JPS595732Y2 - Ion plating equipment - Google Patents

Ion plating equipment

Info

Publication number
JPS595732Y2
JPS595732Y2 JP5399581U JP5399581U JPS595732Y2 JP S595732 Y2 JPS595732 Y2 JP S595732Y2 JP 5399581 U JP5399581 U JP 5399581U JP 5399581 U JP5399581 U JP 5399581U JP S595732 Y2 JPS595732 Y2 JP S595732Y2
Authority
JP
Japan
Prior art keywords
discharge
discharge tube
electrode
evaporation
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5399581U
Other languages
Japanese (ja)
Other versions
JPS57167762U (en
Inventor
明 鈴木
Original Assignee
神港精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神港精機株式会社 filed Critical 神港精機株式会社
Priority to JP5399581U priority Critical patent/JPS595732Y2/en
Publication of JPS57167762U publication Critical patent/JPS57167762U/ja
Application granted granted Critical
Publication of JPS595732Y2 publication Critical patent/JPS595732Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、イオンプレーテイング装置に関する。[Detailed explanation of the idea] This invention relates to an ion plating device.

従来、高真空型アーク放電式イオンプレーテイング装置
に用いるイオン化装置には、蒸発源の蒸発材料を蒸発さ
せ、蒸発源とその近傍に設けたイオン化電極との間にア
ーク放電を発生させ、蒸発粒子をイオン化するものであ
った。
Conventionally, ionization devices used in high-vacuum arc discharge type ion plating equipment evaporate the evaporation material in the evaporation source, generate an arc discharge between the evaporation source and an ionization electrode installed near the evaporation source, and remove evaporated particles. It was intended to ionize.

このような装置では、蒸発材料に導体またはこれに近い
半導体(例えばシリコン)を用いると、自由端子の供給
が円滑に運んでイオン化電極と蒸発源との間にアーク放
電を容易に形戒維持できるので、蒸発粒子のイオン化率
は50乃至80%と非常に高いが、蒸発物に絶縁物また
はこれに近い半導体(例えば硼素)を用いると、自由端
子の供給が円滑に運ばず、アーク放電を形戊維持できず
、蒸発粒子のイオン化率は数%以下と非常に小さかった
In such devices, if a conductor or a similar semiconductor (e.g. silicon) is used as the evaporation material, the supply of free terminals can be carried smoothly and arc discharge can be easily maintained between the ionizing electrode and the evaporation source. Therefore, the ionization rate of the evaporated particles is extremely high at 50 to 80%, but if an insulator or a semiconductor similar to this (e.g. boron) is used as the evaporator, the supply of free terminals will not be carried out smoothly and arc discharge will occur. The ionization rate of the evaporated particles was very small, less than a few percent.

この考案は、絶縁物またはこれに近い半導体の蒸発粒子
のイオン化率を高められるイオンプレーテイング装置を
提供することを目的とする。
The object of this invention is to provide an ion plating device that can increase the ionization rate of evaporated particles of an insulator or a semiconductor similar thereto.

以下、この考案を図示の1実施例に基づいて説明する。This invention will be explained below based on one embodiment shown in the drawings.

図において、1は真空槽で、その内部下方には電子銃部
2が設けられ、3は電子銃部2のるつぼ、4はるつぼ3
に収容した硼素のような蒸発材料、5は蒸発材料4に電
子衝撃を与える電子を発生するフィラメント、6はフィ
ラメントに例えば8.5 V、50 Aの電圧、電流を
供結する電源である。
In the figure, 1 is a vacuum chamber, an electron gun section 2 is provided in the lower part of the vacuum chamber, 3 is a crucible for the electron gun section 2, and 4 is a crucible 3.
5 is a filament that generates electrons that bombard the evaporation material 4, and 6 is a power supply that connects the filament with a voltage and current of, for example, 8.5 V and 50 A.

7はイオン化電極で、るつぼ3から後述する基板10へ
向う蒸気径路の外方にあって、るつぼ2に近い位置、例
えば4.5cmの距離に配置され、この電極7にはるつ
ぼ3に対して20乃至200■、例えば75Vの正の電
圧が電源9によって印加される。
Reference numeral 7 denotes an ionization electrode, which is located outside the vapor path from the crucible 3 to the substrate 10 (described later), and is placed close to the crucible 2, for example, at a distance of 4.5 cm. A positive voltage of 20 to 200V, for example 75V, is applied by the power supply 9.

