JPH01261214A - Production of diamond-containing or hard carbon film - Google Patents

Production of diamond-containing or hard carbon film

Info

Publication number
JPH01261214A
JPH01261214A JP63087980A JP8798088A JPH01261214A JP H01261214 A JPH01261214 A JP H01261214A JP 63087980 A JP63087980 A JP 63087980A JP 8798088 A JP8798088 A JP 8798088A JP H01261214 A JPH01261214 A JP H01261214A
Authority
JP
Japan
Prior art keywords
diamond
substrate
film
ions
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63087980A
Other languages
Japanese (ja)
Inventor
Takeshi Owaki
健史 大脇
Yasunori Taga
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP63087980A priority Critical patent/JPH01261214A/en
Publication of JPH01261214A publication Critical patent/JPH01261214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance adhesion of a diamond-containing or hard carbon film to a substrate and improve durability, by irradiating the surface of the substrate with inert gas ions in a vacuum and simultaneously introducing a mixed gas of methane and hydrogen. CONSTITUTION:The vacuum degree is desirably 1X10<-5>-1X10<4>Torr and the surface of a silicon substrate (at 800-1,000 deg.C temperature) is irradiated with inert gas ions having 30-200keV, preferably 30-100keV energy at >=1X10<17> ion irradiation quantity. A mixed gas of methane and hydrogen (methane concentration; 0.1-1.0mol%) is simultaneously introduced to form a diamond-containing or hard carbon film. The above-mentioned film is excellent in water repellency and applied even to wettability controlling thin films utilizing the surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、表面保護材料、音響材料、硬質材料、ぬれ性
制御材料等に利用されるダイヤモンド含有膜または硬質
カーボン膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a diamond-containing film or a hard carbon film used for surface protection materials, acoustic materials, hard materials, wettability control materials, and the like.

[従来の技術] ダイヤモンドは、高硬度、良熱伝導性といった機械的、
電気的、光学的に優れた性質を有し、各種工業用材料と
して広く利用されている。
[Conventional technology] Diamond has mechanical properties such as high hardness and good thermal conductivity.
It has excellent electrical and optical properties and is widely used as a variety of industrial materials.

しかしながら、超硬物質であるダイヤモンドは加工性に
難があり、このため、薄膜状ダイヤモンド、あるいはこ
れと類似の性質を有する硬質カーボン膜の製法の開発が
進められている。これら薄膜材料は、コーティングする
基体の形状を変えることにより任意の形状を取り得るた
め、広範囲の用途が期待できる。
However, diamond, which is a superhard substance, has difficulty in machining, and for this reason, the development of a method for producing thin film diamond or a hard carbon film having similar properties is progressing. Since these thin film materials can take any shape by changing the shape of the substrate to be coated, they can be expected to have a wide range of uses.

このダイヤモンド含有膜または硬質カーボン膜の製造方
法に関しては、近年、種々の方法が提案されており(例
えば、エレクトロセラミックー87/9  p46〜5
5.特開昭60−195093号公報等)、その方法は
、大きく2つに分類される。1つは、物理気相蒸着(P
VD)法であり、低エネルギーのイオン照射と各種蒸着
法を組合わせたイオン化蒸着法、基体上に直接Cあるい
はC−ビームを照射する炭素ビーム法、カーボンターゲ
ットを不活性イオンでスパッタし、基体上にスパッタ蒸
着すると同時にイオン照射を行なうイオンビームスパッ
タ法等がこれに属する。
Regarding the manufacturing method of this diamond-containing film or hard carbon film, various methods have been proposed in recent years (for example, Electroceramic 87/9 p46-5).
5. JP-A No. 60-195093, etc.), and the methods can be broadly classified into two. One is physical vapor deposition (P
VD) method, which is a combination of low-energy ion irradiation and various vapor deposition methods, a carbon beam method in which C or C-beam is directly irradiated onto the substrate, and a carbon target that is sputtered with inert ions to form a substrate. This includes an ion beam sputtering method in which ions are irradiated at the same time as sputter deposition is carried out.

