JP2009041040A - Vacuum vapor deposition method and vacuum vapor deposition apparatus - Google Patents

Vacuum vapor deposition method and vacuum vapor deposition apparatus Download PDF

Info

Publication number
JP2009041040A
JP2009041040A JP2007203825A JP2007203825A JP2009041040A JP 2009041040 A JP2009041040 A JP 2009041040A JP 2007203825 A JP2007203825 A JP 2007203825A JP 2007203825 A JP2007203825 A JP 2007203825A JP 2009041040 A JP2009041040 A JP 2009041040A
Authority
JP
Japan
Prior art keywords
substrate
stage
vacuum
evaporation source
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007203825A
Other languages
Japanese (ja)
Inventor
Toshiharu Kurauchi
倉内  利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007203825A priority Critical patent/JP2009041040A/en
Publication of JP2009041040A publication Critical patent/JP2009041040A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the deposition property of a vapor-deposited film on a side surface and a bottom surface of a via hole. <P>SOLUTION: A vacuum vapor deposition apparatus 10 comprises a vacuum chamber 11, an evaporation source 13 installed in the vacuum chamber, a stage 15 arranged opposite to the evaporation source, a rotating means 18 for rotating the stage in the plane, and an angle adjustment means 19 for changing the installation angle of the stage with respect to the evaporation source. Evaporated particles are deposited on a surface of a substrate while turning the substrate W in the plane, and changing the angle of inclination of the substrate with respect to the evaporation source so that the angle of incidence of the evaporated particles with respect to the surface of the substrate is continuously changed. The deposition property of a vapor-deposited film on a side surface and a bottom surface of a veer can be enhanced irrespective of the radial position of the substrate. Thus, the coverage characteristic of the vapor-deposited film in the substrate plane can be unified. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、基板表面に形成されたビアの側面および底面に対する蒸着膜の付き回り性(カバレッジ性)の向上を図った真空蒸着方法および真空蒸着装置に関する。   The present invention relates to a vacuum vapor deposition method and a vacuum vapor deposition apparatus that improve an adhesion property (coverage property) of a vapor deposition film to a side surface and a bottom surface of a via formed on a substrate surface.

半導体回路やフレキシブル配線基板のビアホール内に湿式めっき(電気めっき)用のシード層を形成する方法として、例えば、ターゲット−基板間の距離が長い低圧ロングスロースパッタ(LTS)法などのスパッタ法が知られている(特許文献1参照)。   As a method for forming a seed layer for wet plating (electroplating) in a via hole of a semiconductor circuit or a flexible wiring board, for example, a sputtering method such as a low pressure long throw sputtering (LTS) method having a long target-substrate distance is known. (See Patent Document 1).

しかし、スパッタ法では、ビアホールの底面や側面に対するメタル膜の付き回り性が低く、基板表面に堆積するメタル膜の膜厚に対する比(以下、付き回り率という)が2〜3%と非常に低い。これは、スパッタ法ではターゲットから基板に入射するスパッタ粒子の入射角が大きいことに起因する。例えば、アスペクト比2のビアホールの側面に0.1μmのシード層を形成しようとすると、基板表面に3.3〜5.0μmまでシード層メタル膜を形成する必要があった。更に、LSIの3次元実装などでは、基板表面に形成されたメタル層をエッチングなどによって除去する必要があるため、表面のメタル層の膜厚が厚いほど多くの手間と時間を必要とする。   However, in the sputtering method, the metal film is less likely to be attached to the bottom and side surfaces of the via hole, and the ratio of the metal film deposited on the substrate surface to the film thickness (hereinafter referred to as the “attachment ratio”) is very low at 2-3%. . This is due to the large incident angle of sputtered particles incident on the substrate from the target in the sputtering method. For example, when a 0.1 μm seed layer is to be formed on the side surface of a via hole having an aspect ratio of 2, it is necessary to form a seed layer metal film to 3.3 to 5.0 μm on the substrate surface. Further, in the three-dimensional mounting of LSI or the like, it is necessary to remove the metal layer formed on the substrate surface by etching or the like. Therefore, the thicker the metal layer on the surface, the more labor and time are required.

一方、基板を蒸発源に対して斜めに配置し、基板を回転させながら蒸着する真空蒸着方法が知られている(特許文献2参照)。これは図5に示すように、真空チャンバ1内に、電子ビーム蒸発源2と、複数枚の基板Wを保持するドーム状のホルダ3とを備えている。ホルダ3は、プラネタリ6に複数設置されており、電子ビーム蒸発源2に対して斜めに保持されている。プラネタリ6には、ホルダ3を公転させる公転機構4と、ホルダ3を自転させる自転機構5がそれぞれ設けられている。そして、蒸着時はホルダ3を自転、公転させながら基板Wの表面に蒸発材料Mの蒸発粒子Maを堆積させる。これにより、基板Wに対して面内均一性に優れた成膜を実現するようにしている。   On the other hand, a vacuum vapor deposition method is known in which a substrate is disposed obliquely with respect to an evaporation source and vapor deposition is performed while rotating the substrate (see Patent Document 2). As shown in FIG. 5, the vacuum chamber 1 includes an electron beam evaporation source 2 and a dome-shaped holder 3 that holds a plurality of substrates W. A plurality of holders 3 are installed on the planetary 6 and are held obliquely with respect to the electron beam evaporation source 2. The planetary 6 is provided with a revolving mechanism 4 for revolving the holder 3 and a revolving mechanism 5 for revolving the holder 3. During evaporation, the evaporation particles Ma of the evaporation material M are deposited on the surface of the substrate W while rotating and revolving the holder 3. As a result, film formation with excellent in-plane uniformity is realized on the substrate W.

特開2000−260770号公報JP 2000-260770 A 特開2002−164303号公報JP 2002-164303 A

真空蒸着法においては、点源とみなせる蒸発源で蒸発した蒸発材料は、一定の広がりをもって基板の表面へ入射するため、基板に対する蒸発粒子の入射角は、基板上の位置によって異なる。また、上述した従来の真空蒸着装置のように、プラネタリ6を自転および公転運動させながら成膜を行っても、基板上の位置(円形基板では半径位置)に対応した入射角分布を解消することはできない。   In the vacuum deposition method, the evaporation material evaporated by the evaporation source that can be regarded as a point source is incident on the surface of the substrate with a certain spread, and therefore the incident angle of the evaporated particles with respect to the substrate varies depending on the position on the substrate. Moreover, even if film formation is performed while rotating and revolving the planetary 6 as in the conventional vacuum vapor deposition apparatus described above, the incident angle distribution corresponding to the position on the substrate (radial position in the case of a circular substrate) can be eliminated. I can't.