基板10は真空槽1内の上方に、るつぼ3と対面するよ
うに例えば19 cmの間隔を隔てて配置され、るつぼ
2に対して20乃至1000V、例えば200 Vの負
の電圧が電源11によって印加される。
The substrate 10 is placed above the vacuum chamber 1 so as to face the crucible 3 at an interval of, for example, 19 cm, and a negative voltage of 20 to 1000 V, for example 200 V, is applied to the crucible 2 by a power source 11. be done.

基板10は回転軸12の下端に取付けられ、回転軸12
は真空槽1の土壁を気密に貫通して外界に伸延し、モー
タ13に結合される。
The substrate 10 is attached to the lower end of the rotating shaft 12 and
passes through the earthen wall of the vacuum chamber 1 in an airtight manner, extends to the outside world, and is coupled to the motor 13.

なお、14は基板10加熱用ヒータ、15は基板10と
るつぼ3との間に設けたシャツタ、16は真空槽排気用
配管である。
Note that 14 is a heater for heating the substrate 10, 15 is a shutter provided between the substrate 10 and the crucible 3, and 16 is a vacuum chamber exhaust pipe.

20は放電管で、真空槽1の外方に設けられており、こ
の管20の軸線の延長線上に位置するガス導入管22を
有し、この導入管20は真空槽1を気密に貫通し、るつ
ぼ3の上方1cmの位置に伸延七ている。
Reference numeral 20 denotes a discharge tube, which is provided outside the vacuum chamber 1 and has a gas introduction tube 22 located on an extension of the axis of this tube 20, and this introduction tube 20 passes through the vacuum chamber 1 in an airtight manner. , is extended 1 cm above the crucible 3.

この放電管20内には流量調整弁24を介して、アルゴ
ン、チッソのようなガスが送り込まれる。
A gas such as argon or nitrogen is fed into the discharge tube 20 via a flow rate regulating valve 24 .

26はこのガスをイオン化するための放電電極で、放電
管20の管壁にその軸線上にその先端がるつは゛3の中
心から8乃至12.5cm隔たるように配置されており
、この電極26にはるつぼ2に対して20乃至1000
Vの正の電圧が電源28によって印加される。
Reference numeral 26 denotes a discharge electrode for ionizing this gas, which is disposed on the wall of the discharge tube 20 along its axis so that its tip is 8 to 12.5 cm away from the center of 3. 20 to 1000 for crucible 2
A positive voltage of V is applied by power supply 28.

30は磁石で、放電管20内にその軸線に平行で放電電
極26側に向かう2GOガウスの磁束を発生するように
放電管20の外周囲に設けられている。
A magnet 30 is provided around the outer periphery of the discharge tube 20 so as to generate a 2GO Gauss magnetic flux parallel to the axis of the discharge tube 20 and directed toward the discharge electrode 26 side.

この装置によって基板10に硼素を蒸着させる場合につ
いて述べる。
A case will be described in which boron is evaporated onto the substrate 10 using this apparatus.

まず配管16を介して真空槽1内を10−5}−ル程度
に排気し、流量調整弁24を調整し、放電管20内に3
4cc/分の流量でアルゴンガスを送り込み、放電管2
0内の圧力を10−2乃至10−3}−ルとし、放電電
極26に正の電圧を印加し、フィラメント5を2000
℃以上に加熱して電子を放出させ、るつぼ3の蒸発材料
4に電子衝撃を与えて蒸発材料を0.03 g/分の割
合で蒸発させると共に、イオン化電極7に正の75Vの
電圧を印加する。
First, the inside of the vacuum chamber 1 is evacuated to about 10-5㎝ through the piping 16, the flow rate adjustment valve 24 is adjusted, and the inside of the discharge tube 20 is
Argon gas was fed into the discharge tube 2 at a flow rate of 4 cc/min.
The pressure within 0 is set to 10-2 to 10-3}-rel, a positive voltage is applied to the discharge electrode 26, and the filament 5 is heated to 2000
℃ or higher to emit electrons and apply an electron bombardment to the evaporation material 4 in the crucible 3 to evaporate the evaporation material at a rate of 0.03 g/min, while applying a positive voltage of 75 V to the ionization electrode 7. do.