もう1つは化学気相蒸着(CVD)法であり、例えば、
マイクロ波CVD法、電子衝撃CVD法、プラズマCV
D法等が知られている。
The other method is chemical vapor deposition (CVD), for example,
Microwave CVD method, electron impact CVD method, plasma CV
D method etc. are known.

[発明が解決しようとする課題] しかしながら、上記従来の方法では、得られたダイヤモ
ンド含有膜または硬質カーボン膜と基体との密着性が低
く、熱歪みや急激な力の付与によって剥離する等の問題
があった。
[Problems to be Solved by the Invention] However, in the conventional method described above, the adhesion between the obtained diamond-containing film or hard carbon film and the substrate is low, and there are problems such as peeling due to thermal distortion or sudden application of force. was there.

本発明は、上記従来技術における問題を解決するために
なされたものであり、ダイヤモンド含有膜または硬質カ
ーボン膜と基体との密着性を高め、耐久性を向上させる
ことを目的とする。
The present invention has been made to solve the problems in the prior art described above, and aims to improve the adhesion between a diamond-containing film or a hard carbon film and a substrate, thereby improving durability.

[課題を解決するための手段] 本発明者等は、上記目的を達成するために鋭意検討を行
なった結果、真空中、基体上に30keV〜200 k
 e Vのエネルギーを有する不活性ガスイオンを、イ
オン照射量1×1017イオン/−以上の条件で照射し
、同時に該基体上に水素とメタンの混合ガスを導入する
ことにより、ダイヤモンド含有膜または硬質カーボン膜
が製造できること、しかも得られたダイヤモンド含有膜
または硬質カーボン膜はイオンのミキシング効果により
良好な密着性を有することを見出だした。
[Means for Solving the Problems] The present inventors conducted intensive studies to achieve the above object, and as a result, the present inventors applied a voltage of 30 keV to 200 k on a substrate in vacuum.
A diamond-containing film or a hard It has been discovered that a carbon film can be produced, and that the resulting diamond-containing film or hard carbon film has good adhesion due to the ion mixing effect.

本発明において、基体上に照射する不活性ガスイオンと
しては、アルゴンイオン、ヘリウムイオン、ネオンイオ
ン、キセノンイオン等が好適に曲用される。照射する不
活性ガスイオンのエネルギーは30keV〜200ke
Vであることが望ましく、この範囲内で適切なミキシン
グ効果が得られる。エネルギーが30keVより低いと
、イオンによるスパッタ効果が主流となり、生成した膜
の表面が削りとられてしまう。また、逆に200keV
を越えるとイオンが基体内部に注入されてしまい、イオ
ンのミキシング効果が基体内部で生じて膜との界面に作
用せず、密着性が向上しない。
In the present invention, argon ions, helium ions, neon ions, xenon ions, etc. are preferably used as the inert gas ions to be irradiated onto the substrate. The energy of the inert gas ions to be irradiated is 30 keV to 200 ke.
V is desirable, and an appropriate mixing effect can be obtained within this range. When the energy is lower than 30 keV, the sputtering effect by ions becomes the mainstream, and the surface of the formed film is scraped off. Also, conversely, 200keV
If it exceeds 100%, ions will be injected into the substrate, and a mixing effect of ions will occur inside the substrate, and will not affect the interface with the film, resulting in no improvement in adhesion.

さらに好ましくは30keV〜100keVの範囲とす
る。
More preferably, the range is from 30 keV to 100 keV.

イオンの照射量は、少なくとも1×1017イオン/c
m2以上とすることが必要で、1×1017イオン/−
未満では膜が形成されない。
The ion irradiation dose is at least 1×1017 ions/c
It is necessary to make it more than m2, 1 x 1017 ions/-
If it is less than that, no film will be formed.

