JPH03146656A - Method and device for film formation - Google Patents

Method and device for film formation

Info

Publication number
JPH03146656A
JPH03146656A JP28471889A JP28471889A JPH03146656A JP H03146656 A JPH03146656 A JP H03146656A JP 28471889 A JP28471889 A JP 28471889A JP 28471889 A JP28471889 A JP 28471889A JP H03146656 A JPH03146656 A JP H03146656A
Authority
JP
Japan
Prior art keywords
film
film forming
substrate
vacuum
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28471889A
Other languages
Japanese (ja)
Inventor
Akio Honchi
章夫 本地
Akira Kato
明 加藤
Katsuhisa Usami
勝久 宇佐美
Yukishige Jinno
神野 幸重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28471889A priority Critical patent/JPH03146656A/en
Publication of JPH03146656A publication Critical patent/JPH03146656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To provide the film forming device which does not require exposure to the atm. air by providing an aperture plate which can be controlled in the opening degree of a hole from the outside between the substrate side and evaporating source side in the film forming device and opening a vacuum chamber for the purpose of exchanging a baffle plate. CONSTITUTION:The opening degree of the aperture plate 11 is increased and one discharge system is closed, then the formation of, for example, a metallic film, is executed in the ultrahigh vacuum in which the degrees of vacuum on the substrate (12 is a substrate holder) side and the evaporating source 9 side are the same in the case of the above-mentioned formation. The above- mentioned opening degree is first increased and the metal is thinly deposited by evaporation; thereafter, the aperture plate 11 is completely closed or the opening degree is so decreased as to generate a sufficient pressure difference and reactive gases are introduced 18 in the case of formation of a ceramics film. A variable leak valve is so adjusted as to attain the prescribed vacuum degree. The ceramics film of a desired thickness is formed by repeating this operation. The evaporating source 9 side is maintained always in the high vacuum in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空中において基板表面に金属あるいはセラミ
ックの膜を形成する膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a film forming apparatus for forming a metal or ceramic film on a substrate surface in a vacuum.

〔従来の技術〕[Conventional technology]

半導体に関連した膜形成装置においては、膜質膜厚の精
度の向上、あるいは積層膜2人工格子、および超格子の
作製に対する要求があるため、Kセル(クヌードセンセ
ル)やEB(ffi子ビーム)蒸発源を用いた膜形成装
置が種々開発されている。
In film forming equipment related to semiconductors, there is a demand for improving the accuracy of film quality and film thickness, or for fabricating laminated film 2 artificial lattices and superlattices, so K cell (Knudsen cell) and EB (FFI beam) are required. ) Various film forming apparatuses using evaporation sources have been developed.

また、固体表面の触媒作用を解明し、触媒材料を改良・
開発するためにも同様の装置が用いられ始めている。こ
のように、KセルやEB蒸発源を用いた膜形成装置の利
用範囲が広がるにつれて、従来の装置では対応できない
場合が生じてきた。
In addition, we will elucidate the catalytic action of solid surfaces and improve and improve catalyst materials.
Similar devices are also beginning to be used for development. As described above, as the range of use of film forming apparatuses using K cells and EB evaporation sources has expanded, cases have arisen that cannot be handled by conventional apparatuses.

例として、セラミック人工格子の作製について述べる。As an example, we will discuss the production of a ceramic artificial lattice.

