KR20120079716A - Anti-fingerprint coating method and device - Google Patents

Anti-fingerprint coating method and device Download PDF

Info

Publication number
KR20120079716A
KR20120079716A KR1020110001063A KR20110001063A KR20120079716A KR 20120079716 A KR20120079716 A KR 20120079716A KR 1020110001063 A KR1020110001063 A KR 1020110001063A KR 20110001063 A KR20110001063 A KR 20110001063A KR 20120079716 A KR20120079716 A KR 20120079716A
Authority
KR
South Korea
Prior art keywords
substrate
silicon dioxide
jig
fingerprint
thin film
Prior art date
Application number
KR1020110001063A
Other languages
Korean (ko)
Inventor
김윤택
Original Assignee
바코스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바코스 주식회사 filed Critical 바코스 주식회사
Priority to KR1020110001063A priority Critical patent/KR20120079716A/en
Priority to PCT/KR2011/010295 priority patent/WO2012093807A2/en
Priority to CN2011800641861A priority patent/CN103314128A/en
Publication of KR20120079716A publication Critical patent/KR20120079716A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Abstract

PURPOSE: An anti-fingerprint coating method and an apparatus thereof are provided to form an anti-fingerprint coating surface at high productivity by evaporating anti-fingerprint materials with complexly using plasma reforming method, a sputter coating method, and a thermal evaporation method instead of an electron beam evaporation method. CONSTITUTION: An anti-fingerprint coating method is as follows. A thin film of SiO2(Silicon Dioxide) is evaporated on the surface of a base material(1) by using a sputter. Fluoride compound is evaporated on the surface of the base material having the SiO2 thin film through a thermal evaporation method. In order to increase the adhesion strength of the SiO2, the surface of the base material is reformed by plasma or ion beam before the evaporation of the SiO2 thin film.

Description

내지문 코팅 방법 및 장치{Anti-fingerprint Coating Method And Device}Anti-fingerprint Coating Method And Device

본 발명은 기존의 전자빔증착법 대신에 플라즈마 개질법, 스퍼터코팅법 및 열증착법을 복합적으로 사용하여 생산성을 향상시킨 내지문 표면 코팅 방법 및 장치에 관한 것으로서, 상세하게는 본 발명은 ⅰ) 기재 표면에 스퍼터(sputter)를 이용하여 이산화규소(SiO2) 박막을 증착하는 단계, 및 ⅱ) 상기 이산화규소 박막이 증착된 기재 표면에 열증착(Thermal evaporation) 방식을 통해 불소화합물을 증착시키는 단계를 포함하는 내지문 코팅 방법에 대한 것이다.
The present invention relates to an anti-fingerprint coating method and apparatus for improving productivity by using a combination of plasma reforming, sputter coating, and thermal deposition in place of the conventional electron beam deposition method. depositing a silicon dioxide (SiO 2 ) thin film using a sputter, and ii) depositing a fluorine compound on a surface of the substrate on which the silicon dioxide thin film is deposited by thermal evaporation. Fingerprint coating method.

스마트폰의 경우 윈도우시창을 입력수단으로 사용하기 때문에 윈도우시창 표면의 내지문성은 필수적인데, 근래 스마트폰의 수요가 증대됨에 따라 대량으로 내지문성 표면을 제조할 수 있는 방법이 필요하였다. In the case of a smartphone, since the window window is used as an input means, the fingerprint of the window surface is essential. Recently, as the demand of the smartphone increases, a method of manufacturing the fingerprint surface in large quantities was needed.

종래의 내지문 표면 코팅 방법은 도 3에 도시된 바와 같이, 안경렌즈에 유전물질을 증착하는 용도로 주로 사용되고 있는 전자빔 증착장치를 응용하여, 장치의 상부에 위치한 돔형태의 지그(6)에 기재(1)를 붙여 장치의 하부 중앙에서 이격된 위치에 설치된 이온빔(7)을 이용하여 표면을 개질시키고, 이후 이산화 규소가 위치한 증발용 도가니(8)와 불소화합물이 함침된 타블레트가 위치한 도가니(9)를 전자빔 증발원(11)을 통해 가열하여 기재 표면에 이산화규소와 불소화합물을 증착시켰다. The conventional anti-fingerprint coating method is based on the dome-shaped jig 6 located on the upper part of the apparatus by applying an electron beam deposition apparatus, which is mainly used for depositing dielectric material on the spectacle lens, as shown in FIG. The surface is modified using an ion beam (7) installed at a position separated from the lower center of the apparatus by attaching (1), and then the evaporation crucible (8) where silicon dioxide is located and the crucible where the fluoride compound is impregnated are placed. (9) was heated through an electron beam evaporation source 11 to deposit silicon dioxide and a fluorine compound on the surface of the substrate.