したがって、基板表面に形成されたビアホールにメタル膜を形成する場合、ビアホールの側面や底面に対するメタル膜の付き回り性が基板上の位置によって異なることになるため、付き回り率の大きな向上を図ることができないという問題がある。   Therefore, when a metal film is formed on a via hole formed on the substrate surface, the metal film coverage with respect to the side and bottom surfaces of the via hole varies depending on the position on the substrate. There is a problem that can not be.

本発明は上述の問題に鑑みてなされ、基板上の位置に関係なく、ビアの側面や底面に対する蒸着膜の付き回り性を向上させることができる真空蒸着方法および真空蒸着装置を提供することを課題とする。   The present invention has been made in view of the above-described problems, and it is an object of the present invention to provide a vacuum vapor deposition method and a vacuum vapor deposition apparatus that can improve the adhesion of a vapor deposition film to the side and bottom surfaces of a via regardless of the position on the substrate. And

以上の課題を解決するに当たり、本発明の真空蒸着方法は、真空チャンバ内において、ビア又はトレンチ等の凹部が形成された基板の表面に蒸発源からの蒸発粒子を堆積させる真空蒸着方法であって、基板をその表面の面内で回転させるとともに、基板の表面に対する蒸発粒子の入射角が連続的に変化するように基板の傾斜角を蒸発源に対して変化させながら、基板の表面に蒸発粒子を堆積させることを特徴とする。   In solving the above problems, the vacuum vapor deposition method of the present invention is a vacuum vapor deposition method in which evaporated particles from an evaporation source are deposited on the surface of a substrate in which a recess such as a via or a trench is formed in a vacuum chamber. Evaporating particles on the surface of the substrate while rotating the substrate in the plane of the surface and changing the tilt angle of the substrate with respect to the evaporation source so that the incident angle of the evaporating particles on the surface of the substrate continuously changes It is characterized by depositing.

また、本発明の真空蒸着装置は、真空チャンバと、真空チャンバ内に設置された蒸発源と、蒸発源に対向して配置されたステージと、ステージをそのステージ面の面内で回転させる回転手段と、蒸発源に対するステージの設置角度を変化させる角度調整手段とを備え、角度調整手段は、蒸着時において、ステージ上の基板の表面に対する蒸発粒子の入射角を連続的に変化させることを特徴とする。   In addition, the vacuum vapor deposition apparatus of the present invention includes a vacuum chamber, an evaporation source installed in the vacuum chamber, a stage disposed opposite to the evaporation source, and a rotating unit that rotates the stage within the plane of the stage surface. And an angle adjusting means for changing the installation angle of the stage with respect to the evaporation source, wherein the angle adjusting means continuously changes the incident angle of the evaporated particles with respect to the surface of the substrate on the stage during vapor deposition. To do.

本発明では、基板をその表面の面内で自転させるとともに、基板表面に対する蒸発粒子の入射角が連続的に変化するように基板の傾斜角を蒸発源に対して変化させながら、基板の表面に蒸発粒子を堆積させることで、基板上の位置に関係なく、凹部の側面や底面に対する蒸着膜の付き回り性を高めることができる。また、これに伴って、基板面内において蒸着膜のカバレッジ特性の均一化を図ることができる。   In the present invention, the substrate is rotated on the surface of the substrate, and the inclination angle of the substrate is changed with respect to the evaporation source so that the incident angle of the evaporation particles to the substrate surface continuously changes. By depositing the evaporated particles, it is possible to increase the deposition property of the deposited film with respect to the side surface and the bottom surface of the concave portion regardless of the position on the substrate. Accordingly, the coverage characteristics of the vapor deposition film can be made uniform in the substrate plane.

蒸発源に対する基板の傾斜角、傾斜移動速度、自転速度等は、基板表面に形成されたビア等のアスペクト比、基板の大きさ、蒸発粒子の入射角分布等に応じて適宜設定され、基板上の全ビアの各々について所望の付き回り率が得られるような条件で基板の傾斜角制御あるいは回転制御が行われる。基板は円形基板でもよいし、矩形基板でもよい。基板のその面内における回転中心は、基板の中心部に限られず、当該面内における他の任意の点でもよい。   The tilt angle, tilt moving speed, rotation speed, etc. of the substrate with respect to the evaporation source are appropriately set according to the aspect ratio of vias formed on the substrate surface, the size of the substrate, the incident angle distribution of the evaporated particles, etc. The tilt angle control or the rotation control of the substrate is performed under the condition that a desired coverage ratio is obtained for each of the vias. The substrate may be a circular substrate or a rectangular substrate. The center of rotation in the plane of the substrate is not limited to the central portion of the substrate, and may be any other point in the plane.

一方、蒸着時において、真空チャンバ内を減圧下の不活性ガス雰囲気に調整することによって、ガス分子との間の蒸発粒子の散乱効果を利用し、ビアの側面や底面に対する付き回り性の更なる向上を図ることができる。不活性ガスとしては例えばアルゴン(Ar)が挙げられる。雰囲気圧力としては、2.0×10-2Pa以上、8.0×10-2Pa以下が好ましい。 On the other hand, by adjusting the inside of the vacuum chamber to an inert gas atmosphere under reduced pressure at the time of vapor deposition, the effect of scattering of evaporated particles between gas molecules is used to further improve the ability to wrap around the side and bottom of the via. Improvements can be made. An example of the inert gas is argon (Ar). The atmospheric pressure is preferably 2.0 × 10 −2 Pa or more and 8.0 × 10 −2 Pa or less.

真空チャンバに設置されるステージの数は1つに限られず、複数であってもよい。この場合、各ステージについて上述した傾斜角制御および回転制御を行うことによって、カバレッジ性に優れた蒸着膜を高い生産性をもって作製することが可能となる。   The number of stages installed in the vacuum chamber is not limited to one and may be plural. In this case, by performing the above-described tilt angle control and rotation control for each stage, it becomes possible to produce a deposited film with excellent coverage with high productivity.

以上述べたように、本発明によれば、基板上の位置に関係なく、凹部の側面や底面に対する蒸着膜の付き回り性を高めることができる。また、これに伴って、基板面内において蒸着膜のカバレッジ特性の均一化を図ることができる。   As described above, according to the present invention, the deposition property of the deposited film with respect to the side surface and the bottom surface of the recess can be improved regardless of the position on the substrate. Accordingly, the coverage characteristics of the vapor deposition film can be made uniform in the substrate plane.