KセルやEB蒸発源で金属膜を蒸着した後に、あるいは
蒸着と同時に、酸素、窒素やアンモニア等の反応性ガス
を供給することによって、セラミック人工格子を作製す
るが、その際、反応性ガスと金属との反応性が低い場合
1反応性ガスの分圧を高める必要がある。しかし、これ
らの蒸発源を10−’Torrより悪い真空にさらすと
、加熱用のヒータや電子発生用フィラメントが消耗し、
断線するため、反応性ガスの分圧に限界があった、その
ため高周波コイルによる反応の活性化(例えば特開昭6
3−319038号に記載)、コンダクタンスを制御し
た差動排気(例えば「薄膜ハンドブック」日本学術振興
会薄膜第131委員会編(オーム社)1983、p15
1に記載)が考えられている。
A ceramic artificial lattice is created by supplying a reactive gas such as oxygen, nitrogen, or ammonia after or simultaneously with the deposition of a metal film using a K cell or EB evaporation source. If the reactivity with the metal is low, it is necessary to increase the partial pressure of the reactive gas. However, if these evaporation sources are exposed to a vacuum worse than 10-'Torr, the heaters and filaments for electron generation will be exhausted.
Because of the wire breakage, there was a limit to the partial pressure of the reactive gas, so activation of the reaction using a high-frequency coil (for example,
3-319038), differential pumping with controlled conductance (for example, "Thin Film Handbook" edited by the 131st Committee on Thin Films of the Japan Society for the Promotion of Science (Ohmsha) 1983, p. 15
1) are being considered.

しかし、高周波コイルによる活性化では、反応の制御が
難しく、希望する物質が得られないことがある。また、
差動排気では、基板側と蒸発源側の間に、孔の開いたじ
ゃま板を設ける必要がある。
However, activation using a high-frequency coil makes it difficult to control the reaction, and the desired substance may not be obtained. Also,
In differential pumping, it is necessary to provide a baffle plate with holes between the substrate side and the evaporation source side.

圧力差が小さい場合には問題はないが、圧力差を大きく
するため(すなわち反応性の低い材料のとき)には孔径
を小さくしなければならず、蒸着速度の低下をもたらす
とともに、大きい基板に膜を形成しようとすると、膜厚
が不均一となる。
This is not a problem if the pressure difference is small, but if the pressure difference is increased (i.e. for less reactive materials), the pore size must be reduced, which reduces the deposition rate and makes it difficult to accommodate large substrates. When attempting to form a film, the film thickness becomes non-uniform.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、上述のように、装置自体に新たな機能
を付加したがために、反応の制御や膜厚精度において、
新たな問題の発生が見られた。
As mentioned above, the above conventional technology has added new functions to the device itself, so it has problems in reaction control and film thickness accuracy.
A new problem was observed.

本発明は、これらの問題を発生させることなく、金属か
らセラミックに至るまでの各種の膜を基板表面に形成す
ることが可能であり、しかも、じゃま板の交換のために
真空チャンバーを開放して、大気にさらす必要のない膜
形成装置を提供することを目的としている。
The present invention makes it possible to form various films ranging from metals to ceramics on the surface of a substrate without causing these problems, and also allows the vacuum chamber to be opened for replacing the baffle plate. The purpose of the present invention is to provide a film forming apparatus that does not require exposure to the atmosphere.

本発明の他の目的は、反応性ガスと反応し難い材料を反
応させるための膜形成方法を提供することにある。
Another object of the present invention is to provide a method for forming a film for reacting a material that is difficult to react with a reactive gas.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、装置内の基板側と蒸発源側
の間に、外部から孔の開度を制御することのできる開孔
板を設けた。その概念図を第1図に示す。また、外部か
ら開度を制御することのできる開孔板の一例を示す図を
第2図に示す。セラミック膜を形成できるように、反応
性ガスの噴出口が基板側に設けである。また、基板側と
蒸発源側には別々の排気系が接続されており、基板はヒ
ータによって加熱できる。反応性ガスの導入路にはバリ
ュアブルリークバルブを介在させ、流量を微調整するこ
とにより、基板側の真空度を制御する。外部から開度を
制御することのできる開孔板は、多数枚(第2図では6
枚)の羽を組み合せ、羽を移動させることによって開度
を変化させる。
In order to achieve the above object, a perforated plate was provided between the substrate side and the evaporation source side in the apparatus, and the opening degree of the holes could be controlled from the outside. The conceptual diagram is shown in Fig. 1. Further, FIG. 2 shows an example of a perforated plate whose opening degree can be controlled from the outside. A reactive gas outlet is provided on the substrate side so that a ceramic film can be formed. Further, separate exhaust systems are connected to the substrate side and the evaporation source side, and the substrate can be heated by a heater. A variable leak valve is interposed in the reactive gas introduction path, and the degree of vacuum on the substrate side is controlled by finely adjusting the flow rate. There are many perforated plates (6 in Fig. 2) whose opening degree can be controlled from the outside.
The degree of opening can be changed by combining the blades (2) and moving the blades.

