JPH0586474B2 - - Google Patents

Info

Publication number
JPH0586474B2
JPH0586474B2 JP62251569A JP25156987A JPH0586474B2 JP H0586474 B2 JPH0586474 B2 JP H0586474B2 JP 62251569 A JP62251569 A JP 62251569A JP 25156987 A JP25156987 A JP 25156987A JP H0586474 B2 JPH0586474 B2 JP H0586474B2
Authority
JP
Japan
Prior art keywords
chamber
plasma
film
forming material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62251569A
Other languages
Japanese (ja)
Other versions
JPH0196372A (en
Inventor
Torao Tazo
Tatsuji Yamada
Hiroshi Kibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SURFACE HIGH PERFORMANCE RES
Original Assignee
SURFACE HIGH PERFORMANCE RES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SURFACE HIGH PERFORMANCE RES filed Critical SURFACE HIGH PERFORMANCE RES
Priority to JP25156987A priority Critical patent/JPH0196372A/en
Publication of JPH0196372A publication Critical patent/JPH0196372A/en
Publication of JPH0586474B2 publication Critical patent/JPH0586474B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、イオンプレーテイング装置に関し、
特に基体表面に耐摩耗性、耐熱性、耐食装飾性等
を有する薄膜を形成するためのイオンプレーテイ
ング装置に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ion plating device,
In particular, the present invention relates to an ion plating apparatus for forming a thin film having wear resistance, heat resistance, corrosion resistance decorative properties, etc. on the surface of a substrate.

[従来の技術] イオンプレーテイング法の中でイオン化率が高
く、反応性イオンプレーテイングに適した方法と
して、従来よりホロカソード法が知られている。
この方法は、成膜材料の加熱蒸発にプラズマ電子
ビームを利用したものである。即ち、真空チヤン
バ内に配設された中空陰極にプラズマ源として主
にアルゴンガスを流しながら高周波又はフイラメ
ント等で放電させ、これにより陰極内でプラズマ
を発生する。そして、このプラズマ電子ビームを
チヤンバ内に設置された蒸発源に照射して加熱、
蒸発させると同時に、このプラズマ電子ビームに
よつて蒸発ガスをイオン化する方法である。
[Prior Art] Among the ion plating methods, the hollow cathode method has been known as a method that has a high ionization rate and is suitable for reactive ion plating.
This method uses a plasma electron beam to heat and evaporate the film forming material. That is, while mainly flowing argon gas as a plasma source into a hollow cathode disposed in a vacuum chamber, a high frequency wave or a filament is used to cause discharge, thereby generating plasma within the cathode. Then, this plasma electron beam is irradiated onto an evaporation source installed in the chamber to heat it.
This is a method in which the evaporated gas is ionized by this plasma electron beam at the same time as it is evaporated.

[発明が解決しようとする問題点] しかしながら、上記ホロカソード法ではプラズ
マ電子ビームの加速電圧が50〜100eVと低く、か
つビームを絞ることができないため、電子ビーム
の照射面積当りのエネルギー密度が低く、W,
Mo等の高融点金属や化合物の蒸発が困難とな
る。また、同方法では蒸発とイオン化が同時に進
行するため、夫々を成膜条件等を考慮して制御す
ることができない。
[Problems to be solved by the invention] However, in the above-mentioned hollow cathode method, the acceleration voltage of the plasma electron beam is low at 50 to 100 eV, and the beam cannot be focused, so the energy density per irradiation area of the electron beam is low. W,
Evaporation of high melting point metals and compounds such as Mo becomes difficult. Further, in this method, since evaporation and ionization proceed simultaneously, it is not possible to control each in consideration of film forming conditions and the like.

本発明は、上記従来の問題点を解決するために
なされたもので、基体表面に均一膜厚の薄膜を制
御性よくかつ効率よく成形し得るイオンプレーテ
イング装置を提供しようとするものである。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide an ion plating apparatus that can form a thin film of uniform thickness on the surface of a substrate with good controllability and efficiency.

