JPH0745706B2 - Method for forming titanium nitride thin film - Google Patents

Method for forming titanium nitride thin film

Info

Publication number
JPH0745706B2
JPH0745706B2 JP63142870A JP14287088A JPH0745706B2 JP H0745706 B2 JPH0745706 B2 JP H0745706B2 JP 63142870 A JP63142870 A JP 63142870A JP 14287088 A JP14287088 A JP 14287088A JP H0745706 B2 JPH0745706 B2 JP H0745706B2
Authority
JP
Japan
Prior art keywords
titanium nitride
ion beam
thin film
film
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63142870A
Other languages
Japanese (ja)
Other versions
JPH02163362A (en
Inventor
正道 松浦
透 角谷
中哉 千田
Original Assignee
日本真空技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本真空技術株式会社 filed Critical 日本真空技術株式会社
Priority to JP63142870A priority Critical patent/JPH0745706B2/en
Publication of JPH02163362A publication Critical patent/JPH02163362A/en
Publication of JPH0745706B2 publication Critical patent/JPH0745706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属産業や機械、装置産業などで使用する工具
や各種装置に用いられる金属材料や有機材料などの表面
にイオンビームを利用して薄膜を形成し、表面性能(硬
度、耐摩耗性、耐熱性、耐食性など)を改善する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention utilizes an ion beam on the surface of a metal material or an organic material used for tools and various devices used in the metal industry, machinery, equipment industry, etc. The present invention relates to a method for forming a thin film to improve surface performance (hardness, abrasion resistance, heat resistance, corrosion resistance, etc.).

〔従来の技術〕[Conventional technology]

従来のイオンビームを利用したイオンミキシング法によ
って化合物薄膜を形成する装置の一例を第5図を参照し
て説明する。第5図において(1)は成膜室、(2)は
基板、(3)は金属蒸発源(例えば電子ビーム加熱によ
る)、(4)は蒸発した金属ビーム、(5)はイオンビ
ーム源、(6)は加速された高エネルギーのイオンビー
ム、(7)は基板加熱用のヒーターを備えた基板ホルダ
ー、(8)は真空ポンプ、(9)は蒸発する金属であ
る。
An example of a conventional apparatus for forming a compound thin film by an ion mixing method using an ion beam will be described with reference to FIG. In FIG. 5, (1) is a film forming chamber, (2) is a substrate, (3) is a metal evaporation source (for example, by electron beam heating), (4) is an evaporated metal beam, (5) is an ion beam source, (6) is an accelerated high-energy ion beam, (7) is a substrate holder provided with a heater for heating the substrate, (8) is a vacuum pump, and (9) is a metal to be evaporated.

上記の装置において、高真空に排気された成膜室(1)
中で、(3)の金属蒸発源から蒸発した金属ビーム
(4)、例えばチタン(Ti)のビームと、(5)のイオ
ンビーム源から発生したエネルギー数10keV〜数100keV
の例えば窒素イオンビーム(▲N+ 2▼および/又はN+
(6)とを、鋼などで作製された基板(2)上に同時に
照射することによって基板(2)上に窒化チタン(Ti
N)の薄膜を形成するというのが従来のイオンミキシン
グ法である。
In the above apparatus, the film forming chamber (1) evacuated to high vacuum
Among them, the metal beam evaporated from the metal evaporation source of (3) (4), for example, the beam of titanium (Ti), and the energy generated from the ion beam source of (5) 10 keV to several 100 keV
For example, nitrogen ion beam (▲ N + 2 ▼ and / or N + )
By irradiating (6) and (6) with a substrate (2) made of steel or the like at the same time, titanium nitride (Ti
The conventional ion mixing method is to form a thin film of N).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の方法では、化合物(上記の例ではTiN)の1つの
成分(例:Ti)を蒸発金属ビーム(4)より、他の成分
(例:N)をイオンビーム(▲N+ 2▼および/又はN+
(6)より供給して化合物膜を形成するが、一般に基板
に対するイオンビームの入射頻度は金属ビームの入射頻
度より小さいため、化合物膜の形成速度はイオンビーム
の入射頻度によって定まり、化合物膜の高速成膜が困難
であった。又、イオンビームの入射頻度を上げるには多
大な電流密度を要するので高価のものとなり、経済的な
面でも問題があった。更には、形成される化合物膜、例
えば窒化チタン膜の硬度が一定しないという問題があっ
た。
In the conventional method, one component (eg Ti) of the compound (TiN in the above example) is supplied from the evaporated metal beam (4) and the other component (eg N) is supplied from the ion beam (▲ N + 2 ▼ and / or Or N + )
Although the compound film is formed by supplying from (6), since the ion beam incidence frequency on the substrate is generally lower than the metal beam incidence frequency, the compound film formation rate is determined by the ion beam incidence frequency. Film formation was difficult. In addition, since a large current density is required to increase the incidence frequency of the ion beam, it becomes expensive and there is a problem in terms of economy. Further, there is a problem that the hardness of the compound film formed, for example, the titanium nitride film is not constant.