以下、本発明の各実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<第1の実施形態>
図1は本発明の第1の実施形態による真空蒸着装置10の概略構成図である。真空蒸着装置10は、真空チャンバ11を備えている。真空チャンバ11は、排気バルブ12を介して図示しない真空ポンプによって所定の真空度に真空排気される。
<First Embodiment>
FIG. 1 is a schematic configuration diagram of a vacuum vapor deposition apparatus 10 according to a first embodiment of the present invention. The vacuum evaporation apparatus 10 includes a vacuum chamber 11. The vacuum chamber 11 is evacuated to a predetermined degree of vacuum by an unillustrated vacuum pump through an exhaust valve 12.

真空チャンバ11の内部には、蒸発源13が設置されている。蒸発源13は、電子ビーム蒸発源で構成されるが、これに限られず、抵抗加熱源や誘導加熱源、プラズマガン等で蒸発源が構成されていてもよい。蒸発材料(成膜物質)14には、チタン(Ti)や銅(Cu)などの金属材料が用いられるが、これ以外にも、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)、金(Au)、銀(Ag)、タングステン(W)などの他の金属材料、TiO2、MgOなどの金属酸化物でも構わない。なお、蒸発源13は単一に限らず、複数設置されていてもよい。 An evaporation source 13 is installed inside the vacuum chamber 11. The evaporation source 13 is configured by an electron beam evaporation source, but is not limited thereto, and the evaporation source may be configured by a resistance heating source, an induction heating source, a plasma gun, or the like. A metal material such as titanium (Ti) or copper (Cu) is used for the evaporation material (film-forming substance) 14, but other than this, chromium (Cr), nickel (Ni), aluminum (Al), gold Other metal materials such as (Au), silver (Ag), and tungsten (W), and metal oxides such as TiO 2 and MgO may be used. Note that the evaporation source 13 is not limited to a single one, and a plurality of evaporation sources 13 may be provided.

また、真空チャンバ11の内部には、蒸発源13に対向してステージ15が設置されている。ステージ15は、図では簡略的に示しているが、静電チャックやメカニカルクランプ等の基板Wを保持するための保持機構を備えている。そして、ステージ15の中心部には回転軸15aが設けられており、回転軸15aは、チャンバ外部に設置されている回転機構18によって矢印Aで示すように軸方向の周りに回転可能である。これにより、ステージ15はそのステージ面の面内で回転可能に構成されている。   A stage 15 is installed inside the vacuum chamber 11 so as to face the evaporation source 13. The stage 15 includes a holding mechanism for holding the substrate W such as an electrostatic chuck or a mechanical clamp, which is simply shown in the drawing. A rotation shaft 15a is provided at the center of the stage 15, and the rotation shaft 15a can be rotated around the axial direction as indicated by an arrow A by a rotation mechanism 18 installed outside the chamber. Thereby, the stage 15 is configured to be rotatable within the surface of the stage surface.

更に、ステージ15は、チャンバ外部に設置されている角度調整機構19によって矢印Bで示す方向に傾動自在に構成されている。図示の例におけるステージ15の傾動中心は、ステージ面の中心部としているが、これに限られず、蒸発源13に対するステージ15の傾斜角が所定の角度範囲で調整できる構造であれば、傾動中心は特に限定されない。また、角度調整機構19は、ステージ15の傾斜角を連続的に変化させることができる機構であることが好ましい。   Further, the stage 15 is configured to be tiltable in a direction indicated by an arrow B by an angle adjusting mechanism 19 installed outside the chamber. Although the tilt center of the stage 15 in the illustrated example is the center of the stage surface, the tilt center is not limited to this, and if the tilt angle of the stage 15 with respect to the evaporation source 13 can be adjusted within a predetermined angle range, the tilt center is There is no particular limitation. The angle adjusting mechanism 19 is preferably a mechanism that can continuously change the tilt angle of the stage 15.

なお、回転機構18および角度調整機構19はそれぞれ、本発明の「回転手段」および「角度調整手段」に対応し、ステージ15の動作制御を行う制御部の一機構部として構成されている。上記制御部は、後述するように、蒸着時においてステージ15の回転数制御および傾斜角制御を行う。   The rotation mechanism 18 and the angle adjustment mechanism 19 correspond to the “rotation unit” and the “angle adjustment unit” of the present invention, respectively, and are configured as one mechanism unit of a control unit that controls the operation of the stage 15. As will be described later, the control unit performs rotational speed control and tilt angle control of the stage 15 during vapor deposition.

回転機構18および角度調整機構19の構成の具体例を図2および図3に示す。図2に示すように、ステージ15の回転軸15aの先端には、駆動モータ33の駆動軸34に取り付けられた第1マイタギヤ31と噛み合う第2マイタギヤ32が取り付けられている。これにより、図3に示すように、駆動モータ33の回転駆動力が回転軸15aの回転駆動力に変換されてステージ15に伝達される。   Specific examples of the configuration of the rotation mechanism 18 and the angle adjustment mechanism 19 are shown in FIGS. As shown in FIG. 2, a second miter gear 32 that meshes with the first miter gear 31 attached to the drive shaft 34 of the drive motor 33 is attached to the tip of the rotating shaft 15 a of the stage 15. Thereby, as shown in FIG. 3, the rotational driving force of the drive motor 33 is converted into the rotational driving force of the rotary shaft 15 a and transmitted to the stage 15.

一方、図2に示すように、ステージ15の回転軸15aは、駆動軸34を収容する筒状のガイド軸37の周壁を貫通している。このガイド軸37は、真空チャンバ11の側壁内面側に設置された真空シールを兼ねる一対の軸受部材35,36に回転自在に支持されている。ガイド軸37の一端にはギヤ部材38が一体固定されており、このギヤ部材38の回転によりガイド軸37を介してステージ15の角度調整が行われる。図示の例では、ギヤ部材38はラック39に噛合しており、ラック39の図2の紙面垂直方向への往復移動によってギヤ部材38が正逆両方向へ回転自在となっている。   On the other hand, as shown in FIG. 2, the rotating shaft 15 a of the stage 15 passes through a peripheral wall of a cylindrical guide shaft 37 that accommodates the drive shaft 34. The guide shaft 37 is rotatably supported by a pair of bearing members 35 and 36 that also serve as a vacuum seal installed on the inner surface of the side wall of the vacuum chamber 11. A gear member 38 is integrally fixed to one end of the guide shaft 37, and the angle of the stage 15 is adjusted via the guide shaft 37 by the rotation of the gear member 38. In the illustrated example, the gear member 38 meshes with a rack 39, and the gear member 38 is rotatable in both forward and reverse directions by the reciprocating movement of the rack 39 in the direction perpendicular to the plane of FIG.