本発明においては、イオン照射と同時に、基体上に水素
とメタンの混合ガスを導入するが、混合ガス中のメタン
濃度は生成する膜の性状を決定する重要なファクターの
1つである。ダイヤモンド含有膜はメタン濃度0.1m
o1%〜1.0m。
In the present invention, a mixed gas of hydrogen and methane is introduced onto the substrate simultaneously with ion irradiation, and the methane concentration in the mixed gas is one of the important factors that determines the properties of the produced film. The diamond-containing film has a methane concentration of 0.1m
o1%~1.0m.

1%の範囲で形成され、それ以外では硬質カーボン膜が
生成する。ここで、ダイヤモンド含有膜とはダイヤモン
ドを主体とする膜を、硬質カーボン膜はi−カーボンを
主体とする膜をそれぞれ意味し、いずれも通常少量のグ
ラファイトを含有する。
It is formed within a range of 1%, and a hard carbon film is formed outside of this range. Here, the diamond-containing film means a film mainly composed of diamond, and the hard carbon film means a film mainly composed of i-carbon, both of which usually contain a small amount of graphite.

また、基体温度も重要なファクターの1つであり、基体
温度が800°C〜1000°Cの範囲でのみダイヤモ
ンド含有膜が形成され、800℃より低温では硬質カー
ボン膜が形成される。ダイヤモンド含有膜の形成には、
メタン濃度および基体温度の両方が上記範囲を満たして
いることが必要で、例えばメタン濃度が上記範囲であっ
ても基体温度が800℃より低い場合にはダイヤモンド
含有膜は生成せず、硬質カーボン膜が生成する。
Further, the substrate temperature is also an important factor; a diamond-containing film is formed only when the substrate temperature is in the range of 800°C to 1000°C, and a hard carbon film is formed at a temperature lower than 800°C. For the formation of diamond-containing films,
It is necessary that both the methane concentration and the substrate temperature satisfy the above ranges. For example, even if the methane concentration is within the above range, if the substrate temperature is lower than 800°C, a diamond-containing film will not be formed and a hard carbon film will not form. is generated.

次に、図面に基づいて本発明方法の一例を説明する。第
1図には本発明のダイヤモンド含有wAまたは硬質カー
ボン膜を製造する装置の概要を示す。
Next, an example of the method of the present invention will be explained based on the drawings. FIG. 1 shows an outline of an apparatus for manufacturing a diamond-containing wA or hard carbon film according to the present invention.

図中、1は真空ポンプ、2は真空槽、3はイオン源、4
は基体ホルダー、5は基体、6は混合カス導入系、7は
イオンビーム、8は混合ガスである。
In the figure, 1 is a vacuum pump, 2 is a vacuum chamber, 3 is an ion source, and 4
1 is a substrate holder, 5 is a substrate, 6 is a mixed waste introduction system, 7 is an ion beam, and 8 is a mixed gas.

先ず、基体5を基体ホルダー4に取付けて真空槽2中に
設置し、真空ポンプ1で5X10−6T。
First, the substrate 5 was attached to the substrate holder 4 and placed in the vacuum chamber 2, and the vacuum pump 1 was used to pump 5X10-6T.

rr以下になるまで真空排気する。一方、真空槽2に接
続されているイオン源3において不活性ガスイオンを生
成し、その後加速して所定のエネルギーを付与し、基体
5上に照射する。同時に混合ガス導入系6より導入した
水素とメタンの混合ガスを基体5上に吹付ける。この時
、真空槽2内の真空度は1×1O−5TOrr〜lX1
O−4TOrrの範囲内とすることが望ましい。そして
、基体温度、イオン照射量等を上記した範囲内で任意に
設定することにより、基体上にダイヤモンド含有膜また
は硬質カーボン膜が形成される。
Evacuate until the temperature is below rr. On the other hand, inert gas ions are generated in an ion source 3 connected to the vacuum chamber 2, and then accelerated to give a predetermined energy and irradiated onto the substrate 5. At the same time, a mixed gas of hydrogen and methane introduced from the mixed gas introduction system 6 is sprayed onto the substrate 5. At this time, the degree of vacuum in the vacuum chamber 2 is 1×1O-5TOrr~l×1
It is desirable that it be within the range of O-4TOrr. Then, by arbitrarily setting the substrate temperature, ion irradiation amount, etc. within the above-mentioned ranges, a diamond-containing film or a hard carbon film is formed on the substrate.