本発明は上述の問題に鑑みてなされ、低電流密度の窒素
イオンビームを使用し、イオンミキシング法によって、
高い成膜速度で窒化チタン薄膜を形成させる方法、更に
は硬度の高い窒化チタン薄膜を形成させる方法を提供す
ることを目的とする。
The present invention has been made in view of the above problems, using a nitrogen ion beam of low current density, by an ion mixing method,
It is an object of the present invention to provide a method for forming a titanium nitride thin film at a high film forming rate, and further a method for forming a titanium nitride thin film having high hardness.

〔課題を解決するための手段〕[Means for Solving the Problems]

以上の目的は、イオンミキシング法によって基板上に窒
化チタン薄膜を形成させるのに際し、窒素ガスの雰囲気
中で、前記基板上にチタンを蒸着し、同時に窒素イオン
ビームを照射して、形成される窒化チタン薄膜のX線回
折強度比(111)/(200)≒0.75となるように、導入す
る前記窒素ガスの流速、及び照射する前記窒素イオンビ
ームの電流密度を調節することを特徴とする窒化チタン
薄膜の形成方法、によって達成される。
The above-mentioned object is to form a titanium nitride thin film on a substrate by ion mixing by vapor-depositing titanium on the substrate in a nitrogen gas atmosphere and simultaneously irradiating it with a nitrogen ion beam. Titanium nitride characterized by adjusting the flow rate of the nitrogen gas to be introduced and the current density of the nitrogen ion beam to be irradiated so that the X-ray diffraction intensity ratio of the titanium thin film is (111) / (200) ≈0.75. And a thin film forming method.

〔作 用〕[Work]

本発明によれば、基板上に蒸着したチタンは雰囲気の窒
素ガス(N2)を強固に化学(解離)吸着する。この状態
で拘束の窒素イオンビーム(▲N+ 2▼および/又はN+
を照射すると、チタン表面に吸着した窒素原子(N)の
一部はスパッタされて表面から離脱し、雰囲気中に放出
されるが、残りのNはイオンビームによるミキシング効
果(カスケード、ミキシング、増速拡散など)により膜
中に取り込まれ、窒化チタン(TiN)薄膜を形成する。
即ち、窒化チタンのN成分がイオンビーム以外に雰囲気
の窒素ガスからも供給されることになり、低電流密度の
窒素イオンビームを使用し、化合物膜の形成を高速で行
なうことができる。
According to the present invention, titanium vapor-deposited on a substrate strongly chemisorbs (dissociates) nitrogen gas (N 2 ) in the atmosphere. In this state, restrained nitrogen ion beam (▲ N + 2 ▼ and / or N + )
When irradiated with nitrogen, some of the nitrogen atoms (N) adsorbed on the titanium surface are sputtered and released from the surface and released into the atmosphere, while the remaining N is mixed by the ion beam (cascade, mixing, acceleration) It is taken into the film by diffusion or the like) to form a titanium nitride (TiN) thin film.
That is, the N component of titanium nitride is supplied from the nitrogen gas in the atmosphere in addition to the ion beam, and the compound film can be formed at high speed by using the nitrogen ion beam having a low current density.