次に、基板Wとしては、表面にビアやトレンチ等の凹部が形成された円形の半導体ウエハ(シリコンウエハなど)や矩形のガラス基板等が用いられる。基板Wは、その表面側を蒸発源13側に向けてステージ15のステージ面に保持される。   Next, as the substrate W, a circular semiconductor wafer (such as a silicon wafer) having a concave portion such as a via or a trench formed on the surface, a rectangular glass substrate, or the like is used. The substrate W is held on the stage surface of the stage 15 with its surface side facing the evaporation source 13 side.

蒸発源13とステージ15との間には、シャッタ16が設置されている。シャッタ16は、図示しないシャッタ開閉機構によって、蒸発源13とステージ15の間を遮蔽する位置と、蒸発源13とステージ15の間を開放する位置をとる。   A shutter 16 is installed between the evaporation source 13 and the stage 15. The shutter 16 takes a position for shielding between the evaporation source 13 and the stage 15 and a position for opening between the evaporation source 13 and the stage 15 by a shutter opening / closing mechanism (not shown).

本実施形態の真空蒸着装置10は更に、真空チャンバ11の内部に導入される不活性ガスの流量を制御するマスフローコントローラ(MFC)を含むガス導入ライン17が設置されている。真空チャンバ11内に導入された不活性ガスは、蒸発源13から基板Wへ向かう蒸発材料14の蒸発粒子を散乱させる作用を有し、基板Wの表面に形成されたビアの側面や底面に対する付き回り性を改善する。本実施形態では、不活性ガスとしてアルゴン(Ar)が用いられているが、ヘリウム(He)やキセノン(Xe)などの他の不活性ガスを用いても構わない。   The vacuum deposition apparatus 10 of this embodiment is further provided with a gas introduction line 17 including a mass flow controller (MFC) that controls the flow rate of the inert gas introduced into the vacuum chamber 11. The inert gas introduced into the vacuum chamber 11 has a function of scattering evaporated particles of the evaporation material 14 from the evaporation source 13 toward the substrate W, and is attached to the side surface and bottom surface of the via formed on the surface of the substrate W. Improves turning ability. In this embodiment, argon (Ar) is used as the inert gas, but other inert gases such as helium (He) and xenon (Xe) may be used.

本実施形態の真空蒸着装置10は以上のように構成される。次に、この作用について説明する。本実施形態では、蒸発材料14の蒸発粒子によって、基板Wの表面に電気めっき用のシード層を形成する場合を例に挙げて説明する。   The vacuum evaporation apparatus 10 of this embodiment is comprised as mentioned above. Next, this operation will be described. In the present embodiment, a case where a seed layer for electroplating is formed on the surface of the substrate W by the evaporated particles of the evaporation material 14 will be described as an example.

真空チャンバ11は、所定の真空度(例えば5.5×10-4Pa以下)に真空排気される。ステージ15は、基板Wを保持している。蒸発材料14は蒸発源13にて加熱、溶解あるいは昇華される。次いで、シャッタ16は開放され、蒸発源13から基板Wの表面に向かって蒸発材料14の蒸発粒子を飛散させることによって、基板Wの表面への蒸着処理が行われる。 The vacuum chamber 11 is evacuated to a predetermined degree of vacuum (for example, 5.5 × 10 −4 Pa or less). The stage 15 holds the substrate W. The evaporation material 14 is heated, dissolved, or sublimated by the evaporation source 13. Next, the shutter 16 is opened, and vapor deposition processing is performed on the surface of the substrate W by scattering the evaporation particles of the evaporation material 14 from the evaporation source 13 toward the surface of the substrate W.

蒸着時、ステージ15は、回転機構18によって面内で回転されるとともに、角度調整機構19によって傾動操作される。ステージ15の傾動動作は角度θの範囲で連続的に行われる。なお、ステージ15が角度θの範囲で往復移動する構成にしても構わない。   During vapor deposition, the stage 15 is rotated in-plane by the rotation mechanism 18 and tilted by the angle adjustment mechanism 19. The tilting operation of the stage 15 is continuously performed within the range of the angle θ. Note that the stage 15 may be configured to reciprocate within the range of the angle θ.

以上のようにして、基板Wの表面に対する蒸発粒子の入射角θ(基板法線方向と蒸発粒子の入射方向とのなす角)が連続的に変化するように基板Wの傾斜角が蒸発源13に対して変化する。この状態で蒸着処理を行うことにより、基板Wと蒸発源13の間の幾何学的位置関係に起因する蒸発粒子の入射角依存特性が緩和される結果、基板表面の全領域に対して蒸発粒子の入射角分布の一様化を図ることが可能となる。   As described above, the inclination angle of the substrate W is changed to the evaporation source 13 so that the incident angle θ of the evaporated particles with respect to the surface of the substrate W (the angle formed between the normal direction of the substrate and the incident direction of the evaporated particles) continuously changes. Will vary. By performing the vapor deposition process in this state, the incident angle dependence characteristics of the evaporated particles due to the geometrical positional relationship between the substrate W and the evaporation source 13 are alleviated. As a result, the evaporated particles with respect to the entire region of the substrate surface. The incident angle distribution can be made uniform.

これにより、基板の半径位置に関係なく、ビアの側面や底面に対する蒸着膜の付き回り性を高めることができる。また、これに伴って、基板面内においてカバレッジ特性の均一化を図ることができる。   As a result, regardless of the radial position of the substrate, it is possible to improve the adhesion of the deposited film to the side surface and the bottom surface of the via. As a result, the coverage characteristics can be made uniform in the substrate plane.

蒸発源13に対する基板Wの傾斜角、傾斜移動速度、自転速度等は、基板表面に形成されたビア等のアスペクト比、基板の大きさ、蒸発粒子の入射角分布等に応じて適宜設定される。すなわち、基板上の全ビアの各々について所望の付き回り率が得られるような条件で基板の傾斜角制御あるいは回転制御が行われる。   The inclination angle, inclination movement speed, rotation speed, etc. of the substrate W with respect to the evaporation source 13 are appropriately set according to the aspect ratio of vias formed on the substrate surface, the size of the substrate, the incident angle distribution of evaporation particles, and the like. . That is, the substrate tilt angle control or rotation control is performed under the condition that a desired coverage ratio is obtained for each of all vias on the substrate.