孔の中心は、蒸発源と基板のそれぞれの中心を結んだ線
上に来るように配置する。
The center of the hole is placed on a line connecting the evaporation source and the center of each of the substrates.

本装置の操作法について述べる。例えば金属膜を形成す
る場合には、開孔板の開度を大きくして。
This section describes how to operate this device. For example, when forming a metal film, the opening degree of the perforated plate is increased.

一方の排気系を閉じ、基板側と蒸発源側の真空度がほぼ
同じ超高真空中で行う、また、セラミックス膜を形成す
る場合には、まず開度を大きくして、金属を薄く蒸着し
、その後に開孔板を完全に閉めであるいは十分な圧力差
がつくように開度を小さくして反応性ガスをガス噴出口
から導入し、所定の真空度になるようにバリュアブルリ
ークバルブを調節する。これを繰り返すことにより希望
の厚さのセラミック膜を形成することができる。これに
より蒸発源側は常に高真空に保持されることになる。ま
た、別の方法として、開孔板の開度を。
One exhaust system is closed and the vacuum level on the substrate side and the evaporation source side is almost the same in an ultra-high vacuum.Also, when forming a ceramic film, first increase the opening and evaporate a thin layer of metal. Then, either close the perforated plate completely or reduce its opening to create a sufficient pressure difference, introduce the reactive gas from the gas outlet, and adjust the variable leak valve to achieve the desired degree of vacuum. do. By repeating this process, a ceramic film with a desired thickness can be formed. As a result, the evaporation source side is always maintained at a high vacuum. Another method is to change the opening of the perforated plate.

基板側と蒸発源側の間に例えば1桁の圧力差が生じるよ
うに設定し、ガス噴出口から反応性ガスを流しながら金
属を蒸着する。これにより蒸着と同時に反応性ガスとの
反応が進行し、セラミック膜が得られる。前者の方法は
、基板側の真空度をかなり低くして、すなわち反応性ガ
スの分圧を高めた状態で反応させたい場合に用いる方法
であり、反応性の低い金属を蒸発源に用いたときに採用
する。一方、後者は反応が速く、反応性ガスの分圧をそ
れ程高める必要が無く、そのため開孔板の孔の開度を蒸
着の妨げとならない状態で使用できるときに用いる方法
である。これは、−膜内な差動排気を用いた反応性蒸着
の手法である。
A pressure difference of, for example, one order of magnitude is created between the substrate side and the evaporation source side, and metal is evaporated while flowing a reactive gas from the gas outlet. As a result, the reaction with the reactive gas proceeds at the same time as the vapor deposition, and a ceramic film is obtained. The former method is used when the degree of vacuum on the substrate side is considerably lowered, that is, when the partial pressure of the reactive gas is desired to be increased, and when a metal with low reactivity is used as the evaporation source. Adopted to. On the other hand, the latter is a method used when the reaction is fast and there is no need to increase the partial pressure of the reactive gas so much, and therefore the opening of the holes in the apertured plate can be used without interfering with vapor deposition. This is a reactive deposition technique using intra-film differential pumping.

ここまでに述べた装置は、本発明の一例であり、同様の
装置として、ターレット方式がある。その開孔板を表す
図を第3図に示す。回転する円板に孔径の異なる数枚(
第3図では8枚)の板を取り付け、希望の開度を有する
板が基板と蒸発源の間に来るように円板を回転させて用
いる。1枚に孔のない板を取り付けておけば、基板側を
蒸着源側を隔離することが可能となる。円板の回転は外
部から制御できるようにする。
The device described so far is an example of the present invention, and a similar device is a turret type. A diagram representing the perforated plate is shown in FIG. Several pieces with different hole diameters (
In Figure 3, eight plates are attached, and the disk is rotated so that the plate with the desired opening is between the substrate and the evaporation source. If one plate without holes is attached, it becomes possible to isolate the substrate side from the vapor deposition source side. The rotation of the disc can be controlled from the outside.