又、従来の反応性蒸着のみ(例えば窒素ガス雰囲気中で
チタンを蒸発させる方法)によって得られる膜に較べ、
イオンビームを照射することによって膜構造が変化し、
膜特性を大きく変化させることができる。すなわち、導
入する窒素ガスの流速、及び照射する窒素イオンビーム
の電流密度を調節することにより、硬度の高い窒化チタ
ン薄膜を得ることができる。
In addition, compared to conventional reactive vapor deposition (for example, a method of evaporating titanium in a nitrogen gas atmosphere),
By irradiating with an ion beam, the film structure changes,
The film characteristics can be changed greatly. That is, a titanium nitride thin film having high hardness can be obtained by adjusting the flow rate of the nitrogen gas to be introduced and the current density of the nitrogen ion beam to be irradiated.

〔実施例〕〔Example〕

本発明を実施するための第1図の装置を参照しながら実
施例について説明する。
An embodiment will be described with reference to the apparatus of FIG. 1 for carrying out the present invention.

真空ポンプ(22)により高真空(10-5Pa)に排気された
成膜室(11)中に、マスフローコントローラー(18)で
流速を7SCCM(standard cubic centimeterper minute)
に調整した窒素ガス(N2)(20)をノズル(19)より導
入し、圧力調整バルブ(21)の開度を調整して反応室内
の真空度を1.7×10-3Paに保った。基板ホルダー(13)
の加熱ヒーターによってシリコンウェハー製の基板(1
2)を加熱して、200℃に保った。この状態で、電子ビー
ムで金属蒸発源(14)のチタン(23)を加熱してチタン
の中性ビーム(15)を蒸発させ基板(12)に照射した。
チタンの蒸着速度は10Å/secである。それと同時にイオ
ン加速器(16)から窒素イオンビーム(▲N+ 2▼および
/又はN+)(17)を発生させて基板(12)上に照射し
た。窒素イオンビーム(17)のエネルギーは40keV、電
流密度は5μA/cm2であった。
A flow rate of 7SCCM (standard cubic centimeterper minute) was applied by a mass flow controller (18) into the film formation chamber (11) which was evacuated to a high vacuum (10 -5 Pa) by a vacuum pump (22).
The adjustment nitrogen gas (N 2) (20) to introduce the nozzle (19), keeping the vacuum degree in the reaction chamber to 1.7 × 10 -3 P a by adjusting the opening degree of the pressure regulating valve (21) . Substrate holder (13)
Substrates made of silicon wafer (1
2) was heated and kept at 200 ° C. In this state, the titanium (23) of the metal evaporation source (14) was heated with an electron beam to evaporate the neutral beam (15) of titanium and irradiate the substrate (12).
The deposition rate of titanium is 10Å / sec. At the same time, a nitrogen ion beam (▲ N + 2 ▼ and / or N + ) (17) was generated from the ion accelerator (16) and irradiated onto the substrate (12). The energy of the nitrogen ion beam (17) was 40 keV, and the current density was 5 μA / cm 2 .

以上の操作を、基板(12)上に形成される膜の厚さが1.
5μmになるまで続けた。得られた膜は緻密化した微結
晶の窒化チタン(TiN)で、X線回折の結果、結晶面(1
11)と(200)との強度比は(111)/(200)=0.75の
無配向のものに近かった。この膜の硬度を測定したとこ
ろ、ビッカース硬度で2300Kgf/mm2という硬いものであ
った。
With the above operation, the thickness of the film formed on the substrate (12) is 1.
It continued until it became 5 μm. The obtained film was densified microcrystalline titanium nitride (TiN).
The intensity ratio of (11) and (200) was close to that of non-oriented (111) / (200) = 0.75. When the hardness of this film was measured, it was a Vickers hardness of 2300 Kgf / mm 2 .