그러나, 이러한 방법은 기재가 증착장치의 천장부에만 세팅되기 때문에 한번에 증착될 수 있는 양에 한계가 있었으며, 예를 들어 2050mm 직경의 대형장치가 사용되는 경우에도, 60*120mm 사이즈의 유리를 1회당 약 200 여개 생산할 정도로 생산성이 낮아 이를 개선할 필요가 있었다. However, this method has a limitation in the amount that can be deposited at one time because the substrate is set only on the ceiling of the deposition apparatus. For example, even when a large apparatus of 2050 mm diameter is used, a glass of 60 * 120 mm size is about one time. The productivity was low enough to produce about 200 units, which needed to be improved.

이에, 본 발명은 내지문 코팅에 스퍼터와 열증착 방식을 도입하여 생산성을 크게 향상시킨 내지문 코팅 방법 및 이를 구현하기 위한 장치를 개발하기에 이르렀다. Accordingly, the present invention has led to the development of a fingerprint coating method and a device for implementing the same by introducing a sputtering and thermal evaporation method to the fingerprint coating significantly improved productivity.

본 발명은 상술한 문제점을 해결하기 위하여 창안된 것으로, 내지문 코팅에 스퍼터와 열증착 방식을 도입하여 다량의 기재를 한 번에 처리할 수 있는 내지문 코팅 방법 및 이를 구현하기 위한 장치를 제공하는데 그 목적이 있다.
The present invention has been made to solve the above problems, and provides a fingerprint coating method and apparatus for implementing the same by introducing a sputtering and thermal evaporation method to the fingerprint coating to treat a large amount of substrate at once. The purpose is.

상기와 같은 목적을 달성하기 위하여, 본 발명은 ⅰ) 기재 표면에 스퍼터를 이용하여 이산화규소(SiO2) 박막을 증착하는 단계, 및 ⅱ) 상기 이산화규소 박막이 증착된 기재 표면에 열증착(Thermal evaporation) 방식을 통해 불소화합물을 증착시키는 단계를 포함하는 내지문 코팅 방법을 제공하며, 이산화규소 박막을 증착하기 전에, 이산화규소의 밀착력을 증대시키기 위하여 기재 표면을 플라즈마 또는 이온빔 처리하여 개질시키는 단계를 추가로 포함할 수 있다. In order to achieve the above object, the present invention is iii) depositing a silicon dioxide (SiO 2 ) thin film using a sputter on the surface of the substrate, and ii) thermal deposition on the surface of the substrate on which the silicon dioxide thin film is deposited. It provides a fingerprint coating method comprising the step of depositing a fluorine compound through an evaporation method, and before depositing the silicon dioxide thin film, the step of modifying the substrate surface by plasma or ion beam treatment to increase the adhesion of silicon dioxide It may further comprise.

이때, 상기 이산화규소 박막의 두께는 5nm ~ 50nm 인 것이 바람직하며, 상기 불소화합물 증착층의 두께는 5nm ~ 50nm 인 것이 바람직하다. At this time, the thickness of the silicon dioxide thin film is preferably 5nm ~ 50nm, the thickness of the fluorine compound deposition layer is preferably 5nm ~ 50nm.

한편, 상기와 같은 목적을 달성하기 위하여, 본 발명은 ⅰ) 기재(1)를 부착시키기 위한 공자전하는 축에 위치한 지그(2), ⅱ) 상기 지그(2) 상에 부착되어 공자전하는 기재(1)에 이산화규소를 코팅하는 스퍼터 장치(4), 및 ⅲ) 상기 지그(2) 상에 부착되어 공자전하는 기재(1)에 불소화합물을 증착하는 열증착 장치(5)를 포함하는 내지문 코팅 장치를 제공한다. On the other hand, in order to achieve the above object, the present invention is a jig (2) located on the axis of the co-rotating axis for attaching the substrate (1), ii) the substrate (1) attached to the jig (2) to be rotated Sputtering apparatus (4) for coating silicon dioxide on the substrate) and iii) thermal vapor deposition apparatus (5) for depositing a fluorine compound on the substrate (1) which is attached to the jig (2) and corotates. To provide.