蒸気圧が10−2乃至10−3}−ルになると、蒸発材
料4およびフィラメント5からイオン化電極7に電子が
向う。
When the vapor pressure reaches 10-2 to 10-3}-rel, electrons move from the evaporation material 4 and the filament 5 to the ionization electrode 7.

このとき、電子は蒸発粒子と衝突を繰返し、その方向は
いろいろな向きとなるが、ほぼイオン化電極7に向う。
At this time, the electrons repeatedly collide with the evaporated particles, and the electrons mostly head toward the ionization electrode 7, although their directions vary.

しかしそのうちのいくつかはガス導入管22に向う。However, some of it goes to the gas introduction pipe 22.

このとき放電電極26には正の電圧が印加されているの
で、これら電子は放電管20内に飛び込む。
At this time, since a positive voltage is applied to the discharge electrode 26, these electrons jump into the discharge tube 20.

放電管20内に飛び込んだ電子は、放電管20内のアル
ゴンガスの粒子に衝突し、アルゴンガスの粒子をアルゴ
ンイオンと電子とに電離する。
The electrons that have jumped into the discharge tube 20 collide with argon gas particles within the discharge tube 20, and ionize the argon gas particles into argon ions and electrons.

このアルゴンイオンは放電管の外周壁側すなわち磁石3
0に向い、アルゴンガス粒子に衝突し、アルゴンイオン
と電子とに電離する。
These argon ions are on the outer peripheral wall side of the discharge tube, that is, on the magnet 3.
0, collides with argon gas particles, and is ionized into argon ions and electrons.

この時生じた電子は磁束と直交しらせん運動しながら放
電電極26側に向いつつ、次々に別のアルゴン粒子に衝
突し、これらをアルゴンイオンと電子とに電離し、この
電子もらせん運動をしながら電極26側に向い、新たに
アルゴン粒子を電離していく。
The electrons generated at this time move in a spiral motion perpendicular to the magnetic flux and move toward the discharge electrode 26, and then collide with other argon particles one after another, ionizing them into argon ions and electrons, and these electrons also move in a spiral motion. While doing so, it faces the electrode 26 side and ionizes the argon particles anew.

このようにして、放電管20内にアルゴンイオンが生或
される。
In this way, argon ions are generated within the discharge tube 20.

これらアルゴンイオルは、放電管20と真空槽1との圧
力差によってガス導入管22を介してるつぼ3とイオン
化電極7との間に流出する。
These argon ions flow out between the crucible 3 and the ionization electrode 7 via the gas introduction tube 22 due to the pressure difference between the discharge tube 20 and the vacuum chamber 1 .

流出したアルゴンイオンは、るつぼ3からの蒸発粒子と
衝突し、これを蒸発粒子イオンと電子とに電離する。
The outflowing argon ions collide with the evaporated particles from the crucible 3 and ionize them into evaporated particle ions and electrons.

よって、フィラメント5及びるつぼ3の蒸発材料から発
生する電子に、上記蒸発粒子とアルゴンイオンとの衝突
によって発生した電子が加えられるので、るつぼ3とイ
オン化電極7との間の電子数は増大する。
Therefore, the electrons generated by the collision between the evaporated particles and the argon ions are added to the electrons generated from the filament 5 and the evaporated material of the crucible 3, so the number of electrons between the crucible 3 and the ionization electrode 7 increases.

これら電子の大部分はイオン化電極7に向いアーク放電
が形或されるが、その一部はガス導入管22を介して放
電管20内に飛び込み、上述したのと同様にアルゴンを
イオン化し、るつぼ2とイオン化電極7との間に供給し
てアーク放電を形或し、蒸発粒子をイオン化する。
Most of these electrons are directed toward the ionization electrode 7 and an arc discharge is formed, but some of them jump into the discharge tube 20 through the gas introduction tube 22, ionize the argon in the same way as described above, and enter the crucible. 2 and the ionizing electrode 7 to form an arc discharge and ionize the evaporated particles.

よって、益々るつぼ3とイオン化電極7との間の電子数
は増大する。
Therefore, the number of electrons between the crucible 3 and the ionization electrode 7 increases.