本発明の実施には、上記の実施例に示された条件だけで
なく種々の条件を用いることができる。第2図に、窒素
イオンビームの電流密度の変化にともなって、生成した
窒化チタン(TiN)膜の結晶構造が変化する様子を示し
た。結晶構造の変化のめやすとして結晶面のX線回折強
度比(111)/(200)をとっている。膜形成の条件は、
基板の温度:200℃、窒素イオンビームのエネルギー:40k
eV、チタン蒸着速度:10Å/secで窒素ガスの流速は7SCCM
と10SCCMの2点である。この時の成膜室(11)内の圧力
はそれぞれ1.7×10-3Paおよび2.6×10-3Paであった。第
2図において、窒素イオンビームの電流密度が0の時は
反応性蒸着(窒素ガス雰囲気中でチタンを蒸発させる方
法)に相当するが、その場合に較べて窒素イオンビーム
の電流密度が上がるにつれ、結晶構造がどんどん変化し
ていくのがわかる。TiN膜の結晶構造の変化と、硬さ
(ビッカース硬度)の変化の関係を示したのが第3図で
ある。基板(12)の温度は40℃と200℃の2種類につい
て実験されているが、いずれの場合も(111)/(200)
=0.75の無配向の結晶構造に近い場合に膜の硬度も高く
なっており、ビッカース硬度2000Kgf/mm2以上の硬い、T
iN膜が得られた。なお、膜構造の変化は走査電子顕微鏡
による膜断面構造の観察によってもわかる。
Various conditions can be used for carrying out the present invention, in addition to the conditions shown in the above-described embodiments. FIG. 2 shows how the crystal structure of the produced titanium nitride (TiN) film changes as the current density of the nitrogen ion beam changes. The X-ray diffraction intensity ratio (111) / (200) of the crystal plane is taken as an indication of the change in crystal structure. The conditions for film formation are
Substrate temperature: 200 ℃, nitrogen ion beam energy: 40k
eV, titanium deposition rate: 10 Å / sec, nitrogen gas flow rate is 7 SCCM
And 10 SCCM. At this time, the pressure in the film forming chamber (11) was 1.7 × 10 −3 Pa and 2.6 × 10 −3 Pa, respectively. In FIG. 2, when the current density of the nitrogen ion beam is 0, it corresponds to reactive vapor deposition (a method of evaporating titanium in a nitrogen gas atmosphere), but as the current density of the nitrogen ion beam increases as compared to that case. , You can see that the crystal structure is changing. FIG. 3 shows the relationship between the change in crystal structure of the TiN film and the change in hardness (Vickers hardness). The temperature of the substrate (12) has been tested for two types, 40 ° C and 200 ° C. In both cases, (111) / (200)
The hardness of the film is high when it is close to the non-oriented crystal structure of 0.75, and the Vickers hardness is 2000 Kgf / mm 2 or more.
An iN film was obtained. The change in the film structure can be seen by observing the film cross-sectional structure with a scanning electron microscope.

又、窒素イオンビームの照射にともなって、TiN膜が緻
密化していくことも観察された。
It was also observed that the TiN film became dense with the irradiation of the nitrogen ion beam.

次に窒素ガス流速と窒素イオンビームの電流密度との条
件を変えながら得られたTiN膜の硬度を測定した結果を
第4図に示す。チタンの蒸着速度は10Å/sec、窒素イオ
ンビームのエネルギーは40keVである。基板の温度によ
って実験結果に幅があるが、いずれにしても窒素ガスを
流すことによって得られる化合物膜の硬度が高くなるこ
とが明らかである。
Next, FIG. 4 shows the results of measuring the hardness of the TiN film obtained by changing the conditions of the nitrogen gas flow rate and the current density of the nitrogen ion beam. The deposition rate of titanium is 10Å / sec, and the energy of nitrogen ion beam is 40 keV. Although the experimental results vary depending on the temperature of the substrate, it is clear that the hardness of the compound film obtained by flowing the nitrogen gas increases in any case.