〔作用〕[Effect]

外部から孔の開度を制御することのできる開孔板を、基
板側と蒸発源側の間に設けることによって、蒸発源側の
真空度を低下させることなく、基板側の真空度を広範囲
に変えることが可能であり、また、−膜内差動排気装置
のように圧力差を変える度毎に真空チャンバーを大気に
開放する必要がないので、効率良く膜を形成することが
できる。
By installing a perforated plate between the substrate side and the evaporation source side that can control the degree of hole opening from the outside, the degree of vacuum on the substrate side can be varied over a wide range without reducing the degree of vacuum on the evaporation source side. Furthermore, it is not necessary to open the vacuum chamber to the atmosphere every time the pressure difference is changed as in the case of an intra-membrane differential pumping device, so that the film can be formed efficiently.

さらに、真空チャンバーを開放すること無く、金属膜か
らセラミック膜に至るまで効率良く成膜することが可能
であり、反応性ガスと反応し難い材料の場合においても
、反応性ガスの分圧を高めることによってセラミックス
化することができる。
Furthermore, it is possible to efficiently form films ranging from metal films to ceramic films without opening the vacuum chamber, and even in the case of materials that do not easily react with reactive gases, the partial pressure of reactive gases can be increased. By doing so, it can be made into ceramics.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

〈実施例1〉 3室(分析室、成膜室、基板交換室)から成る超高真空
装置を作製した。その装置図を第4図に示す、成膜室6
下部にEB蒸発源9を設置し、その上部に開孔板11を
配置した。開孔板11は、モリブデン、タンタル、硫化
タングステン、硫化モリブデン、及びSUSを用いて、
第2図に示した構造のものを作製して用いた。基板最大
(11nchφ)は、基板ホルダー12に取付け、成膜
時には基板ホルダー12を下に移動させ、基板ホルダー
受口20に密着されて1分析室7と成膜室6間のゲート
バルブを開けた。
<Example 1> An ultra-high vacuum apparatus consisting of three chambers (analysis chamber, film formation chamber, and substrate exchange chamber) was manufactured. The film forming chamber 6 whose equipment diagram is shown in FIG.
An EB evaporation source 9 was installed at the bottom, and a perforated plate 11 was placed at the top. The perforated plate 11 is made of molybdenum, tantalum, tungsten sulfide, molybdenum sulfide, and SUS.
A device having the structure shown in FIG. 2 was prepared and used. The largest substrate (11 nchφ) was attached to the substrate holder 12, and during film formation, the substrate holder 12 was moved downward, and the gate valve between the 1 analysis chamber 7 and the film formation chamber 6 was opened while the substrate holder was in close contact with the substrate holder socket 20. .

分析室には、R)IEED−TRAXS (反射高速電
子回折−電子励起全反射角X線分光)分析ができるよう
に、RHEED電子銃14.ケイ先板15.X線分析器
22を取付けてあり、形成した膜を大気にさらすこと無
く、表面原子の配列と元素を分析できるようになってい
る。
The analysis room is equipped with a RHEED electron gun 14. to enable R) IEED-TRAXS (reflection high-speed electron diffraction-electron excitation total reflection angle X-ray spectroscopy) analysis. Key board 15. An X-ray analyzer 22 is attached, making it possible to analyze the arrangement of surface atoms and elements without exposing the formed film to the atmosphere.

また、基板交換室8を付属させることにより、分析室及
び成膜室を大気圧にすることなく、基板を交換すること
ができる。基板の取付、取外し。
Further, by adding the substrate exchange chamber 8, the substrate can be exchanged without setting the analysis chamber and the film forming chamber to atmospheric pressure. Mounting and removing the board.