[問題点を解決するための手段] 本発明に係わるイオンプレーテイング装置は、
真空チヤンバと、このチヤンバ内に配設され、成
膜材料を蒸発させるための蒸発手段と、前記チヤ
ンバの外側壁に配設され、前記チヤンバと連通さ
せるための絞り部を有すると共にプラズマ銃を有
し、アルゴンと共に反応ガスとしての水素または
窒素を導入し得るプラズマ発生手段と、先端が前
記チヤンバ内の前記絞り部近傍に位置するように
配設された別の反応ガスを導入するための導入管
と、前記プラズマ発生手段と対峙する前記チヤン
バ内に配設され、前記プラズマ発生手段で発生し
たプラズマを前記チヤンバ内に引出すための対向
電極と、前記チヤンバ内のプラズマ生成領域近傍
に配設され、成膜される基体を保持するためのホ
ルダとを具備したことを特徴とするもである。
[Means for solving the problems] The ion plating apparatus according to the present invention has the following features:
A vacuum chamber, an evaporation means disposed within the chamber for evaporating a film-forming material, a constriction disposed on an outer wall of the chamber for communication with the chamber, and a plasma gun. a plasma generating means capable of introducing hydrogen or nitrogen as a reactive gas together with argon; and an introduction pipe for introducing another reactive gas, the tip of which is located in the vicinity of the constricted portion in the chamber. a counter electrode disposed in the chamber facing the plasma generation means and for drawing out the plasma generated by the plasma generation means into the chamber; and a counter electrode disposed near the plasma generation region in the chamber; The present invention is characterized by comprising a holder for holding a substrate on which a film is to be formed.

[作用] 本発明のイオンプレーテイング装置によれば、
成膜材料の蒸発とイオン化を別々に行なうことが
できるため、加熱蒸発源を自由に選ぶことがで
き、これによつて任意のの材料の成膜が可能とな
る。しかも、成膜すべき基体近傍でのプラズマ密
度を向上できるため、イオン化率を高め、反応性
を促進できると共に、基体表面に均一膜厚の薄膜
を制御性よくかつ効率よく形成できる。
[Function] According to the ion plating device of the present invention,
Since the film-forming material can be evaporated and ionized separately, the heating evaporation source can be freely selected, thereby making it possible to form a film of any material. Moreover, since the plasma density near the substrate on which the film is to be formed can be improved, the ionization rate can be increased and the reactivity can be promoted, and a thin film with a uniform thickness can be formed on the surface of the substrate with good controllability and efficiency.

また、前記プラズマ発生手段をアルゴンと共に
反応ガスとしての水素または窒素を導入し得る構
造にすることによつて、所定の化合物薄膜を形成
する際、前記反応ガスをチヤンバ内に別系統で導
入する場合に比べて導入ガス量を2割り程度減少
させることができる。
In addition, when forming a predetermined compound thin film by structuring the plasma generating means to introduce hydrogen or nitrogen as a reactive gas together with argon, the reactive gas may be introduced into the chamber through a separate system. The amount of introduced gas can be reduced by about 20% compared to the above.

さらに、別の反応ガスを導入するため導入管を
先端がチヤンバ内の絞り部近傍に位置するように
配設することによつて、前記別の反応ガスを前記
プラズマ発生手段の絞り部近傍に直接導入できる
ため、前記反応ガスのプラズマ中でのイオン化率
を向上することができる。
Furthermore, by arranging an introduction pipe for introducing another reactive gas so that its tip is located near the constriction part in the chamber, the other reactive gas can be directly introduced into the vicinity of the constriction part of the plasma generating means. Since it can be introduced, the ionization rate of the reaction gas in the plasma can be improved.

[発明の実施例] 以下、本発明の実施例を第1図を参照して説明
する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to FIG.