第2図に示したように、この実験でチタンの蒸着速度10
Å/secを得るために用いた窒素イオンビームの電流密度
は30μA/cm2以下であった。従来のイオンミキシング法
に関する文献(M.Kiuchi,et.al.,Japanese Journal of
Applied Physics vol.26,No.6,(1987),pp.L938〜L94
0)によれば、チタンの蒸着速度6.8〜7.8Å/secを得る
ために用いた窒素イオンビームの電流密度は100〜300μ
A/cm2である。本発明による方法によれば、上記文献の
約1/10という少量のイオンビーム硬度の高い窒化チタン
(TiN)膜が得られていることがわかる。
As shown in FIG. 2, the titanium deposition rate 10
The current density of the nitrogen ion beam used to obtain Å / sec was less than 30 μA / cm 2 . Literature on conventional ion mixing methods (M.Kiuchi, et.al., Japanese Journal of
Applied Physics vol.26, No.6, (1987), pp.L938-L94
According to (0), the current density of the nitrogen ion beam used to obtain the titanium deposition rate of 6.8-7.8Å / sec is 100-300μ.
It is A / cm 2 . By the method according to the present invention, it is found that a titanium nitride (TiN) film having a high ion beam hardness, which is as small as about 1/10 of that of the above document, is obtained.

従って本発明の方法によれば、同量のイオンビームを使
用した場合、従来のイオンミキシング法の場合より5倍
以上の高速成膜が可能になる。かつ、この時に導入する
窒素ガスの流速と照射する窒素イオンビームの電流密度
とを調節して、形成される窒化チタン薄膜のX線回折強
度比(111)/(200)≒0.75とすることにより、ビッカ
ース硬度2000Kgf/mm2以上の窒化チタン薄膜を得ること
ができる。
Therefore, according to the method of the present invention, when the same amount of ion beam is used, it is possible to form a film five times or more faster than in the case of the conventional ion mixing method. By adjusting the flow rate of the nitrogen gas introduced at this time and the current density of the nitrogen ion beam to be irradiated, the X-ray diffraction intensity ratio (111) / (200) ≈0.75 of the titanium nitride thin film to be formed is obtained. A titanium nitride thin film having a Vickers hardness of 2000 Kgf / mm 2 or more can be obtained.

以上、本発明の実施例について説明したが、勿論、本発
明はこれらに限定されることなく本発明の技術的思想に
基づき種々の変形が可能である。
Although the embodiments of the present invention have been described above, needless to say, the present invention is not limited to these, and various modifications can be made based on the technical idea of the present invention.

例えば、上記実施例では窒素ガス、窒素イオンビーム、
チタン中性ビームを用いて窒化チタン化合物膜を形成し
た例を示したが、これらの組合せは他にも色々なものが
考えられる。この場合重要なことは、雰囲気ガスとして
用いた反応ガスが金属膜に強固に化学(解離)吸着する
必要があることである。多くの高融点金属(Ti、Ta、M
o、Nb、Zr、Vなど)は、N2、NH3、C2H2、O2などのガス
を化学(解離)吸着するので、これらのガス雰囲気中
で、これらの高融点金属を蒸着させ、同時に▲N+ 2
(および又はN+)、C+、O2(および又はO+)などのイオ
ンビームを照射することにより、これらの窒化物、炭化
物、酸化物あるいはこれらの複数から成る化合物、すな
わち複合化合物を高速で形成することが可能である。な
お反応ガスは金属膜に強固に化学(解離)吸着するもの
であれば、N、C、又はOを分離する他のガスであって
もよい。
For example, in the above embodiment, nitrogen gas, nitrogen ion beam,
An example in which a titanium nitride compound film is formed using a titanium neutral beam has been shown, but various combinations of these are conceivable. In this case, what is important is that the reaction gas used as the atmosphere gas must be strongly chemically (dissociated) adsorbed to the metal film. Many refractory metals (Ti, Ta, M
(O, Nb, Zr, V, etc.) chemically (dissociate) adsorb gases such as N 2 , NH 3 , C 2 H 2 , and O 2 , so that these refractory metals are vapor-deposited in these gas atmospheres. And at the same time ▲ N + 2
(And / or N + ), C + , O 2 (and or O + ) ion beams are irradiated, and these nitrides, carbides, oxides, or compounds composed of a plurality of these, that is, complex compounds, are accelerated. It is possible to form. The reaction gas may be another gas that separates N, C, or O as long as it is strongly chemically (dissociatively) adsorbed to the metal film.