[作用] イオン源より基体表面に向けて照射されたイオンは、混
合ガスに衝突してエネルギーを与え、ダイヤモンド含有
膜または硬質カーボン膜の生成反応に寄与する。
[Function] The ions irradiated from the ion source toward the substrate surface collide with the mixed gas and give energy, contributing to the formation reaction of a diamond-containing film or a hard carbon film.

同時に、照射イオンのミキシング効果により膜と基体表
面層とが混ざり合い、膜と基体との間にこれらの混合層
を形成する。かくして、膜が基体から剥離しにくくなり
、基体と膜との密着性が格段に向上する。
At the same time, the membrane and the substrate surface layer are mixed together due to the mixing effect of the irradiated ions, forming a mixed layer between the membrane and the substrate. In this way, the film becomes difficult to peel off from the substrate, and the adhesion between the substrate and the film is significantly improved.

[実施例] 以下、本発明を実施例により詳細に説明するが、本発明
はその要旨を越えない限り、これら実施例により限定さ
れるものではない。
[Examples] Hereinafter, the present invention will be explained in detail using Examples, but the present invention is not limited by these Examples unless the gist of the invention is exceeded.

(1)第1図に示される装置を用い、第1表に示される
条件でダイヤモンド含有膜および硬質カーボン膜を作製
しな。基体5としてはシリコンを用い、これを基体ホル
ダー4に取付けな後、真空槽2中に設置し、真空ポンプ
1で3X10−6Torrまで真空排気した。その後、
基体5を第1表に示す温度まで加熱し、混合ガス導入系
6より水素とメタンの混合ガス(メタン濃度0.5%)
を導入して基体5上に吹付けた。真空槽2内は2×10
−”Torrを保持するよう真空ポンプ1で真空排気し
た。
(1) Using the apparatus shown in FIG. 1, a diamond-containing film and a hard carbon film were produced under the conditions shown in Table 1. Silicon was used as the substrate 5, which was attached to the substrate holder 4, placed in the vacuum chamber 2, and evacuated to 3.times.10@-6 Torr using the vacuum pump 1. after that,
The substrate 5 is heated to the temperature shown in Table 1, and a mixed gas of hydrogen and methane (methane concentration 0.5%) is supplied from the mixed gas introduction system 6.
was introduced and sprayed onto the substrate 5. Inside vacuum chamber 2 is 2×10
The vacuum pump 1 was used to evacuate the sample to maintain a pressure of -''Torr.

その状態でイオン源3においてAr  イオンを生成し
、第1表に示すエネルギーを付与して基体5上に照射し
た。イオン照射量は1×1017イオン/−とした。(
実施例1〜4)。
In this state, Ar ions were generated in the ion source 3 and irradiated onto the substrate 5 with the energy shown in Table 1. The ion irradiation amount was 1×10 17 ions/−. (
Examples 1-4).