並びに分析室7と基板交換室8との間の移動は直線導入
器21によって行う。
In addition, movement between the analysis chamber 7 and the substrate exchange chamber 8 is performed by a linear introducer 21.

分析室の真空度は10−10Torr台、成膜室の真空
度は10−”Torr台にまで排気できる。
The degree of vacuum in the analysis chamber can be evacuated to a level of 10-10 Torr, and the degree of vacuum in the film-forming chamber can be evacuated to a level of 10-'' Torr.

外部から開度を制御できる開孔板の開度は、回転導入端
子を回転して、ギアを回転させて羽を移動させる構造と
し、完全に閉じた状態から40Trnφまで無段階に調
整できるようにした。
The opening of the perforated plate, which can be controlled from the outside, can be adjusted steplessly from the completely closed state to 40 Trnφ by rotating the rotation introduction terminal and rotating the gear to move the blades. did.

基板に二酸化チタン(100)単結晶(10nmφ。The substrate is titanium dioxide (100) single crystal (10 nmφ).

厚さ1mm)を用い、その表面に酸化モリブデンの膜を
形成した。モリブデンとしては、純度99.95%のモ
リブデン線(Lollφ)を切断して用い、EB蒸発源
のルツボに入れた。二酸化チタンを基板ホルダーに取り
付け、成膜位置まで基板ホルダーを下げて、分析室と成
膜室間のゲートバルブを開けた。最初開孔板の開度を最
大にし、二酸化チタン表面にモリブデンを約10人魚着
して。その後、開孔板を閉じて、成膜室の基板側に設け
た反応性ガスの噴出口から酸素を導入し、基板側の真空
度が10″″2Torrとなるよう酸素流量を調節した
1 mm thick), and a molybdenum oxide film was formed on its surface. As molybdenum, a cut molybdenum wire (Lollφ) with a purity of 99.95% was used and placed in a crucible of an EB evaporation source. Titanium dioxide was attached to the substrate holder, the substrate holder was lowered to the deposition position, and the gate valve between the analysis chamber and the deposition chamber was opened. First, the opening of the perforated plate was maximized, and about 10 mermaids of molybdenum were applied to the titanium dioxide surface. Thereafter, the perforated plate was closed, and oxygen was introduced from a reactive gas outlet provided on the substrate side of the film forming chamber, and the oxygen flow rate was adjusted so that the degree of vacuum on the substrate side was 10''2 Torr.

との状態で5分″間保持した後に1反応性ガスを止め真
空排気した。基板を分析室に移動して、膜の構造及び組
成をRHEED −TKAXSにより分析したところ、
二酸化チタンの表面の酸化モリブデンの膜が形成してい
ることがわかった。
After holding this state for 5 minutes, the reactive gas was stopped and the film was evacuated.The substrate was moved to an analysis chamber, and the structure and composition of the film was analyzed using RHEED-TKAXS.
It was found that a film of molybdenum oxide was formed on the surface of titanium dioxide.

〈実施例2〉 実施例1に示した操作(モリブデン膜約10人成膜し、
酸素10−2Torrで5分間保持)を10回繰り返し
て、酸化モリブデンの厚膜を形成した。
<Example 2> The operation shown in Example 1 (approximately 10 people formed a molybdenum film,
A thick film of molybdenum oxide was formed by repeating this process 10 times (maintaining oxygen at 10 −2 Torr for 5 minutes).

これを実施例1と同様に分析すると、二酸化チタンの表
面に酸化モリブデンの厚膜が形成されていた。
When this was analyzed in the same manner as in Example 1, a thick film of molybdenum oxide was formed on the surface of titanium dioxide.

〈比較例1〉 実施例1の装置を用い、同様の操作により二酸化チタン
の表面に酸化モリブデンの膜を形成した。
<Comparative Example 1> Using the apparatus of Example 1, a film of molybdenum oxide was formed on the surface of titanium dioxide by the same operation.