또한, 상기 내지문 코팅 장치는 상기 지그(2) 상에 부착되어 공자전하는 기재(1)의 표면을 개질하기 위한 플라즈마 처리장치(3) 또는 이온빔 장치를 추가로 포함할 수 있으며, 상기 지그(2)는 공자전하는 다수의 축에 설치되고, 상기 지그(2)의 측면에 기재들이 장착되는 것이 바람직하다.
In addition, the anti-fingerprint coating apparatus may further include a plasma processing apparatus 3 or an ion beam apparatus for modifying the surface of the substrate 1 to be co-rotated on the jig 2, the jig (2) ) Is installed on a plurality of axes of corotation, and the substrates are preferably mounted on the side of the jig 2.

본 발명의 내지문 코팅 방법은 기존의 전자빔증착법 대신에 플라즈마 개질법, 스퍼터코팅법 및 열증착법을 복합적으로 사용하여 내지문 물질을 증착함으로써, 동급의 장비에서 종래의 전자빔증착법보다 수백% 이상의 생산성으로 내지문 표면을 제조할 수 있다.
The anti-fingerprint coating method of the present invention deposits anti-fingerprint materials by using a plasma reforming method, a sputter coating method, and a thermal vapor deposition method instead of the conventional electron beam deposition method, resulting in a productivity of several hundred percent or more than conventional electron beam deposition methods in the same equipment. Fingerprint surfaces can be prepared.

도 1 - 종래의 전자빔증착기 장치의 개념도
도 2 - 본 발명의 바람직한 일 실시예에 따른 내지문 코팅 방법을 나타낸 순서도
도 3 - 본 발명의 바람직한 일 실시예에 따른 내지문 표면을 제조하기 위한 장치의 개념도
1-Conceptual view of a conventional electron beam evaporator device
Figure 2-Flow chart showing the anti-fingerprint coating method according to an embodiment of the present invention
3-a conceptual diagram of an apparatus for manufacturing a rubbing surface according to a preferred embodiment of the present invention

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to ordinary or dictionary meanings, but should be construed as meanings and concepts consistent with the technical spirit of the present invention.

본 발명의 내지문 코팅 방법은 도 2에 도시된 바와 같이, ⅰ) 기재 표면에 스퍼터를 이용하여 이산화규소(SiO2) 박막을 증착하는 단계, 및 ⅱ) 상기 이산화규소 박막이 증착된 기재 표면에 열증착(Thermal evaporation) 방식을 통해 불소화합물을 증착시키는 단계를 포함한다. As the anti-fingerprint coating method of the present invention, as shown in Figure 2, i) depositing a silicon dioxide (SiO 2 ) thin film using a sputter on the substrate surface, and ii) on the substrate surface on which the silicon dioxide thin film is deposited Depositing a fluorine compound through a thermal evaporation method.

또한, 상기 이산화규소 박막을 증착하기 전에 이산화규소의 밀착력을 증대시키기 위하여 기재 표면을 플라즈마 또는 이온빔 처리하여 개질시키는 단계를 추가로 포함할 수 있으며, 효과적인 내지문 특성을 갖기 위하여 상기 내지문 코팅 장치를 이용하여 증착되는 이산화규소 박막의 두께는 5nm ~ 50nm 이고, 상기 불소화합물 증착층의 두께는 5nm ~ 50nm 인 것이 바람직하다. In addition, prior to depositing the silicon dioxide thin film may further include the step of modifying the substrate surface by plasma or ion beam treatment in order to increase the adhesion of the silicon dioxide, the anti-fingerprint coating device to have an effective anti-fingerprint properties The thickness of the silicon dioxide thin film deposited using 5nm ~ 50nm, the thickness of the fluorine compound deposition layer is preferably 5nm ~ 50nm.

본 발명은 내지문 코팅을 위하여 기존의 전자빔증착법 대신에 스퍼터법 및 열증착법을 복합적으로 사용하는 것을 특징으로 한다. The present invention is characterized in that the sputtering method and the thermal evaporation method are used in combination with the conventional electron beam evaporation method for anti-fingerprint coating.