図中の1は、真空チヤンバであり、このチヤン
バ1の底部には該チヤンバ1内を所定の真空度に
維持するための図示しない真空ポンプと連通する
排気管2が設けられている。前記チヤンバ1内の
底部付近には、ルツボ3と該ルツボ3内の成膜材
料に電子ビームを照射して蒸発を行なうための
EBガン4とから構成される蒸発手段5が配設さ
れている。また、前記チヤンバ1内の上部付近に
は、対向電極6が垂直状態に配置されている。前
記チヤンバ1の外側壁には、プラズマ発生手段6
が設けられている。このプラズマ発生手段6は、
真空容器7と、該容器7内に配設され外部からア
ルゴンガス等の所定のガスが導入されるプラズマ
銃8と、前記真空容器7が付設された前記チヤン
バ1の側壁に貫通して設けられたプラズマの絞り
部9とから構成されている。前記プラズマ発生手
段6と対向する前記チヤンバ1内の上部付近に
は、垂直状態に保持された対向電極10が配置さ
れている。この対向電極10には、該電極10に
前記プラズマ銃8に対して正電圧を印加するため
の可変直流電源11が接続され、かつ該電極10
を冷却するための水(図示せず)が循環されてい
る。つまり、前記対向電極10に可変直流電源1
1から正電圧を印加することによつて、前記プラ
ズマ発生手段6のプラズマ銃8内で発生したプラ
ズマが前記チヤンバ1内に該発生手段の絞り部9
を通して引出される。また、前記チヤンバ1には
ガス導入管12がその先端を該チヤンバー1内側
に突出した前記絞り部9近傍に位置するように挿
着されている。前記チヤンバ1内のプラズマ生成
領域近傍には、成膜される基体を保持すると共に
回転させるホルダ13が配設されている。このホ
ルダ13には、該ホルダ13に負電圧を印加する
ための可変直流電源14が接続されている。ま
た、前記ホルダ13直上のチヤンバ1内にはヒー
タ15が配設されている。
1 in the figure is a vacuum chamber, and an exhaust pipe 2 is provided at the bottom of the chamber 1 and communicates with a vacuum pump (not shown) for maintaining the chamber 1 at a predetermined degree of vacuum. Near the bottom of the chamber 1, a crucible 3 and a film forming material in the crucible 3 are irradiated with an electron beam for evaporation.
Evaporation means 5 comprising an EB gun 4 is provided. Further, a counter electrode 6 is arranged vertically near the upper part of the chamber 1 . A plasma generating means 6 is provided on the outer wall of the chamber 1.
is provided. This plasma generating means 6 is
A vacuum vessel 7, a plasma gun 8 disposed within the vessel 7 into which a predetermined gas such as argon gas is introduced from the outside, and a plasma gun 8 provided penetrating through the side wall of the chamber 1 to which the vacuum vessel 7 is attached. and a plasma constriction section 9. Near the upper part of the chamber 1 facing the plasma generating means 6, a counter electrode 10 is arranged vertically. A variable DC power supply 11 for applying a positive voltage to the plasma gun 8 is connected to this counter electrode 10, and
Water (not shown) is circulated for cooling. That is, the variable DC power supply 1 is connected to the counter electrode 10.
By applying a positive voltage from 1 to 1, the plasma generated in the plasma gun 8 of the plasma generating means 6 flows into the chamber 1 through the constriction part 9 of the generating means.
pulled out through. Further, a gas introduction pipe 12 is inserted into the chamber 1 so that its tip is located near the constricted portion 9 that projects inside the chamber 1. A holder 13 is disposed in the chamber 1 in the vicinity of the plasma generation region to hold and rotate a substrate on which a film is to be formed. A variable DC power supply 14 for applying a negative voltage to the holder 13 is connected to the holder 13 . Furthermore, a heater 15 is disposed within the chamber 1 directly above the holder 13.

次に、本発明のイオンプレーテイング装置によ
る薄膜形成について説明する。
Next, thin film formation using the ion plating apparatus of the present invention will be explained.