但し、この場合は、成膜室の基板側が10−2Torr
However, in this case, the temperature on the substrate side of the film forming chamber is 10-2 Torr.
.

蒸発源側が10−4Torrの真空度になるように、開
孔板の開度を調節した。基板側には酸素を導入した。し
かし、開度が小さいため、成膜速度が実施例1の場合の
約10分の1〜数10分の1に低下してしまい、成膜の
効率が著しく低下することがわかった。
The degree of opening of the perforated plate was adjusted so that the degree of vacuum on the evaporation source side was 10 −4 Torr. Oxygen was introduced to the substrate side. However, since the opening degree was small, the film formation rate was reduced to about one-tenth to several tenths of that in Example 1, and it was found that the film formation efficiency was significantly reduced.

〈比較例2〉 比較例1と同様にして、成膜室の基板側を10−δTo
rr +蒸発源側を10″″’Torrの真空度となる
ように開孔板の開度を制御した。基板側には酸素を導入
した。この場合、成膜速度は実施例1の数分の1程度に
低下するだけであった。しかし。
<Comparative Example 2> In the same manner as Comparative Example 1, the substrate side of the film forming chamber was heated to 10-δTo.
The opening degree of the perforated plate was controlled so that the degree of vacuum on the rr + evaporation source side was 10'''' Torr. Oxygen was introduced to the substrate side. In this case, the film formation rate was only reduced to about a fraction of that in Example 1. but.

膜中の酸素移有量が実施例1の場合より低いことがわか
り、モリブデンと酸素が十分に反応していなかった。基
板側の酸素分圧が低いためと考えられた、 〈実施例3〉 実施例1の装置の開孔板を第3図に示したものに交換し
、同様の方法によって二酸化チタンの表面に酸化モリブ
デンの膜を形成した。開孔板には、孔の無いものから4
0nmφのものまで、孔径の異なる板を8枚取り付け、
円板を外部から回転導入端子により回転させたにの場合
にも、実施例1と同様の効果が認められた。
It was found that the amount of oxygen transferred in the film was lower than in Example 1, indicating that molybdenum and oxygen did not react sufficiently. This was thought to be due to the low oxygen partial pressure on the substrate side. <Example 3> The perforated plate of the apparatus of Example 1 was replaced with the one shown in Figure 3, and the surface of titanium dioxide was oxidized using the same method. A molybdenum film was formed. For perforated plates, there are 4 types starting from those without holes.
Attach 8 plates with different hole diameters up to 0nmφ,
The same effect as in Example 1 was also observed when the disk was rotated from the outside using a rotation introduction terminal.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように構成されているので下記に
記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

外部から開度を制御することのできる開孔板を基板側と
蒸発源側の間に設けることにより、蒸発源側の真空度を
低下させること無く、基板側の真空度を広範囲に変える
ことができる。また、基板側と蒸発源側の間に圧力差を
変える度毎に真空チャンバーを大気に開放する必要がな
いので、助動よく膜を形成することができる。さらに、
真空チャンバーを開放すること無く、金属膜からセラミ
ック膜に至るまで、効率良く成膜することができる。反
応性ガスと反応し難い材料でも1反応性ガスの分圧を高
めることによつ′Cセラミックス化することができる。
By installing a perforated plate between the substrate side and the evaporation source side whose opening degree can be controlled from the outside, the degree of vacuum on the substrate side can be changed over a wide range without reducing the degree of vacuum on the evaporation source side. can. Furthermore, since there is no need to open the vacuum chamber to the atmosphere every time the pressure difference between the substrate side and the evaporation source side is changed, the film can be formed with ease. moreover,
Films ranging from metal films to ceramic films can be efficiently formed without opening the vacuum chamber. Even materials that are difficult to react with reactive gases can be made into 'C ceramics by increasing the partial pressure of the reactive gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念図、第2図及び第3図は開孔板の
一例を表す図、第4図は装置図である。 1・・・油回転ポンプ、2・・・ターボ分子ポンプ、3
・・・イオンポンプ、4・・・ターボ分子ポンプ、5・
・・真空計、6・・・成膜室、7・・・分析室、8・・
・基板交換室、9・・・EB蒸発源、10・・・膜厚計
、11・・・開孔板、12・・・基板ホルダー 13・
・・マニピュレータ、14・・・RHEED電子銃、1
5・・・ケイ先板、16・・・カメラ、17・・・イオ
ン銃、18・・・反応性ガス噴出口、19・・・筐体、
20・・・基板ホルダー受口、21・・・直線導入器、
22・・・X線分析器。 ¥ 1 図 寥 図
FIG. 1 is a conceptual diagram of the present invention, FIGS. 2 and 3 are diagrams showing an example of a perforated plate, and FIG. 4 is a diagram of the apparatus. 1...Oil rotary pump, 2...Turbo molecular pump, 3
...Ion pump, 4...Turbo molecular pump, 5.
... Vacuum gauge, 6... Film formation chamber, 7... Analysis room, 8...
・Substrate exchange room, 9... EB evaporation source, 10... Film thickness gauge, 11... Perforated plate, 12... Substrate holder 13.
...Manipulator, 14...RHEED electron gun, 1
5... Silicon tip plate, 16... Camera, 17... Ion gun, 18... Reactive gas outlet, 19... Housing,
20... Substrate holder socket, 21... Linear introducer,
22...X-ray analyzer. ¥ 1 Diagram