例えば、アスペクト比が2のビアの側面や底面に蒸着膜を形成する場合、ホール底部の中心近傍からホール開口部への立体角を考慮して、当該ビアに対する蒸発粒子の入射角は30°以下に抑える必要がある。この場合、基板上のすべてのビアに対して30°以下の入射角で蒸発粒子が入射できる条件を設定することで、ビアの形成位置に関係なく蒸着膜の付き回り性を向上させることが可能となる。   For example, when a deposited film is formed on the side or bottom of a via having an aspect ratio of 2, the incident angle of evaporated particles to the via is 30 ° or less in consideration of the solid angle from the vicinity of the center of the hole bottom to the hole opening. It is necessary to keep it down. In this case, by setting the conditions that allow the evaporated particles to enter at an incident angle of 30 ° or less with respect to all the vias on the substrate, it is possible to improve the adhesion of the deposited film regardless of the via formation position. It becomes.

また、減圧下にある真空チャンバ11の内部にガス導入ライン17を介して不活性ガス(アルゴンガス)を所定量導入することによって、ガス分子との間の蒸発粒子の散乱効果を利用し、ビアの側面や底面に対する付き回り性の更なる向上を図ることができる。   Further, by introducing a predetermined amount of inert gas (argon gas) through the gas introduction line 17 into the vacuum chamber 11 under reduced pressure, the scattering effect of the evaporated particles between the gas molecules is utilized, and the via It is possible to further improve the throwing power with respect to the side surface and the bottom surface.

次に、本発明者が行った一実験結果について説明する。まず、アスペクト比が2のビアホールが表面に形成された8インチ(20cm)ウエハに対し、スパッタ法を用いてシード層(Ti/Cu膜)を形成した。基板を支持するステージは、スパッタリング用ターゲット(直径8インチ(20cm))に対して固定であり、基板に対するスパッタ粒子の入射角は不変である。表1にシード層作製条件と膜厚測定結果を示す。   Next, the result of an experiment conducted by the present inventor will be described. First, a seed layer (Ti / Cu film) was formed by sputtering on an 8-inch (20 cm) wafer having a via hole with an aspect ratio of 2 formed on the surface. The stage that supports the substrate is fixed with respect to the sputtering target (diameter 8 inches (20 cm)), and the incident angle of the sputtered particles with respect to the substrate is unchanged. Table 1 shows seed layer preparation conditions and film thickness measurement results.

Figure 2009041040
Figure 2009041040

表1に示すように、基板表面に形成された蒸着膜の膜厚は5795nmであったのに対して、ビアの側面に形成された蒸着膜の膜厚は155nm、ビアの底面に形成された蒸着膜の膜厚は136nmであった。したがって、基板表面の蒸着膜の膜厚に対するビアの側面および底面の蒸着膜の膜厚(付き回り率)はそれぞれ、2.7%および2.3%であった。   As shown in Table 1, the film thickness of the vapor deposition film formed on the substrate surface was 5795 nm, whereas the film thickness of the vapor deposition film formed on the side surface of the via was 155 nm, formed on the bottom surface of the via. The film thickness of the deposited film was 136 nm. Therefore, the thicknesses (attachment ratios) of the deposited films on the side and bottom surfaces of the via relative to the deposited film thickness on the substrate surface were 2.7% and 2.3%, respectively.

次に、図1に示した本実施形態の真空蒸着装置10を用いてシード層(Ti/Cu膜)を形成した。用いた基板は、ビアホール径が60μm、アスペクト比が2のビア付き8インチ(20cm)ウエハである。基板(ステージ)の回転数は10回転/分、蒸発粒子の入射角θを0°〜30°まで連続的に変化させて成膜を行った。基板(ステージ)の傾斜移動速度は、1分あたりθが0°〜30°の角度範囲を5〜10往復できる速度に設定した。表2にシード層作製条件と膜厚測定結果を示す。   Next, a seed layer (Ti / Cu film) was formed using the vacuum vapor deposition apparatus 10 of this embodiment shown in FIG. The substrate used is an 8 inch (20 cm) wafer with vias having a via hole diameter of 60 μm and an aspect ratio of 2. The number of rotations of the substrate (stage) was 10 rotations / minute, and the film was formed by continuously changing the incident angle θ of the evaporated particles from 0 ° to 30 °. The inclination moving speed of the substrate (stage) was set to a speed at which 5 to 10 reciprocations can be made in an angle range of 0 to 30 degrees per minute. Table 2 shows seed layer preparation conditions and film thickness measurement results.

Figure 2009041040
Figure 2009041040

表2に示すように、基板表面に形成された蒸着膜の膜厚は4515nmであったのに対して、ビアの側面に形成された蒸着膜の膜厚は328nm(最小値)〜455nm(最大値)、ビアの底面に形成された蒸着膜の膜厚は796nmであった。したがって、基板表面に対するビアの側面および底面の付き回り率はそれぞれ、7.3〜10.1%および17.6%であった。したがって、ビアの側面に0.1μmのシード層を形成する場合には基板表面に0.99〜1.4μmのメタル層を形成するだけでよく、上述したスパッタの例の4分の1から3分の1の膜厚で済むことが確認された。   As shown in Table 2, the film thickness of the vapor deposition film formed on the substrate surface was 4515 nm, whereas the film thickness of the vapor deposition film formed on the side surface of the via was 328 nm (minimum value) to 455 nm (maximum). Value), the film thickness of the deposited film formed on the bottom surface of the via was 796 nm. Therefore, the contact ratios of the side surface and the bottom surface of the via with respect to the substrate surface were 7.3 to 10.1% and 17.6%, respectively. Therefore, when a 0.1 μm seed layer is formed on the side surface of the via, it is only necessary to form a 0.99 to 1.4 μm metal layer on the substrate surface. It was confirmed that a film thickness of a fraction was sufficient.