これらを短期間に繰返し、るつぼ3とイオン化電極7と
の間のアーク放電が定常化し、蒸発粒子のイオン化が定
常化する。
By repeating these steps in a short period of time, the arc discharge between the crucible 3 and the ionization electrode 7 becomes steady, and the ionization of the evaporated particles becomes steady.

このとき、基板10をモータ13によって回転させてお
き、かつ基板10に20乃至iooo vの負電圧を印
加しておき、シャツタ15を開けば、イオン化された蒸
発粒子は大きな運動エネルギ(50乃至2000 eV
)を持って基板10に到達し、イオンプレーテイングが
なされる。
At this time, if the substrate 10 is rotated by the motor 13 and a negative voltage of 20 to iooo v is applied to the substrate 10 and the shutter shutter 15 is opened, the ionized evaporated particles will have a large kinetic energy (50 to 2000 volts). eV
) and reach the substrate 10, where ion plating is performed.

このようなイオンプレーテイング装置では、るつぼ3と
イオン化電極7との間に存在する蒸発粒子に、この蒸発
粒子の発生の際に生じた電子を用いて生戒したアルゴン
イオンを衝突させて、るつぼ3とイオン化電極7の間に
アーク放電を生じさせて蒸発粒子をイオン化しているの
で、絶縁物やこれに近い半導体を蒸発材料に使用した際
にも容易にイオン化できる。
In such an ion plating device, the evaporated particles existing between the crucible 3 and the ionization electrode 7 are bombarded with argon ions generated using electrons generated when the evaporated particles are generated, and the crucible is heated. Since the evaporated particles are ionized by generating an arc discharge between the ionizing electrode 7 and the ionizing electrode 7, the evaporation particles can be easily ionized even when an insulator or a similar semiconductor is used as the evaporation material.

ちなみに従来の高真空型アーク放電式イオンプレーテイ
ング装置で蒸発材料に硼素を用いた場合、イオン化電極
には1乃至2mAの電流しか流れず、蒸発材料は余りイ
オン化されず、形戒された被膜は30Wの超音波振動を
与えると5分以内に剥離したが、この装置で蒸発材料に
硼素を、ガスにアルゴンガスをそれぞれ用い、放電管2
0の電位差を100■、電流を6A・にすると、イオン
化電極7に流れる電流は10乃至4OAと4桁も増大し
、蒸発材料は充分にイオン化され、形或された被膜は3
0Wの超音波振動を5時間与えても剥離は生じなかった
By the way, when boron is used as the evaporation material in a conventional high-vacuum arc discharge ion plating device, only a current of 1 to 2 mA flows through the ionization electrode, so the evaporation material is not ionized much, and the formed film is When 30W of ultrasonic vibration was applied, it peeled off within 5 minutes, but with this device, boron was used as the evaporation material and argon gas was used as the gas, and the discharge tube 2
When the potential difference at zero is 100 cm and the current is 6 A, the current flowing through the ionizing electrode 7 increases by four orders of magnitude to 10 to 4 OA, the evaporated material is sufficiently ionized, and the formed film is 3
No peeling occurred even when 0W ultrasonic vibration was applied for 5 hours.

上記の実施例では、蒸発材料を電子銃を用いて蒸発させ
たが、他に抵抗加熱式によって蒸発させてもよい。
In the above embodiment, the evaporation material was evaporated using an electron gun, but it may also be evaporated using a resistance heating method.