〔発明の効果〕〔The invention's effect〕

本発明は以上に述べたような構成となっているので、以
下のような効果を発揮する。
Since the present invention is configured as described above, it has the following effects.

すなわち、本発明は窒素ガス雰囲気中で、チタンを蒸着
し、同時に窒素イオンビームを照射して基板上に窒化チ
タン薄膜を形成させる方法であって、窒素ガスが基板上
の蒸着チタン膜に強固に化学(解離)吸着し、その状態
で同時に照射された窒素イオンビームによるイオンミキ
シング作用によって、吸着された窒素原子も膜中に取り
込まれ、窒化チタンが形成される。従って、本発明によ
れば、窒化チタンの窒素成分が照射された窒素イオンビ
ームからだけでなく、雰囲気ガスとしての窒素ガスから
も供給されるために、イオンビームの電流密度を低下さ
せることができ、低コストで、かつ高い成膜速度で窒化
チタン薄膜を形成させ得る。更にはこの時、形成される
窒化チタン薄膜のX線回折強度比(111)/(200)≒0.
75となるように、導入する窒素ガスの流速と照射する窒
素イオンビームの電流密度を調節して、ビッカース硬度
2000Kgf/mm2以上の窒化チタン薄膜を得ることができ
る。
That is, the present invention is a method of vapor-depositing titanium in a nitrogen gas atmosphere and simultaneously irradiating a nitrogen ion beam to form a titanium nitride thin film on a substrate, wherein the nitrogen gas strongly adheres to the vapor-deposited titanium film on the substrate. The adsorbed nitrogen atoms are also taken into the film by chemical (dissociative) adsorption, and the ion mixing action of the nitrogen ion beam simultaneously irradiated in that state also forms titanium nitride. Therefore, according to the present invention, since the nitrogen component of titanium nitride is supplied not only from the irradiated nitrogen ion beam but also from the nitrogen gas as the atmospheric gas, the current density of the ion beam can be reduced. The titanium nitride thin film can be formed at a low cost and at a high film forming rate. Further, at this time, the X-ray diffraction intensity ratio (111) / (200) ≈ 0 of the titanium nitride thin film formed.
The Vickers hardness is adjusted by adjusting the flow rate of the nitrogen gas to be introduced and the current density of the nitrogen ion beam to be irradiated so that it becomes 75.
It is possible to obtain a titanium nitride thin film of 2000 Kgf / mm 2 or more.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す概略断面図、第2図は
本発明によって得られた窒化チタン膜の結晶構造と、窒
素イオンビームの電流密度との関係を示す図、第3図は
得られた窒化チタン膜の結晶構造とその硬度との関係を
示す図、第4図は窒素ガス流速、窒素イオンビームの電
流密度と、得られた窒化チタン膜の硬度との関係を示す
図、第5図は従来のイオンミキシング法に用いられる装
置の一例を示す概略断面図である。 なお、図において (12)……基板 (15)……チタン中性ビーム (17)……窒素イオンビーム (20)……窒素ガス
FIG. 1 is a schematic sectional view showing an embodiment of the present invention, and FIG. 2 is a view showing a relationship between a crystal structure of a titanium nitride film obtained by the present invention and a current density of a nitrogen ion beam, FIG. Is a diagram showing the relationship between the crystal structure of the obtained titanium nitride film and its hardness, and FIG. 4 is a diagram showing the relationship between the nitrogen gas flow rate, the current density of the nitrogen ion beam, and the hardness of the obtained titanium nitride film. FIG. 5 is a schematic sectional view showing an example of an apparatus used in a conventional ion mixing method. In the figure, (12) …… Substrate (15) …… Titanium neutral beam (17) …… Nitrogen ion beam (20) …… Nitrogen gas