열증착법의 경우, 전자빔 방식으로 사용하는 경우 막 두께 제어가 어렵고 생산성이 낮다는 문제점이 있으며, 공자전 방식으로 사용하는 경우 필라멘트의 온도가 너무 높고 균일성이 떨어진다는 문제점이 있었다. 이에 반해, 스퍼터법의 경우, SiO2 증착은 가능하지만 이를 이용한 내지문 물질의 증착이 어렵다는 문제점이 있었다. In the case of the thermal evaporation method, there is a problem in that the film thickness is difficult to control and the productivity is low when the electron beam method is used, and the temperature of the filament is too high and the uniformity is poor when the electron beam method is used. On the other hand, in the sputtering method, SiO 2 deposition is possible, but there is a problem in that deposition of anti-fingerprint material using the same is difficult.

이에, 본 발명에서는 상기 스퍼터법 및 열증착법을 복합적으로 사용하여, SiO2 는 스퍼터 장치로 증착하고, 내지문 물질은 열증착 장치로 증착하였으며, 여기에 공자전 지그를 활용하여 생산성을 최대화시켰다. Accordingly, in the present invention, the sputtering method and the thermal evaporation method are used in combination, SiO 2 is deposited by the sputtering device, and the anti-fingerprint material is deposited by the thermal evaporation device, and the co-rotating jig is used here to maximize productivity.

스퍼터링 증착의 경우, 다양한 스퍼터가 사용될 수 있으며, 예를 들어 DC 마그네트론 스퍼터, 펄스드 DC 마그네트론 스퍼터 또는 듀얼 마그네트론 스퍼터 등으로 Si을 산소분위기에서 동작시켜 이산화규소막을 제작하거나, RF 마그네트론 스퍼터로 개질된 기재의 표면에 이산화규소 박막을 바로 치밀하게 코팅할 수 있다. In the case of sputter deposition, various sputters may be used. For example, a silicon dioxide film may be fabricated by operating Si in an oxygen atmosphere using a DC magnetron sputter, a pulsed DC magnetron sputter, or a dual magnetron sputter, or a substrate modified with an RF magnetron sputter. The surface of the silicon dioxide thin film can be directly dense coating.

또한, 이미 스퍼터링 장치에서 널리 이용되고 있는 DC 글로우 방전, AC 수십KHz ~ 수KV 글로우 방전, RF전극 글로우 방전 등의 플라즈마 처리법을 이용하여 공자전하는 기재의 표면을 아르곤, 산소, 질소 가스 등으로 처리하거나 이온빔으로 처리를 하여 이산화규소와 기재와의 밀착력을 증대시킬 수 있다. In addition, by using a plasma treatment method such as DC glow discharge, AC tens of KHz ~ several KV glow discharge, RF electrode glow discharge, which are already widely used in the sputtering apparatus, the surface of the co-rotating substrate is treated with argon, oxygen, nitrogen gas, or the like. The treatment with the ion beam can increase the adhesion between silicon dioxide and the substrate.

또한, SiO2를 타겟으로 사용하는 경우 RF를 전원으로 사용하면서 증착률이 낮아지게 되는데, 이때 타겟에 O2를 첨가가스로 반응시켜 증착률 증대시킬 수 있으며, 이 경우 아크가 발생하므로 전원장치는 펄스전원을 사용하고 O2 공급을 균일하게 하는 것이 중요하다. In addition, when using SiO 2 as a target, the deposition rate decreases while using RF as a power source. At this time, the deposition rate can be increased by reacting O 2 with an additive gas to the target. It is important to use a pulsed power source and to even out the O 2 supply.

한편, 상기 내지문 코팅 방법은 도 3에 도시된 바와 같이, ⅰ) 기재(1)를 부착시키기 위한 공자전하는 축에 위치한 지그(2), ⅱ) 상기 지그(2) 상에 부착되어 공자전하는 기재(1)에 이산화규소를 코팅하는 스퍼터 장치(4), 및 ⅲ) 상기 지그(2) 상에 부착되어 공자전하는 기재(1)에 불소화합물을 증착하는 열증착 장치(5)를 포함하는 내지문 코팅 장치에 의해 구현될 수 있다. On the other hand, the anti-fingerprint coating method, as shown in Fig. 3, i) a jig (2) located on the axis of corotation for attaching the substrate (1), ii) a substrate attached and co-rotated on the jig (2) A sputtering apparatus 4 for coating silicon dioxide on (1), and iii) a thermal vapor deposition apparatus (5) for depositing a fluorine compound on the substrate (1) co-rotating on the jig (2). It can be implemented by a coating device.