続いて、図1に示した真空蒸着装置10を用い、蒸着中の圧力が7.5×10-2Paとなるようにアルゴンガスを導入してシード層(Ti/Cu膜)を形成した。用いた基板は、アスペクト比2のビア付き8インチ(20cm)ウエハである。基板(ステージ)の回転数は10回転/分、蒸発粒子の入射角θを0°〜30°まで連続的に変化させて成膜を行った。基板(ステージ)の傾斜移動速度は、1分あたりθが0°〜30°の角度範囲を5〜10往復できる速度に設定した。表2にシード層作製条件と膜厚測定結果を示す。 Subsequently, using the vacuum vapor deposition apparatus 10 shown in FIG. 1, an argon gas was introduced so that the pressure during vapor deposition was 7.5 × 10 −2 Pa to form a seed layer (Ti / Cu film). The substrate used is an 8 inch (20 cm) wafer with vias with an aspect ratio of 2. The substrate (stage) was rotated at a rate of 10 revolutions / minute, and the incident angle θ of the evaporated particles was continuously changed from 0 ° to 30 ° for film formation. The inclination movement speed of the substrate (stage) was set to a speed at which 5 to 10 reciprocations can be made in an angle range of 0 to 30 degrees per minute. Table 2 shows seed layer preparation conditions and film thickness measurement results.

Figure 2009041040
Figure 2009041040

表3に示すように、基板表面に形成された蒸着膜の膜厚は4620nmであったのに対して、ビアの側面に形成された蒸着膜の膜厚は489nm(最小値)〜679nm(最大値)、ビアの底面に形成された蒸着膜の膜厚は670nmであった。したがって、基板表面に対するビアの側面および底面の付き回り率はそれぞれ、10.5〜14.7%および13.2%であった。したがって、ビアの側面に0.1μmのシード層を形成する場合には基板表面に0.7〜0.95μmのメタル層を形成するだけでよく、上述したスパッタの例の5分の1から4分の1の膜厚で済むことが確認された。   As shown in Table 3, the film thickness of the vapor deposition film formed on the substrate surface was 4620 nm, whereas the film thickness of the vapor deposition film formed on the side surface of the via was 489 nm (minimum value) to 679 nm (maximum). Value), the film thickness of the deposited film formed on the bottom surface of the via was 670 nm. Therefore, the contact ratios of the side surface and the bottom surface of the via with respect to the substrate surface were 10.5 to 14.7% and 13.2%, respectively. Therefore, when a 0.1 μm seed layer is formed on the side surface of the via, it is only necessary to form a 0.7 to 0.95 μm metal layer on the substrate surface. It was confirmed that a film thickness of a fraction was sufficient.

なお、アルゴンガスの雰囲気圧力は、2.0×10-2Pa以上で効果があることが確認されている。しかし、アルゴンガスの雰囲気圧力が8.0×10-2Paを越えると、電子ビーム蒸発源で異常放電が発生しやすくなり、安定した成膜が行えなくなることもわかった。したがって、アルゴンガスの雰囲気圧力は、2.0×10-2Pa以上8.0×10-2Pa以下であることが好ましい。 It has been confirmed that the atmospheric pressure of argon gas is effective at 2.0 × 10 −2 Pa or more. However, it was also found that when the atmospheric pressure of argon gas exceeds 8.0 × 10 −2 Pa, abnormal discharge is likely to occur in the electron beam evaporation source, and stable film formation cannot be performed. Therefore, the atmospheric pressure of argon gas is preferably 2.0 × 10 −2 Pa or more and 8.0 × 10 −2 Pa or less.

<第2の実施形態>
図4は本発明の第2の実施形態による真空蒸着装置20を示している。なお、図において上述の第1の実施形態と対応する部分については同一の符号を付し、その詳細な説明は省略する。
<Second Embodiment>
FIG. 4 shows a vacuum deposition apparatus 20 according to the second embodiment of the present invention. In the figure, portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態の真空蒸着装置20は、真空チャンバ11の内部に複数(図示の例では2台)のステージ15が設置されている点で上述の第1の実施形態の構成と異なっている。各々のステージ15は、プラネタリ21に回転可能および傾動可能に設置されている。また、プラネタリ21は、その中心に位置する回転軸21aの周りに矢印Cで示すように回転可能に構成されている。   The vacuum deposition apparatus 20 of the present embodiment is different from the configuration of the first embodiment described above in that a plurality of (two in the illustrated example) stages 15 are installed inside the vacuum chamber 11. Each stage 15 is installed on the planetary 21 so as to be rotatable and tiltable. The planetary 21 is configured to be rotatable as indicated by an arrow C around a rotation shaft 21a positioned at the center thereof.

このようなサテライト構造の真空蒸着装置20においては、各ステージ15に保持されている基板Wを回転軸21aの周りに公転させながら面内で回転(自転)させるとともに、基板Wの表面に対する蒸発粒子の入射角が連続的に変化するように基板Wの傾斜角を蒸発源13に対して変化させながら、基板Wの表面に蒸発粒子を堆積させる。   In such a satellite-structured vacuum deposition apparatus 20, the substrate W held on each stage 15 is rotated (rotated) in-plane while revolving around the rotation shaft 21a, and evaporated particles with respect to the surface of the substrate W. The evaporation particles are deposited on the surface of the substrate W while changing the inclination angle of the substrate W with respect to the evaporation source 13 so that the incident angle of the substrate changes continuously.

これにより、上述の第1の実施形態と同様に、基板の半径位置に関係なく、ビアの側面や底面に対する蒸着膜の付き回り性を高めることができる。また、これに伴って、基板面内において蒸着膜のカバレッジ特性の均一化を図ることができる。   Thereby, like the above-mentioned 1st Embodiment, irrespective of the radial position of a board | substrate, the attachment property of the vapor deposition film with respect to the side surface and bottom face of a via can be improved. Accordingly, the coverage characteristics of the vapor deposition film can be made uniform in the substrate plane.

以上、本発明の各実施形態について説明したが、勿論本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, although each embodiment of this invention was described, of course, this invention is not limited to this, A various deformation | transformation is possible based on the technical idea of this invention.

例えば以上の実施形態では、基板表面にシード層形成メタルを蒸着する例について説明したが、配線層や電極層の形成に本発明を適用してもよい。   For example, in the above embodiment, the example in which the seed layer forming metal is deposited on the substrate surface has been described, but the present invention may be applied to the formation of a wiring layer or an electrode layer.

また、基板にRF(高周波電力)やDC(直流電力)を印加して所定のバイアス作用を付加することも可能であり、この場合、形成される蒸着膜の緻密性を高めることが可能となる。   It is also possible to apply a predetermined bias action by applying RF (high frequency power) or DC (direct current power) to the substrate. In this case, it is possible to improve the denseness of the deposited film to be formed. .