Claims (8)

【特許請求の範囲】[Claims] 1.蒸発源を用いて真空中で基板上に膜を形成する膜形
成装置において、前記膜形成装置内の基板側と蒸発源側
の間に、外部から孔の開度を制御することのできる開孔
板を設けたことを特徴とする膜形成装置。
1. In a film forming apparatus that forms a film on a substrate in vacuum using an evaporation source, an opening is provided between the substrate side and the evaporation source side in the film forming apparatus, the opening degree of which can be controlled from the outside. A film forming device characterized by being provided with a plate.
2.特許請求の範囲第1項において、前記膜形成装置内
の基板側と蒸発源側の間に差動排気手段を設けるととも
に、基板側に反応性ガスの噴出口を設けたことを特徴と
する膜形成装置。
2. The film according to claim 1, characterized in that differential exhaust means is provided between the substrate side and the evaporation source side in the film forming apparatus, and a reactive gas jet port is provided on the substrate side. Forming device.
3.特許請求の範囲第1項において、前記開孔板の材質
が、モリブデン,タンタル,硫化タングステン,硫化モ
リブデン,SUSのうち1種以上であることを特徴とす
る膜形成装置。
3. 2. The film forming apparatus according to claim 1, wherein the perforated plate is made of one or more of molybdenum, tantalum, tungsten sulfide, molybdenum sulfide, and SUS.
4.特許請求の範囲第1項において、前記開孔板が多数
枚の羽を組み合せたものであることを特徴とする膜形成
装置。
4. The film forming apparatus according to claim 1, wherein the perforated plate is a combination of a large number of blades.
5.特許請求の範囲第1項において、前記開孔板が、孔
径の異なる多数個の孔を有し、前記開孔板を移動させる
ことを特徴とする膜形成装置。
5. 2. The film forming apparatus according to claim 1, wherein the perforated plate has a large number of holes having different diameters, and the perforated plate is moved.
6.蒸発源と反応性ガスを用いて、真空中で基板上に膜
を形成する膜形成方法において、基板上に前記蒸発源に
より膜を形成した後に、蒸発源側の真空度を10^−^
4Torr以下に保持したまま、基板側に前記反応性ガ
スを導入して、基板側における反応性ガスの分圧を高め
ることを特徴とする膜形成方法。
6. In a film forming method in which a film is formed on a substrate in vacuum using an evaporation source and a reactive gas, after forming a film on the substrate with the evaporation source, the degree of vacuum on the evaporation source side is reduced to 10^-^.
A film forming method characterized by introducing the reactive gas to the substrate side while maintaining the pressure at 4 Torr or less to increase the partial pressure of the reactive gas on the substrate side.
7.特許請求の範囲第6項において、前記操作を多数回
繰り返すことを特徴とする膜形成方法。
7. 7. The film forming method according to claim 6, characterized in that said operation is repeated many times.
8.蒸発源を用いて真空中で基板上に膜を形成する膜形
成装置において、前記膜形成装置内の基板側と蒸発源側
の間に、外部からコンダクタンスを変えることのできる
機構を設けたことを特徴とする膜形成装置。
8. In a film forming apparatus that forms a film on a substrate in vacuum using an evaporation source, a mechanism that can change conductance from the outside is provided between the substrate side and the evaporation source side in the film forming apparatus. Characteristic film forming equipment.
JP28471889A 1989-11-02 1989-11-02 Method and device for film formation Pending JPH03146656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28471889A JPH03146656A (en) 1989-11-02 1989-11-02 Method and device for film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28471889A JPH03146656A (en) 1989-11-02 1989-11-02 Method and device for film formation