また放電管20は真空槽1の外部に設けたが、真空槽内
を気密に区画し、その区画部分に放電管20を設けても
よい。
Further, although the discharge tube 20 is provided outside the vacuum chamber 1, the inside of the vacuum chamber may be airtightly partitioned and the discharge tube 20 may be provided in the partitioned portion.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの考案によるイオンプレーテイング装置を実施し
たイオンプレーテイング装置の概略構或図である。 2・・・・・・電子銃(蒸発源)、7・・・・・・イオ
ン化電極、10・・・・・・基板(被蒸着物)、20・
・・・・・放電管、22・・・・・・ガス導入通路、2
6・・・・・・放電電極、30・・・・・・磁石(磁界
発生装置)。
The figure is a schematic diagram of an ion plating apparatus implementing the ion plating apparatus according to this invention. 2... Electron gun (evaporation source), 7... Ionization electrode, 10... Substrate (deposition target), 20.
...Discharge tube, 22...Gas introduction passage, 2
6... Discharge electrode, 30... Magnet (magnetic field generator).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 蒸発材料から粒子を蒸発させる蒸発源と、上記蒸発粒子
を通じてアーク放電を生じて上記蒸発粒子をイオン化す
るイオン化電極と、上記イオン化された蒸発粒子が被着
する被蒸着物とを真空室内に設けてなるイオンプレーテ
イング装置において、上記真空室に隣接して設けられ内
部に上記真空室内の圧力より大きな圧力のガスが供給さ
れる放電管と、この放電管から上記蒸発源と上記イオン
化電極との間に伸延している通路と、上記放電管内に上
記通路を介して上記アーク放電によって生じた電子を引
き込み上記ガスを通じて放電させるように上記放電管内
に上記通路と対向配置され上記蒸発源に対して正の電圧
が印加される放電電極と、上記放電時に発生した電子を
回転運動させながら上記放電電極に向わせる磁界を発生
させるように上記放電管の外周に配置した磁界発生装置
とを設けたイオンプレーテイング装置。
An evaporation source that evaporates particles from the evaporation material, an ionization electrode that generates an arc discharge through the evaporation particles to ionize the evaporation particles, and a deposition object to which the ionized evaporation particles adhere are provided in a vacuum chamber. In the ion plating apparatus, a discharge tube is provided adjacent to the vacuum chamber and into which a gas having a pressure higher than the pressure inside the vacuum chamber is supplied, and a space between the discharge tube and the evaporation source and the ionization electrode is provided. a passageway extending into the discharge tube, and a passageway disposed in the discharge tube facing the passageway and facing the evaporation source so as to draw electrons generated by the arc discharge into the discharge tube through the passageway and discharge them through the gas. A discharge electrode to which a voltage is applied, and a magnetic field generator disposed around the outer periphery of the discharge tube to generate a magnetic field that directs electrons generated during the discharge toward the discharge electrode while rotating them. plating equipment.
JP5399581U 1981-04-14 1981-04-14 Ion plating equipment Expired JPS595732Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5399581U JPS595732Y2 (en) 1981-04-14 1981-04-14 Ion plating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5399581U JPS595732Y2 (en) 1981-04-14 1981-04-14 Ion plating equipment

Publications (2)

Publication Number Publication Date
JPS57167762U JPS57167762U (en) 1982-10-22
JPS595732Y2 true JPS595732Y2 (en) 1984-02-21

Family

ID=29850608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5399581U Expired JPS595732Y2 (en) 1981-04-14 1981-04-14 Ion plating equipment

Country Status (1)

Country Link
JP (1) JPS595732Y2 (en)

Also Published As

Publication number Publication date
JPS57167762U (en) 1982-10-22

Similar Documents

Publication Publication Date Title
EP0328033B1 (en) Thin film forming apparatus and ion source utilizing plasma sputtering
JP2824502B2 (en) Sputtering apparatus and sputtering deposition method using charged particles
RU2000127113A (en) METHOD AND DEVICE FOR DEPOSITION OF TWO-AXIS TEXTURED COATINGS
TW201219582A (en) ARC-evaporation source with defined electric field
JP3345009B2 (en) Method for ionizing material vapor produced by heating and apparatus for performing the method
US3573098A (en) Ion beam deposition unit
US5378341A (en) Conical magnetron sputter source
JPH0456761A (en) Thin film forming device
JPH06212433A (en) Device and method for coating substrate in vacuum chamber
JPS595732Y2 (en) Ion plating equipment
US20090020415A1 (en) "Iontron" ion beam deposition source and a method for sputter deposition of different layers using this source
JP3406769B2 (en) Ion plating equipment
JP2857743B2 (en) Thin film forming apparatus and thin film forming method
JPH03104881A (en) Formation of thin film of iron-iron nitride
JP3186777B2 (en) Plasma source
JPH0214426B2 (en)
JP2005179767A (en) Sputtering-ion plating device
JPS594045Y2 (en) Ionization device for thin film production
JPH07302575A (en) Ion source for ion implantation
JP3364928B2 (en) Sputter type ion source
JP2594949B2 (en) Thin film forming equipment
JP3788632B2 (en) Continuous ion plating equipment
JPS6127463B2 (en)
JP2023175267A (en) Ion plating device and method
JPS62280357A (en) Ion plating using electron beam evaporation and apparatus therefor