本発明の第1の実施形態による真空蒸着装置の概略構成図である。It is a schematic block diagram of the vacuum evaporation system by the 1st Embodiment of this invention. 図1に示した真空蒸着装置の回転機構および角度調整機構の概略構成図である。It is a schematic block diagram of the rotation mechanism and angle adjustment mechanism of the vacuum evaporation system shown in FIG. 図1に示した真空蒸着装置の回転機構および角度調整機構の概略構成図である。It is a schematic block diagram of the rotation mechanism and angle adjustment mechanism of the vacuum evaporation system shown in FIG. 本発明の第2の実施形態による真空蒸着装置の概略構成図である。It is a schematic block diagram of the vacuum evaporation system by the 2nd Embodiment of this invention. 従来の真空蒸着装置の概略構成図である。It is a schematic block diagram of the conventional vacuum evaporation system.

符号の説明Explanation of symbols

10,20 真空蒸着装置
11 真空チャンバ
13 蒸発源
14 蒸発材料
15 ステージ
17 ガス導入ライン
18 回転機構
19 角度制御機構
21 プラネタリ
W 基板
DESCRIPTION OF SYMBOLS 10,20 Vacuum evaporation apparatus 11 Vacuum chamber 13 Evaporation source 14 Evaporation material 15 Stage 17 Gas introduction line 18 Rotation mechanism 19 Angle control mechanism 21 Planetary W Substrate

Claims (6)

真空チャンバ内において、ビア又はトレンチ等の凹部が形成された基板の表面に蒸発源からの蒸発粒子を堆積させる真空蒸着方法であって、
前記基板をその表面の面内で回転させるとともに、前記基板の表面に対する前記蒸発粒子の入射角が連続的に変化するように前記基板の傾斜角を前記蒸発源に対して変化させながら、前記基板の表面に前記蒸発粒子を堆積させる
ことを特徴とする真空蒸着方法。
In a vacuum chamber, a vacuum evaporation method for depositing evaporated particles from an evaporation source on a surface of a substrate on which a recess such as a via or a trench is formed,
While rotating the substrate in the plane of the surface, and changing the tilt angle of the substrate with respect to the evaporation source so that the incident angle of the evaporation particles to the surface of the substrate is continuously changed, the substrate Depositing the evaporated particles on the surface of the substrate.
蒸着時において、前記真空チャンバ内を減圧下の不活性ガス雰囲気に調整する
ことを特徴とする請求項1に記載の真空蒸着方法。
The vacuum deposition method according to claim 1, wherein the inside of the vacuum chamber is adjusted to an inert gas atmosphere under reduced pressure during the deposition.
前記不活性ガス雰囲気の圧力を2.0×10-2Pa以上8.0×10-2Pa以下とする
ことを特徴とする請求項2に記載の真空蒸着方法。
The vacuum deposition method according to claim 2, wherein the pressure of the inert gas atmosphere is set to 2.0 x 10 -2 Pa or more and 8.0 x 10 -2 Pa or less.
前記真空チャンバ内に前記基板を複数設置し、これら複数の基板の表面に前記蒸発粒子を同時に堆積させる
ことを特徴とする請求項1に記載の真空蒸着方法。
The vacuum evaporation method according to claim 1, wherein a plurality of the substrates are installed in the vacuum chamber, and the evaporated particles are simultaneously deposited on the surfaces of the plurality of substrates.
真空チャンバと、
前記真空チャンバ内に設置された蒸発源と、
前記蒸発源に対向して配置されたステージと、
前記ステージをそのステージ面の面内で回転させる回転手段と、
前記蒸発源に対する前記ステージの設置角度を変化させる角度調整手段とを備え、
前記角度調整手段は、蒸着時において、前記ステージ上の基板の表面に対する蒸発粒子の入射角を連続的に変化させる
ことを特徴とする真空蒸着装置。
A vacuum chamber;
An evaporation source installed in the vacuum chamber;
A stage disposed opposite the evaporation source;
Rotating means for rotating the stage within the plane of the stage surface;
An angle adjusting means for changing an installation angle of the stage with respect to the evaporation source,
The said angle adjustment means changes the incident angle of the evaporation particle with respect to the surface of the board | substrate on the said stage continuously at the time of vapor deposition. The vacuum vapor deposition apparatus characterized by the above-mentioned.
前記ステージは、前記真空チャンバ内に複数設置されている
ことを特徴とする請求項5に記載の真空蒸着装置。
The vacuum deposition apparatus according to claim 5, wherein a plurality of stages are installed in the vacuum chamber.
JP2007203825A 2007-08-06 2007-08-06 Vacuum vapor deposition method and vacuum vapor deposition apparatus Pending JP2009041040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007203825A JP2009041040A (en) 2007-08-06 2007-08-06 Vacuum vapor deposition method and vacuum vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007203825A JP2009041040A (en) 2007-08-06 2007-08-06 Vacuum vapor deposition method and vacuum vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JP2009041040A true JP2009041040A (en) 2009-02-26

Family

ID=40442098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007203825A Pending JP2009041040A (en) 2007-08-06 2007-08-06 Vacuum vapor deposition method and vacuum vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JP2009041040A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052796A1 (en) * 2009-08-25 2011-03-03 Von Ardenne Anlagentechnik Gmbh Method and device for producing stoichiometry gradients and layer systems
JP2011150154A (en) * 2010-01-22 2011-08-04 Showa Shinku:Kk Thin film and method of forming thin film
WO2011162036A1 (en) 2010-06-25 2011-12-29 キヤノンアネルバ株式会社 Sputtering device, deposition method and control device
EP2414556A1 (en) * 2009-03-31 2012-02-08 BYD Company Limited Method and device for preparing compound semiconductor film
JP2016063114A (en) * 2014-09-19 2016-04-25 大日本印刷株式会社 Through electrode substrate and manufacturing method of the same
CN108486542A (en) * 2018-05-18 2018-09-04 辽宁科技大学 A kind of Novel workpiece rotary frame device applied to magnetron sputtering
WO2020013431A1 (en) * 2018-07-13 2020-01-16 주식회사 넵시스 Apparatus for multi-substrate vacuum deposition through revolving, rotating, and tilting
KR102453442B1 (en) * 2021-12-29 2022-10-12 주식회사 메이 Apparatus for depositing inorganic alignment film uniformly and deposition method using the same
KR20230032360A (en) * 2021-08-30 2023-03-07 주식회사 야스 Vertical Evaporation Point Nozzle Source
CN117448750A (en) * 2023-10-25 2024-01-26 南京萃智激光应用技术研究院有限公司 Evaporation method and equipment for preparing super-hydrophobic glass based on laser transfer technology
CN117448750B (en) * 2023-10-25 2024-04-19 南京萃智激光应用技术研究院有限公司 Evaporation method and equipment for preparing super-hydrophobic glass based on laser transfer technology