Publications (1)

Publication Number Publication Date
JPH03146656A true JPH03146656A (en) 1991-06-21

Family

ID=17682083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28471889A Pending JPH03146656A (en) 1989-11-02 1989-11-02 Method and device for film formation

Country Status (1)

Country Link
JP (1) JPH03146656A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532306A (en) * 2005-02-28 2008-08-14 エピスピード エス.アー. Apparatus and method for high density low energy plasma vapor phase epitaxy
JP2012049356A (en) * 2010-08-27 2012-03-08 Kyocera Corp Manufacturing device of photoelectric conversion device and manufacturing method of photoelectric conversion device
CN108642454A (en) * 2018-06-26 2018-10-12 云谷(固安)科技有限公司 A kind of evaporated device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532306A (en) * 2005-02-28 2008-08-14 エピスピード エス.アー. Apparatus and method for high density low energy plasma vapor phase epitaxy
JP2012049356A (en) * 2010-08-27 2012-03-08 Kyocera Corp Manufacturing device of photoelectric conversion device and manufacturing method of photoelectric conversion device
CN108642454A (en) * 2018-06-26 2018-10-12 云谷(固安)科技有限公司 A kind of evaporated device
CN108642454B (en) * 2018-06-26 2020-07-03 云谷(固安)科技有限公司 Evaporation plating equipment

Similar Documents

Publication Publication Date Title
US4058430A (en) Method for producing compound thin films
US6080679A (en) High-speed soft evacuation process and system
JPH07133192A (en) Film forming device and film forming method
JP2009522104A (en) Improvements on thin film getter devices
JP2014515060A (en) Improved method of controlling lithium uniformity
US20040137158A1 (en) Method for preparing a noble metal surface
JP2009041040A (en) Vacuum vapor deposition method and vacuum vapor deposition apparatus
JPH0521347A (en) Sputtering device
KR100212906B1 (en) Process for producing oxide films and chemical deposition apparatus therefor
JP2712367B2 (en) Method and apparatus for forming thin film
JPH03146656A (en) Method and device for film formation
JP2014051735A (en) Method for forming sputtering target
US5421973A (en) Reactive sputter deposition of lead chevrel phase thin films
JPS61229319A (en) Thin film forming method
WO2021124810A1 (en) Method for manufacturing passivation film
Arif et al. Characterization of aluminum and titanium nitride films prepared by reactive sputtering under different poisoning conditions of target
JPS63317676A (en) Production of thin metallic compound film having non-grained structure
JP4596803B2 (en) Vacuum deposition equipment
US6736984B2 (en) Non-mechanical fabrication of carbon-containing work pieces
CN113174588A (en) Atomic layer deposition system and deposition method
JPH05311425A (en) Device for producing semiconductor device
CN108085742B (en) Method of forming Transition Metal Dichalcogenide (TMDC) material layer
JP3036895B2 (en) Sputtering equipment
JPS5881967A (en) Method and apparatus for preparing thin film of compound
JPH05263219A (en) Production of copper indium selenide thin film