まず、ホルダ13に基体16を保持し、蒸発手
段5のルツボ3内に所定の成膜材料17を収容し
た後、図示しない真空ポンプを作動してチヤンバ
1内のガスを排気管2を通して排気してチヤンバ
1内を所定の真空度(例えば10-3〜10-4torr)と
する。つづいて、EBガン4から電子ビームをル
ツボ3内の成膜材料17に照射して溶融、蒸発さ
せる。同時に、プラズマ発生手段6のプラズマ銃
8にアルゴン等の所定のプラズマ発生ガスを供給
し、該プラズマ銃8よりプラズマを生成した後、
対向電極10に可変直流電源11から所定の正電
圧を印加することにより、前記発生手段6のプラ
ズマをその絞り部9を通してチヤンバ1内に引出
させる。前記蒸発手段5により蒸気化された成膜
材料は、チヤンバ1内へ引出されたプラズマ領域
18内に上昇してイオン化される。このプラズマ
領域18中でのイオン化において、ホルダ13で
保持、回転される基体16をヒータ15により所
定温度に加熱すると共に、該ホルダ13に可変直
流電源14から所定の負電圧を印加することによ
りプラズマ領域18中の成膜材料イオンが基体1
6側に加速、衝突して所定の薄膜が形成される。
この時、ホルダ13はプラズマ領域18の近傍に
配置されているため、該ホルダ13で保持された
基体16はプラズマ密度の高い部分、つまり蒸気
化した成膜材料のイオン化率の高い部分に位置さ
れることになり、効率のよい成膜がなされる。
First, the substrate 16 is held in the holder 13 and a predetermined film forming material 17 is accommodated in the crucible 3 of the evaporation means 5, and then a vacuum pump (not shown) is activated to exhaust the gas in the chamber 1 through the exhaust pipe 2. The inside of the chamber 1 is brought to a predetermined degree of vacuum (for example, 10 -3 to 10 -4 torr). Subsequently, the film forming material 17 in the crucible 3 is irradiated with an electron beam from the EB gun 4 to melt and evaporate it. At the same time, after supplying a predetermined plasma generating gas such as argon to the plasma gun 8 of the plasma generating means 6 and generating plasma from the plasma gun 8,
By applying a predetermined positive voltage to the counter electrode 10 from the variable DC power supply 11, the plasma of the generating means 6 is drawn out into the chamber 1 through the constriction portion 9 thereof. The film-forming material vaporized by the evaporation means 5 rises into the plasma region 18 drawn into the chamber 1 and is ionized. During ionization in the plasma region 18, the base 16 held and rotated by the holder 13 is heated to a predetermined temperature by the heater 15, and a predetermined negative voltage is applied to the holder 13 from the variable DC power supply 14, thereby generating plasma. The film forming material ions in the region 18 form the base 1.
It accelerates and collides with the 6 side, forming a predetermined thin film.
At this time, since the holder 13 is placed near the plasma region 18, the substrate 16 held by the holder 13 is located in an area where the plasma density is high, that is, an area where the ionization rate of the vaporized film forming material is high. As a result, efficient film formation can be achieved.

また、次のような操作により基体16表面に化
合物薄膜を形成することが可能となる。即ち、プ
ラズマ発生手段6のプラズマ銃8にアルゴンガス
と共にH2やN2ガス等の反応ガス導入したり、導
入管12からO2やCH4ガス等の反応ガスをチヤ
ンバ1の絞り部9近傍に直接導入することによつ
て、対向電極10でチヤンバ1内に引出されたプ
ラズマ領域18内で反応ガスがイオン化され、該
反応ガスイオンが前述したように成膜材料イオン
と共に基体16側に加速、衝突して所定の化合物
薄膜が形成される。
Furthermore, it is possible to form a compound thin film on the surface of the substrate 16 by the following operation. That is, a reactive gas such as H 2 or N 2 gas is introduced into the plasma gun 8 of the plasma generating means 6 together with argon gas, or a reactive gas such as O 2 or CH 4 gas is introduced from the introduction pipe 12 near the constriction part 9 of the chamber 1. By directly introducing the reactant gas into the chamber 1, the reactant gas is ionized in the plasma region 18 drawn into the chamber 1 by the counter electrode 10, and the reactant gas ions are accelerated toward the substrate 16 side together with the film forming material ions as described above. , collide to form a predetermined compound thin film.