이때, 상기 내지문 코팅 장치는 상기 지그(2) 상에 부착되어 공자전하는 기재(1)의 표면을 개질하기 위한 플라즈마 처리장치(3)를 추가로 포함할 수 있다. In this case, the anti-fingerprint apparatus may further include a plasma processing apparatus 3 for modifying the surface of the substrate 1 to be co-rotated on the jig 2.

종래의 전자빔증착법을 이용한 내지문 표면 코칭 방식은 도 1에서 볼 수 있듯이 기재를 상부에 장착하기 때문에 생산성이 낮았지만, 본 발명은 공전 및 자전하는 여러축에 지그를 설치하고 그 측면에 기재를 장착함으로써, 동일크기의 증착로에서도 내지문 코팅 수량을 비약적으로 증대시킬 수 있다. The conventional anti-fingerprint coaching method using the electron beam deposition method has low productivity because the substrate is mounted on the upper side as shown in FIG. 1, but the present invention is provided by mounting the substrate on the side of the jig and installing the jig on various axes of revolution and rotation. In the same size deposition furnace, the number of anti-fingerprint coatings can be dramatically increased.

예를 들어, 직경 1500mm 높이 1600mm의 증착로의 경우, 32축의 자전축이 설치 가능하고 각 자전축의 피치는 125mm로 폭 60mm의 기재를 4면으로 세팅할 수 있으며 높이 1080mm의 유효 코팅존에 9단이 설치 가능하다. 상기 증착로를 종래 전자빔증착장치의 코팅시간과 같은 40분의 소요시간으로 1회 코팅시에 증착 가능한 수량은 32*4*9=1152개로서, 직경 2050mm 높이 1500mm의 전자빔 증착기의 생산량인 200개보다 5배 이상의 생산량이 증가하는 것을 알 수 있다. For example, in the case of a deposition furnace with a diameter of 1500mm and a height of 1600mm, 32 axes of rotation can be installed, and a pitch of each axis of rotation is 125mm, and a 60mm width substrate can be set on four sides. Can be installed. The amount of vapor deposition that can be deposited once the coating furnace is 40 times the same as the coating time of the conventional electron beam deposition apparatus is 32 * 4 * 9 = 1152, which is 200 pieces of electron beam evaporator having a diameter of 2050mm and 1500mm in height. It can be seen that more than five times more output.

이하에서는, 본 발명에 따른 내지문 고팅 방법의 일 실시예를 살펴본다. 그러나, 본 발명의 범주가 이하의 바람직한 실시 예에 한정되는 것은 아니며, 당업자라면 본 발명의 권리범위 내에서 본 명세서에 기재된 내용의 여러 가지 변형된 형태를 실시할 수 있을 것이다.
Hereinafter, an embodiment of the anti-fingerprinting method according to the present invention. However, the scope of the present invention is not limited to the following preferred embodiments, and those skilled in the art will be able to implement various modified forms of the contents described herein within the scope of the present invention.

[실시예] [Example]

도 3에 도시된 공자전 지그에 60*120*0.7t 두께의 코닝글라스사 시판 강화유리(고릴라유리)를 면당 9단으로 32축을 양면테이프를 이용하여 세팅한 후(4*9*32 =1156개), 저진공펌프(미도시)를 이용하여 30mTorr까지 진공배기하고 상기 지그를 1RPM의 공전속도로 공자전 회전시켰다. After setting the commercial hardened glass (gorilla glass) of Corning Glass Co., Ltd. of 60 * 120 * 0.7t thickness to 9 stages per plane on the coaxial rotating jig shown in FIG. 3 using 32-sided double-sided tape (4 * 9 * 32 = 1156) The vacuum was evacuated to 30 mTorr using a low vacuum pump (not shown), and the jig was rotated at a revolution speed of 1 RPM.

그 후, 아르곤 가스를 투입하여 60mTorr에서 40mTorr 범위에서 -700V를 망형태의 전극에 인가하여 5분간 글로우플라즈마 처리한 후, 알곤가스 투입을 중지하고 로 내진공도를 20mTorr까지 배기시켰다. Subsequently, argon gas was added to apply a -700V to a network electrode in a range of 60 mTorr to 40 mTorr, followed by a 5 minute glow plasma treatment, and then the injection of argon gas was stopped and the furnace vacuum was exhausted to 20 mTorr.