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815654A (en) * 1981-07-20 1983-01-29 Fujitsu Ltd Grinding method
JPS6254089A (en) * 1985-09-02 1987-03-09 Hitachi Ltd Mechanism for rotating and revolving wafer
JPH01270321A (en) * 1988-04-22 1989-10-27 Anelva Corp Sputtering device
JPH06192824A (en) * 1992-10-26 1994-07-12 Mitsubishi Electric Corp Thin film forming device
JP2001338896A (en) * 2000-05-30 2001-12-07 Ebara Corp Method and apparatus for forming film and embedding substrate
JP2005071543A (en) * 2003-08-27 2005-03-17 Tdk Corp Manufacturing method of magnetic recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815654A (en) * 1981-07-20 1983-01-29 Fujitsu Ltd Grinding method
JPS6254089A (en) * 1985-09-02 1987-03-09 Hitachi Ltd Mechanism for rotating and revolving wafer
JPH01270321A (en) * 1988-04-22 1989-10-27 Anelva Corp Sputtering device
JPH06192824A (en) * 1992-10-26 1994-07-12 Mitsubishi Electric Corp Thin film forming device
JP2001338896A (en) * 2000-05-30 2001-12-07 Ebara Corp Method and apparatus for forming film and embedding substrate
JP2005071543A (en) * 2003-08-27 2005-03-17 Tdk Corp Manufacturing method of magnetic recording medium

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2414556A1 (en) * 2009-03-31 2012-02-08 BYD Company Limited Method and device for preparing compound semiconductor film
EP2414556A4 (en) * 2009-03-31 2013-05-01 Byd Co Ltd Method and device for preparing compound semiconductor film
US8563084B2 (en) * 2009-08-25 2013-10-22 Von Ardenne Anlagentechnik Gmbh Method and device for producing stoichiometry gradients and layer systems
US20110052796A1 (en) * 2009-08-25 2011-03-03 Von Ardenne Anlagentechnik Gmbh Method and device for producing stoichiometry gradients and layer systems
JP2011150154A (en) * 2010-01-22 2011-08-04 Showa Shinku:Kk Thin film and method of forming thin film
US10636634B2 (en) 2010-06-25 2020-04-28 Canon Anelva Corporation Sputtering apparatus, film deposition method, and control device
WO2011162036A1 (en) 2010-06-25 2011-12-29 キヤノンアネルバ株式会社 Sputtering device, deposition method and control device
US9991102B2 (en) 2010-06-25 2018-06-05 Canon Anelva Corporation Sputtering apparatus, film deposition method, and control device
JP2016063114A (en) * 2014-09-19 2016-04-25 大日本印刷株式会社 Through electrode substrate and manufacturing method of the same
CN108486542A (en) * 2018-05-18 2018-09-04 辽宁科技大学 A kind of Novel workpiece rotary frame device applied to magnetron sputtering
KR20200007395A (en) * 2018-07-13 2020-01-22 주식회사 넵시스 Vacuum Evaporation Coating Apparatus for Coating Multiple Substrates using Revolution, Rotation and Tilting
WO2020013431A1 (en) * 2018-07-13 2020-01-16 주식회사 넵시스 Apparatus for multi-substrate vacuum deposition through revolving, rotating, and tilting
KR102132323B1 (en) 2018-07-13 2020-07-09 주식회사 넵시스 Vacuum Evaporation Coating Apparatus for Coating Multiple Substrates using Revolution, Rotation and Tilting
KR20230032360A (en) * 2021-08-30 2023-03-07 주식회사 야스 Vertical Evaporation Point Nozzle Source
KR102648127B1 (en) 2021-08-30 2024-03-15 주식회사 야스 Vertical Evaporation Point Nozzle Source
KR102453442B1 (en) * 2021-12-29 2022-10-12 주식회사 메이 Apparatus for depositing inorganic alignment film uniformly and deposition method using the same
CN117448750A (en) * 2023-10-25 2024-01-26 南京萃智激光应用技术研究院有限公司 Evaporation method and equipment for preparing super-hydrophobic glass based on laser transfer technology
CN117448750B (en) * 2023-10-25 2024-04-19 南京萃智激光应用技术研究院有限公司 Evaporation method and equipment for preparing super-hydrophobic glass based on laser transfer technology

Similar Documents

Publication Publication Date Title
JP2009041040A (en) Vacuum vapor deposition method and vacuum vapor deposition apparatus
KR100797447B1 (en) A Magnetron Sputtering Device, a Cylindrical Cathode and a Method of Coating Thin Multicomponent Films on a Substrate
JP3169151B2 (en) Thin film forming equipment
JP6963551B2 (en) Vacuum processing equipment and methods for processing substrates
US7588669B2 (en) Single-process-chamber deposition system
JP6118258B2 (en) Soft sputtering magnetron system
EP0435098A2 (en) Deposition apparatus and method for enhancing step coverage and planarization of semiconductor wafers
JP2015529744A (en) Film deposition assisted by angle selective etching
JP2016507656A (en) Apparatus using adjacent sputter cathode and operation method thereof
JPH10147864A (en) Formation of thin film and sputtering device
TWI567216B (en) Mini rotatable sputter devices for sputter deposition
JP2007131883A (en) Film deposition apparatus
JP2008007806A (en) Sputtering film deposition apparatus, manufacturing method of sealing film, and organic el element
JP2005187830A (en) Sputtering apparatus
TW201945567A (en) Methods and apparatus for physical vapor deposition via linear scanning with ambient control
JPH06136527A (en) Target for sputtering and sputtering device and sputtering method using the same
JPH09213634A (en) Thin film-forming method manufacture of semiconductor device and thin film-forming device
JP2007100123A (en) Vacuum vapor deposition apparatus
JP7384735B2 (en) sputtering equipment
JPH11340165A (en) Sputtering device and magnetron unit
JP3031079B2 (en) Wiring film forming equipment
JP2008038192A (en) Sputtering source, sputtering film deposition apparatus and sputtering film deposition method
JP3544907B2 (en) Magnetron sputtering equipment
JPH0499173A (en) Sputtering system
JPH08269710A (en) Reactive sputtering device and reactive sputtering method as well as reactive vapor deposition device and reactive vapor deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100208

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110715

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A131 Notification of reasons for refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626