従つて、上述した本発明のイオンプレーテイン
グ装置によれば次のような作用、効果を発揮でき
る。
Therefore, the ion plating apparatus of the present invention described above can exhibit the following functions and effects.

成膜材料の蒸発手段5とプラズマ発生手段6
とを絞り部9により空間的に仕切ることができ
るため、成膜材料の蒸発とプラズマ生成を独立
して制御できる。このため、蒸発手段を自由に
選ぶことができ、成膜材料に制約を受けない。
Evaporation means 5 for film forming material and plasma generation means 6
Since these can be spatially partitioned by the aperture section 9, the evaporation of the film-forming material and the plasma generation can be controlled independently. Therefore, the evaporation means can be freely selected and there are no restrictions on the film forming material.

前記と同様な理由により成膜材料の蒸気及
びプラズマの生成条件を制御できるため、異常
放電を抑制して表面荒れのない薄膜形成が可能
となる。
For the same reason as mentioned above, since the conditions for generating the vapor and plasma of the film forming material can be controlled, it is possible to suppress abnormal discharge and form a thin film without surface roughening.

ホルダを対向電極によりチヤンバ内に引出さ
れたプラズマ領域の近傍に位置させることによ
つて、ホルダで保持された基体はプラズマ密度
の高い部分、つまり蒸気化成膜材料のイオン化
率の高い部分に位置させることができるため、
成膜効率を著しく向上できる。しかも、プラズ
マ領域中で蒸気化した成膜材料がプラズマと衝
突すると、その方向が変化するが、ホルダで保
持された基体はプラズマ密度の高い部分に位置
させることによつて衝突回数が増加してイオン
化した蒸発粒子の回り込み性が良好となるた
め、複雑形状の基体表面にも均一な成膜が可能
となる。
By positioning the holder near the plasma region drawn into the chamber by the counter electrode, the substrate held by the holder is located in an area with high plasma density, that is, an area where the ionization rate of the vapor deposition material is high. Because it is possible to
Film-forming efficiency can be significantly improved. Moreover, when the film-forming material vaporized in the plasma region collides with the plasma, its direction changes, but by positioning the substrate held by the holder in an area with high plasma density, the number of collisions increases. Since the ionized evaporated particles have good wraparound properties, it is possible to form a uniform film even on the surface of a complex-shaped substrate.

前記と同様な理由により基体近傍でのイオ
ン化率が高まり、これによつてH2,N2,O2
のガスとの反応性が進むため、化合物薄膜の生
成を促進できる。
For the same reason as mentioned above, the ionization rate near the substrate increases, which promotes reactivity with gases such as H 2 , N 2 , O 2 and the like, thereby promoting the formation of a compound thin film.

なお、上記実施例では蒸発手段としてEBガン
を有する構造のものを用いたが、真空チヤンバの
外側壁に電子銃を設け、この電子銃で発生した電
子ビームをチヤンバ内のルツボに偏向コイル等に
より照射するようにしてもよい。
In the above embodiment, an EB gun was used as the evaporation means, but an electron gun was provided on the outer wall of the vacuum chamber, and the electron beam generated by the electron gun was directed to the crucible in the chamber by means of a deflection coil or the like. It may also be irradiated.