고진공펌프(미도시)로 내진공도를 0.05mTorr까지 배기시킨 후, 아르곤가스를 수 mTorr까지 투입하고 산소가스를 동시 투입하여 산소분위기에서 Si을 스퍼터링 시켜 이산화규소를 공자전하는 기재에 5분간 코팅시켰다. After evacuating the vacuum degree to 0.05 mTorr with a high vacuum pump (not shown), argon gas was introduced to several mTorr and oxygen gas was simultaneously injected to sputter Si in an oxygen atmosphere to coat silicon dioxide on a substrate which was co-rotated for 5 minutes.

아르곤가스 투입을 중지하고 열증착기를 이용하여 필라멘트에 장착된 퍼풀루오로폴리에터 사일렌(perfluoropolyether silane PFPE-silane)이 함침된 타블레트를 3V, 700A 3분간 가열 증발시켜 기재표면에 증착시켰다. The argon gas was stopped and the tablets impregnated with perfluoropolyether silane PFPE-silane attached to the filament were heated and evaporated for 3 minutes at 700 A for 3 minutes using a thermal evaporator. .

상기와 같은 방법으로 강화글라스 표면에 이산화규소가 20nm코팅되고 불소화합물이 20nm코팅된 내지문표면을 제작하였으며, 제작된 내지문 표면의 접촉각은 118도로 고발수성을 보였고 마찰계수는 0.17을 보여 우수한 내지문성을 보였으며, 스틸울로 문지르는 테스트, 염수테스트, 내완충액 테스트 등 일반적인 휴대폰의 신뢰성항목을 모두 만족시켰다.
In the same manner as above, the surface of the tempered glass was coated with 20 nm of silicon dioxide and 20 nm of fluorine compound, and the contact surface of the produced fingerprint surface showed 118 degrees of high water repellency and a coefficient of friction of 0.17. It showed the moonshine and satisfies all reliability items of general mobile phones such as steel wool rubbing test, saline test and buffer test.

상기에서 살펴본 바와 같이, 본 발명의 내지문 코팅 방법은 기존의 전자빔증착법 대신에 플라즈마 개질법, 스퍼터코팅법 및 열증착법을 복합적으로 사용하여 내지문 물질을 증착함으로써, 동급의 장비에서 종래의 전자빔증착법보다 수백% 이상의 생산성으로 내지문 표면을 제조할 수 있다.As described above, the anti-fingerprint coating method of the present invention is deposited by using a plasma reforming method, a sputter coating method and a thermal deposition method in place of the conventional electron beam deposition method, by depositing a fingerprint material than the conventional electron beam deposition method in the same equipment A fingerprint surface can be produced with a productivity of several hundred percent or more.

본 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변형은 본 발명의 보호 범위 내에 있게 된다.
The present invention is not limited to the above specific embodiments and descriptions, and various modifications can be made by those skilled in the art without departing from the gist of the invention as claimed in the claims. Such variations are within the protection scope of the present invention.

1 : 기재 2 : 지그
3 : 플라즈마 처리장치 4 : 마그네트론 스퍼터 장치
5 : 열증착 장치 6 : 지그
7 : 이온빔 8 : 이산화 규소 증발용 도가니
9 : 불소화합물 증발용 도가니 10 : 도가니 회전 장치
11 : 전자빔 증발원
1: description 2: jig
3: plasma processing apparatus 4: magnetron sputter apparatus
5: thermal evaporation apparatus 6: jig
7: Ion beam 8: Crucible for evaporation of silicon dioxide
9: Crucible for evaporating fluorine compound 10: Crucible rotating device
11: electron beam evaporation source

Claims (7)

ⅰ) 기재 표면에 스퍼터(sputter)를 이용하여 이산화규소(SiO2) 박막을 증착하는 단계, 및 ⅱ) 상기 이산화규소 박막이 증착된 기재 표면에 열증착(Thermal evaporation) 방식을 통해 불소화합물을 증착시키는 단계를 포함하는 내지문 코팅 방법.
Iv) depositing a silicon dioxide (SiO 2 ) thin film on the surface of the substrate using a sputter, and ii) depositing a fluorine compound on the surface of the substrate on which the silicon dioxide thin film is deposited by thermal evaporation. Anti-fingerprint coating method comprising the step of.
제1항에 있어서,
이산화규소 박막을 증착하기 전에, 이산화규소의 밀착력을 증대시키기 위하여 기재 표면을 플라즈마 또는 이온빔 처리하여 개질시키는 단계를 추가로 포함하는 것을 특징으로 하는 내지문 코팅 방법.
The method of claim 1,
Prior to depositing the silicon dioxide thin film, further comprising the step of modifying the substrate surface by plasma or ion beam treatment to increase the adhesion of silicon dioxide.
제1항 또는 제2항에 있어서,
상기 이산화규소 박막의 두께가 5nm ~ 50nm 인 것을 특징으로 하는 내지문 코팅 방법.
The method according to claim 1 or 2,
Anti-fingerprint coating method characterized in that the thickness of the silicon dioxide thin film is 5nm ~ 50nm.
제1항 또는 제2항에 있어서,
상기 불소화합물 증착층의 두께가 5nm ~ 50nm 인 것을 특징으로 하는 내지문 코팅 방법.
The method according to claim 1 or 2,
Anti-fingerprint coating method characterized in that the thickness of the fluorine compound deposition layer is 5nm ~ 50nm.
ⅰ) 기재(1)를 부착시키기 위한 공자전하는 축에 위치한 지그(2), ⅱ) 상기 지그(2) 상에 부착되어 공자전하는 기재(1)에 이산화규소를 코팅하는 스퍼터 장치(4), 및 ⅲ) 상기 지그(2) 상에 부착되어 공자전하는 기재(1)에 불소화합물을 증착하는 열증착 장치(5)를 포함하는 내지문 코팅 장치.
Iii) a jig (2) positioned on an axis of corotation for attaching the substrate (1), ii) a sputter device (4) attached to the jig (2) to coat silicon dioxide on the corotating substrate (1), and Iii) an anti-fingerprint coating apparatus comprising a thermal evaporation apparatus (5) attached to the jig (2) to deposit a fluorine compound on a substrate (1) which is co-rotating.
제5항에 있어서,
상기 지그(2) 상에 부착되어 공자전하는 기재(1)의 표면을 개질하기 위한 플라즈마 처리장치(3) 또는 이온빔 장치를 추가로 포함하는 것을 특징으로 하는 내지문 코팅 장치.
The method of claim 5,
And a plasma processing apparatus (3) or an ion beam apparatus for modifying the surface of the substrate (1) attached and attached to the jig (2).
제5항에 있어서,
상기 지그(2)가 공자전하는 다수의 축에 설치되고, 상기 지그(2)의 측면에 기재들이 장착되는 것을 특징으로 하는 내지문 코팅 장치.
The method of claim 5,
The anti-fingerprint coating device, characterized in that the jig (2) is installed on a plurality of axes of corotation, and the substrates are mounted on the side of the jig (2).
KR1020110001063A 2011-01-05 2011-01-05 Anti-fingerprint coating method and device KR20120079716A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020110001063A KR20120079716A (en) 2011-01-05 2011-01-05 Anti-fingerprint coating method and device
PCT/KR2011/010295 WO2012093807A2 (en) 2011-01-05 2011-12-29 Method and device for fingerprint resistant coating
CN2011800641861A CN103314128A (en) 2011-01-05 2011-12-29 Method and device for fingerprint resistant coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110001063A KR20120079716A (en) 2011-01-05 2011-01-05 Anti-fingerprint coating method and device

Publications (1)

Publication Number Publication Date
KR20120079716A true KR20120079716A (en) 2012-07-13

Family

ID=46457811

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110001063A KR20120079716A (en) 2011-01-05 2011-01-05 Anti-fingerprint coating method and device

Country Status (3)

Country Link
KR (1) KR20120079716A (en)
CN (1) CN103314128A (en)
WO (1) WO2012093807A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242591B1 (en) * 2011-05-23 2013-03-19 유흥상 Deposition method of anti-finger layer
KR101498883B1 (en) * 2012-08-31 2015-03-05 박종하 Method for preparing an anti-fingerprint layer and an anti-fingerprint layer prepared by using the same
KR101499291B1 (en) * 2012-08-31 2015-03-06 박종하 Method for preparing an anti-fingerprint layer and an anti-fingerprint layer prepared by using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105018928B (en) * 2014-04-18 2019-03-29 傅榆 The film plating process of Nanosurface coating on profiled metal
CN105209568B (en) * 2014-04-23 2018-04-13 凯玛科技株式会社 Composition of anti-fingerprint layer formed by multiple films and preparation method thereof
CN104372298A (en) * 2014-11-13 2015-02-25 邵海平 High-energy ion beam substrate treatment and vacuum vapor plating device and method
CN107815646A (en) * 2017-11-15 2018-03-20 温州职业技术学院 Net cover type ion gun and filming equipment, the anti-fingerprint film plating process using net cover type ion gun
CN108395284B (en) * 2018-02-01 2020-08-07 九牧厨卫股份有限公司 Antifouling coating, application thereof and ceramic product containing antifouling coating
CN110172675A (en) * 2018-08-23 2019-08-27 深圳市昊翀珠宝科技有限公司 A kind of jewelry surface vacuum processing equipment and method
CN109402588A (en) * 2018-12-29 2019-03-01 商丘金振源电子科技有限公司 Anti-fingerprint coated article and anti-fingerprint film plating process based on matte surface
CN110129728B (en) * 2019-06-14 2021-09-21 东莞市广正模具塑胶有限公司 Modified AF (AF) coating material as well as preparation method and application thereof
CN111364014A (en) * 2020-04-26 2020-07-03 蓝思科技(长沙)有限公司 Processing technology of invisible fingerprint film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100247065B1 (en) * 1997-01-22 2000-03-15 윤종용 Optical disc having protective folms
JP2001137775A (en) * 1999-11-17 2001-05-22 Nisshin Steel Co Ltd Stainless steel plate coated with transparent fluororesin having high film hardness and excellent wear resistance
KR100727644B1 (en) * 2005-12-06 2007-06-13 장희선 An ion plating jig ass'y
JP2010049221A (en) * 2008-08-19 2010-03-04 Shinten Sangyo Co Ltd Liquid crystal display device
CN101879801A (en) * 2010-06-21 2010-11-10 东莞劲胜精密组件股份有限公司 Anti-fingerprint film and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242591B1 (en) * 2011-05-23 2013-03-19 유흥상 Deposition method of anti-finger layer
KR101498883B1 (en) * 2012-08-31 2015-03-05 박종하 Method for preparing an anti-fingerprint layer and an anti-fingerprint layer prepared by using the same
KR101499291B1 (en) * 2012-08-31 2015-03-06 박종하 Method for preparing an anti-fingerprint layer and an anti-fingerprint layer prepared by using the same

Also Published As

Publication number Publication date
WO2012093807A2 (en) 2012-07-12
CN103314128A (en) 2013-09-18
WO2012093807A3 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
KR20120079716A (en) Anti-fingerprint coating method and device
KR20120139919A (en) Coating method and appratus for anti-fingerprint and anti-reflection
JP2004511655A (en) Preparation method of indium tin oxide thin film using magnetron negative ion sputtering source
WO2000051139A1 (en) Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
JPH06298546A (en) Method for reforming thin layer of metal oxide, etc. using low ion beam
CN110484869B (en) Mildew-proof and damp-proof optical film and preparation method thereof
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
KR20140127352A (en) Film-forming device and film-forming method
US20130157044A1 (en) Coated article and method for making same
CN105204685A (en) Scratch-resisfant fingerprint resistance touch screen and preparation method
CN105951051A (en) Method of preparing graded refractive index antireflection film by adopting oblique sputtering process
KR20120079717A (en) Anti-fingerprint coating method and device
US7820018B2 (en) Process and apparatus for applying optical coatings
KR101160845B1 (en) Method for manufacturing metal oxide based transparency electrode
KR101242591B1 (en) Deposition method of anti-finger layer
CN112501578A (en) Coating quality control method of gradient coating machine
Rademacher et al. Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration
CN109811308A (en) A kind of ITO process for making conducting membrane
KR20080099418A (en) The deposition method of metal thin film on polymer substrate by magnetron roll sputtering
US20160024643A1 (en) Method for depositing an amorphous layer primarily containing fluorine and carbon, and device suited for carrying out this method
TWI493060B (en) Silvery white film structure and method manufacturing same
JP4187315B2 (en) Method for producing transparent conductive laminate for liquid crystal display
KR20140102345A (en) method and apparatus the same for forming aluminium-silicone nitride layer for enhancing the surface hardness and wear resistance of polycarbonate
US20100155935A1 (en) Protective coating for semiconductor substrates
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application