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】イオンミキシング法によって基板上に窒化
チタン薄膜を形成させるに際し、窒素ガスの雰囲気中
で、前記基板上にチタンを蒸着し、同時に窒素イオンビ
ームを照射して、形成される窒化チタン薄膜のX線回折
強度比(111)/(200)≒0.75となるように、導入する
前記窒素ガスの流速、及び照射する前記窒素イオンビー
ムの電流密度を調節することを特徴とする窒化チタン薄
膜の形成方法。
1. When forming a titanium nitride thin film on a substrate by an ion mixing method, titanium is vapor-deposited on the substrate in a nitrogen gas atmosphere, and at the same time, a nitrogen ion beam is irradiated to form a titanium nitride film. A titanium nitride thin film, characterized in that the flow rate of the nitrogen gas to be introduced and the current density of the nitrogen ion beam to be irradiated are adjusted so that the X-ray diffraction intensity ratio of the thin film becomes (111) / (200) ≈0.75. Forming method.
【請求項2】形成される窒化チタン薄膜のビッカース硬
度が2000Kgf/mm2以上である請求項(1)に記載の窒化
チタン薄膜の形成方法。
2. The method for forming a titanium nitride thin film according to claim 1, wherein the titanium nitride thin film to be formed has a Vickers hardness of 2000 Kgf / mm 2 or more.
JP63142870A 1988-06-10 1988-06-10 Method for forming titanium nitride thin film Expired - Fee Related JPH0745706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63142870A JPH0745706B2 (en) 1988-06-10 1988-06-10 Method for forming titanium nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63142870A JPH0745706B2 (en) 1988-06-10 1988-06-10 Method for forming titanium nitride thin film

Publications (2)

Publication Number Publication Date
JPH02163362A JPH02163362A (en) 1990-06-22
JPH0745706B2 true JPH0745706B2 (en) 1995-05-17

Family

ID=15325517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63142870A Expired - Fee Related JPH0745706B2 (en) 1988-06-10 1988-06-10 Method for forming titanium nitride thin film

Country Status (1)

Country Link
JP (1) JPH0745706B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2161661C1 (en) * 1999-08-16 2001-01-10 Падеров Анатолий Николаевич Method of applying wear-resistant coatings and improvement of durability of parts
KR100877574B1 (en) 2006-12-08 2009-01-08 한국원자력연구원 High temperature and high pressure corrosion resistant process heat exchanger for a nuclear hydrogen production system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635651B2 (en) * 1985-02-15 1994-05-11 日新電機株式会社 Method for forming titanium nitride thin film
JPS62157968U (en) * 1986-03-28 1987-10-07

Also Published As

Publication number Publication date
JPH02163362A (en) 1990-06-22

Similar Documents

Publication Publication Date Title
JP3039381B2 (en) Method of forming composite hard coating with excellent high temperature oxidation resistance
JPS582022A (en) Thin film formation
JPH0745706B2 (en) Method for forming titanium nitride thin film
JPH04337064A (en) Boron nitride coating member
JPS62161952A (en) Formation of thin film of cubic boron nitride
JPS6326349A (en) Formation of cubic boron nitride film
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
Mattox Recent advances in ion plating
JPS63114966A (en) Apparatus for producing thin film
JP2844779B2 (en) Film formation method
JPH01168857A (en) Formation of titanium nitride film
JPH03146656A (en) Method and device for film formation
JPS61227163A (en) Production of high hardness boron nitride film
Kawashima et al. Effect of mixed argon and nitrogen ion beam on cubic boron nitride film formation in ion-beam-assisted deposition
Koinuma et al. Pulsed laser processing of carbon and silicon clusters and thin films
JPH04337445A (en) Manufacture of microsection
Nenadović Atomic collision on surfaces and material implementation
Konishi et al. Observation of sorption of O2 and N2 on Ti thin film by DAPS, AEAPS, AES and electrical resistance methods
Nielsen Ion Beam Assisted Deposition
JPH10140326A (en) Production of iron nitride thin containing film
JPH0657408A (en) Formation of boron nitride film
JPH04333561A (en) Formation of nitride film
JPH04333562A (en) Formation of nitride film
JPH0621042A (en) Thin film formation device
JPH0562169A (en) Amorphous boron nitride film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees