting material
JPS60181262A (en) Production of boron nitride film having high hardness
JPS63222095A (en) Coating of carbonaceous film
JPH02157123A (en) Production of thin barium titanate film