得られた膜の状態をAES(オージェエレクトロンエレ
クトロスコピー)、およびラマン分光によって評価した
。実施例1および実施例3のAES分析結果を第2図(
1)に示す。実施例1と実施例3のスペクトルの相異は
、240〜260e■のスペクトルプロファイルに観察
することができ、第2図(2)に示したダイヤモンドお
よびi−カーボンの標準スペクトルとの比較かられかる
ように、実施例1の膜はダイヤモンドのプロファイルに
、実施例3の膜はi−カーボンのプロファイルに近い。
The state of the obtained film was evaluated by AES (Auger electron electroscopy) and Raman spectroscopy. The AES analysis results of Example 1 and Example 3 are shown in Figure 2 (
Shown in 1). The difference between the spectra of Example 1 and Example 3 can be observed in the spectral profiles from 240 to 260e, which can be seen from the comparison with the standard spectra of diamond and i-carbon shown in Figure 2 (2). As can be seen, the film of Example 1 has a profile similar to that of diamond, and the film of Example 3 has a profile similar to that of i-carbon.

また、実施例1のラマンスペクトルを第3図に示すが、
1336.fflにダイヤモンドのピークが、1553
aT!付近から1300−に続くグラファイトのブロー
ドなピークが見られ、この膜がダイヤモンドおよびグラ
ファイトを含有することがわかる。
In addition, the Raman spectrum of Example 1 is shown in FIG.
1336. Diamond peak at ffl, 1553
aT! A broad graphite peak extending from around 1300- is seen, indicating that this film contains diamond and graphite.

なお、第1表には、比較例1〜3としてイオンのエネル
ギー、または導入ガスを本発明の範囲外とした場合の製
造条件と得られた膜の状態を記した。
In Table 1, as Comparative Examples 1 to 3, the manufacturing conditions and the state of the obtained membranes are shown when the ion energy or the introduced gas was outside the range of the present invention.

次に、実施例1〜4および比較例2〜3で得られた膜の
基体との密着性を評価するため、0.5RAl2O3圧
子によるひつかき試験を行なった。ひっかき試験は50
g荷重、20 ITn/ m i nの条件で行ない、
判定は下記のようにした。
Next, in order to evaluate the adhesion of the films obtained in Examples 1 to 4 and Comparative Examples 2 to 3 to the substrate, a strain test using a 0.5RA12O3 indenter was conducted. Scratch test is 50
g load, 20 ITn/min conditions,
The judgment was as follows.

○・・・傷なし Δ・・・わずかに傷あり ×・・・傷あり また、コンタクタンゲルメータ(接触角測定装置)によ
り、水のぬれ性を評価し、これらの結果を第1表に併記
した。
○... No scratches Δ... Slight scratches ×... Scratches In addition, water wettability was evaluated using a contact angle gel meter (contact angle measuring device), and these results are also listed in Table 1. did.

第1表に明らかな如く、比較例2.3でははっきり傷が
認められるのに対し、実施例1.2ではひっかき傷は認
められず、実施例3.4ではわずかに傷が認められるも
のの、本発明のダイヤモンド含有膜または硬質カーボン
膜は良好な密着性を有していることがわかる。また、ぬ
れ性は、実施例1〜4のいずれも水の接触角が80°以
上あり、良好な溌水性を示すことがわかる。
As is clear from Table 1, in Comparative Example 2.3, scratches are clearly observed, whereas in Example 1.2, no scratches are observed, and in Example 3.4, although slight scratches are observed, It can be seen that the diamond-containing film or hard carbon film of the present invention has good adhesion. Furthermore, regarding the wettability, it can be seen that all of Examples 1 to 4 had a water contact angle of 80° or more, indicating good water repellency.

(2)Ar  イオンに代えてHe  イオンを照射し
た以外は実施例1と同様の条件で成膜を行なった。得ら
れた膜の状態をAESおよびラマン分光で評価したとこ
ろ、ダイヤモンドを主体とする膜が生成しており、ひつ
かき試験およびぬれ性評価の結果も良好であった。また
、同様の結果が、Ne+イオン、Xe+イオンについて
も得られた。
(2) Film formation was performed under the same conditions as in Example 1 except that He 2 ions were irradiated instead of Ar 2 ions. When the state of the obtained film was evaluated by AES and Raman spectroscopy, it was found that a film mainly composed of diamond had been formed, and the results of the scratch test and wettability evaluation were also good. Similar results were also obtained for Ne+ ions and Xe+ ions.

[発明の効果コ 本発明によれば、基体との密着性が高く、耐久性に優れ
たダイヤモンド含有膜または硬質カーボン膜を製造する
ことができる。また、溌水性にも優れているので、表面
を利用したぬれ性制御薄膜  、等、利用範囲が広く、
利用価値が大である。
[Effects of the Invention] According to the present invention, a diamond-containing film or a hard carbon film that has high adhesion to a substrate and excellent durability can be produced. It also has excellent water repellency, so it can be used in a wide range of applications, such as wettability control thin films that utilize the surface.
It has great utility value.

さらに、従来のPVD法またはCVD法では、基体上の
特定部位にのみ膜を形成しようとする場合、マスクを用
いるが、形成温度が高いなめに反応を起こしたり、周辺
を汚したりするおそれがある。これに対し、本発明の方
法では、照射イオンの径を絞り、所定の領域を走査する
ことにより特定部位に膜を形成することが可能であり、
未照射の周辺への悪影響を及ぼすことがない。
Furthermore, in conventional PVD or CVD methods, a mask is used when attempting to form a film only on a specific region on a substrate, but the high formation temperature may cause a reaction or contaminate the surrounding area. . In contrast, in the method of the present invention, it is possible to form a film at a specific site by narrowing down the diameter of the irradiated ions and scanning a predetermined area.
There is no adverse effect on the surrounding areas that have not been irradiated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のダイヤモンド含有膜または硬質カーボ
ン膜を製造する装置の一例を示す概略図、第2図は実施
例1および実施例3で得られた膜のAESカーボンスペ
クトル図、第3図は実施例1で得られた膜のラマンスペ
クトル図である。 1・・・・・・真空ポンプ 2・・・・・・真空槽 3・・・・・・イオン源 4・・・・・・基体ホルダー 5・・・・・・基体 6・・・・・・混合ガス導入系 7・・・・・・イオンビーム 8・・・・・・混合ガス 第1R
Fig. 1 is a schematic diagram showing an example of an apparatus for producing a diamond-containing film or hard carbon film of the present invention, Fig. 2 is an AES carbon spectrum diagram of the films obtained in Example 1 and Example 3, and Fig. 3 is a Raman spectrum diagram of the film obtained in Example 1. 1... Vacuum pump 2... Vacuum chamber 3... Ion source 4... Substrate holder 5... Substrate 6...・Mixed gas introduction system 7...Ion beam 8...Mixed gas 1R

Claims (4)

【特許請求の範囲】[Claims] (1)真空中、基体上に30keV〜200keVのエ
ネルギーを有する不活性ガスイオンを、イオン照射量1
×10^1^7イオン/cm^2以上で照射し、同時に
該基体上に水素とメタンの混合ガスを導入することを特
徴とするダイヤモンド含有膜または硬質カーボン膜の製
造方法。
(1) In a vacuum, inert gas ions having an energy of 30 keV to 200 keV are applied to the substrate at an ion irradiation amount of 1
A method for producing a diamond-containing film or a hard carbon film, which comprises irradiating with 10^1^7 ions/cm^2 or more and simultaneously introducing a mixed gas of hydrogen and methane onto the substrate.
(2)混合ガス中のメタン濃度が0.1mol%〜1.
0mol%である請求項1記載のダイヤモンド含有膜の
製造方法。
(2) The methane concentration in the mixed gas is between 0.1 mol% and 1.
The method for producing a diamond-containing film according to claim 1, wherein the content is 0 mol%.
(3)基体の温度が800℃〜1000℃の範囲である
請求項1または2記載のダイヤモンド含有膜の製造方法
(3) The method for producing a diamond-containing film according to claim 1 or 2, wherein the temperature of the substrate is in the range of 800°C to 1000°C.
(4)不活性イオンのエネルギーが30keV〜100
keVである請求項3記載のダイヤモンド含有膜の製造
方法。
(4) The energy of inert ions is 30 keV to 100
4. The method for producing a diamond-containing film according to claim 3, wherein the voltage is keV.
JP63087980A 1988-04-08 1988-04-08 Production of diamond-containing or hard carbon film Pending JPH01261214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087980A JPH01261214A (en) 1988-04-08 1988-04-08 Production of diamond-containing or hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087980A JPH01261214A (en) 1988-04-08 1988-04-08 Production of diamond-containing or hard carbon film

Publications (1)

Publication Number Publication Date
JPH01261214A true JPH01261214A (en) 1989-10-18

Family

ID=13929972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087980A Pending JPH01261214A (en) 1988-04-08 1988-04-08 Production of diamond-containing or hard carbon film

Country Status (1)

Country Link
JP (1) JPH01261214A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284915A (en) * 2003-03-25 2004-10-14 Japan Science & Technology Agency Amorphous carbon film formed body and production method therefor
JP2006259060A (en) * 2005-03-16 2006-09-28 Matsushita Electric Ind Co Ltd Display panel assembling apparatus and display panel assembly method
JP2010189694A (en) * 2009-02-17 2010-09-02 Miyako Roller Industry Co Aluminum roll and carbon roll having dlc film formed thereon at atmospheric temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284915A (en) * 2003-03-25 2004-10-14 Japan Science & Technology Agency Amorphous carbon film formed body and production method therefor
JP2006259060A (en) * 2005-03-16 2006-09-28 Matsushita Electric Ind Co Ltd Display panel assembling apparatus and display panel assembly method
JP2010189694A (en) * 2009-02-17 2010-09-02 Miyako Roller Industry Co Aluminum roll and carbon roll having dlc film formed thereon at atmospheric temperature

Similar Documents

Publication Publication Date Title
Biederman et al. Plasma polymer films and their future prospects
Tomasella et al. aC: H thin films deposited by radio-frequency plasma: influence of gas composition on structure, optical properties and stress levels
EP0743375B1 (en) Method of producing diamond-like-carbon coatings
JPH0578844A (en) Amorphous thin film having solid lubricity and its production thereof
KR20120079716A (en) Anti-fingerprint coating method and device
McKenzie et al. New technology for PACVD
US6130002A (en) Process for producing organically modified oxide, oxynitride or nitride layers by vacuum deposition
JPH07103461B2 (en) Method for forming black film and film thereof
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
Wagner et al. Kinetic study of the heterogeneous Si/H system under low-pressure plasma conditions by means of mass spectrometry
Koerner et al. Influence of RF plasma reactor setup on carboxylated hydrocarbon coatings
Ramsey et al. Hydrophobic CNx thin film growth by inductively-coupled RF plasma enhanced pulsed laser deposition
López et al. Substrate temperature effects on film chemistry in plasma depositions of organics. II. Polymerizable precursors
JPH01261214A (en) Production of diamond-containing or hard carbon film
Cho et al. Physical and optical properties of plasma polymerized thin films deposited by PECVD method
JPS61295371A (en) Production of aluminum material having aluminum nitride layer
Yamashita et al. Cross-sectional transmission electron microscopy observations of c-BN films deposited on Si by ion-beam-assisted deposition
US4334844A (en) Replica film of specimen for electron microscopy apparatus
Dachuan et al. Effects of applied bias voltage on the properties of aC: H films
Kobayashi et al. Sputtering characteristics of diamond and hydrogenated amorphous carbon films by rf plasma
Edlinger et al. Properties of ion-plated Nb2O5 films
JPH04337064A (en) Boron nitride coating member
DebRoy et al. Optical emissions during plasma assisted chemical vapor deposition of diamond-like carbon films
Yu et al. dc cathodic polymerization of trimethylsilane in a closed reactor system
Sang et al. The effects of oxygen plasma radiation on aC: H films