[発明の効果] 以上詳述した如く、本発明によれば成膜材料の
蒸発とイオン化を独立して制御し、同時に基体近
傍のプラズマ密度を上げることが可能となり、基
体表面に均一膜厚の薄膜、又は均一粒子で目的と
した組成からなる化合物薄膜を制御性よくかつ効
率よく形成し得るイオンプレーテイング装置を提
供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to independently control the evaporation and ionization of the film-forming material, and at the same time increase the plasma density near the substrate, thereby creating a uniform film thickness on the surface of the substrate. It is possible to provide an ion plating apparatus that can efficiently and controllably form a thin film or a thin film of a compound having a desired composition using uniform particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示すイオンプレ
ーテイング装置の概略図である。 1……真空チヤンバ、3……ルツボ、4……
EBガン、5……蒸発手段、6……プラズマ発生
手段、7……真空容器、8……プラズマ銃、9…
…絞り部、10……対向電極、13……ホルダ、
16……基体、17……成膜材料、18……プラ
ズマ領域。
FIG. 1 is a schematic diagram of an ion plating apparatus showing one embodiment of the present invention. 1... Vacuum chamber, 3... Crucible, 4...
EB gun, 5... Evaporation means, 6... Plasma generation means, 7... Vacuum container, 8... Plasma gun, 9...
...Aperture part, 10...Counter electrode, 13...Holder,
16... Base, 17... Film forming material, 18... Plasma region.

Claims (1)

【特許請求の範囲】[Claims] 1 真空チヤンバと、このチヤンバ内に配設さ
れ、成膜材料を蒸発させるための蒸発手段と、前
記チヤンバの外側壁に配設され、前記チヤンバと
連通させるための絞り部を有すると共にプラズマ
銃を有し、アルゴンと共に反応ガスとしての水素
または窒素を導入し得るプラズマ発生手段と、先
端が前記チヤンバ内の前記絞り部近傍に位置する
ように配設された別の反応ガスを導入するための
導入管と、前記プラズマ発生手段と対峙する前記
チヤンバ内に配設され、前記プラズマ発生手段で
発生したプラズマを前記チヤンバ内に引出すため
の対向電極と、前記チヤンバ内のプラズマ生成領
域近傍に配設され、成膜される基体を保持するた
めのホルダとを具備したことを特徴とするイオン
プレーテイング装置。
1 A vacuum chamber, an evaporation means disposed within the chamber for evaporating a film-forming material, and a constriction disposed on an outer wall of the chamber for communication with the chamber, and a plasma gun. a plasma generating means capable of introducing hydrogen or nitrogen as a reactive gas together with argon; and an introduction for introducing another reactive gas, the tip of which is located in the vicinity of the constricted part in the chamber. a tube, a counter electrode disposed in the chamber facing the plasma generation means and for drawing out the plasma generated by the plasma generation means into the chamber, and a counter electrode disposed near the plasma generation region in the chamber. An ion plating apparatus comprising: a holder for holding a substrate on which a film is to be formed.
JP25156987A 1987-10-07 1987-10-07 Ion plating apparatus Granted JPH0196372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25156987A JPH0196372A (en) 1987-10-07 1987-10-07 Ion plating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25156987A JPH0196372A (en) 1987-10-07 1987-10-07 Ion plating apparatus

Publications (2)

Publication Number Publication Date
JPH0196372A JPH0196372A (en) 1989-04-14
JPH0586474B2 true JPH0586474B2 (en) 1993-12-13

Family

ID=17224765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25156987A Granted JPH0196372A (en) 1987-10-07 1987-10-07 Ion plating apparatus

Country Status (1)

Country Link
JP (1) JPH0196372A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078084B2 (en) * 2002-01-28 2008-04-23 キヤノン株式会社 Ionized film forming method and apparatus
JP5325525B2 (en) * 2008-10-16 2013-10-23 スタンレー電気株式会社 Thin film element manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203767A (en) * 1987-02-19 1988-08-23 Ishikawajima Harima Heavy Ind Co Ltd Ion plating device
JPS63213662A (en) * 1986-11-26 1988-09-06 オプチカル コーティング ラボラトリー インコーポレーテッド Apparatus and method for vacuum vapor deposition of membrane
JPS63282257A (en) * 1987-05-12 1988-11-18 Citizen Watch Co Ltd Ion plating device
JPS6360300B2 (en) * 1982-06-10 1988-11-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638399Y2 (en) * 1986-10-07 1994-10-05 石川島播磨重工業株式会社 Plasma generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360300B2 (en) * 1982-06-10 1988-11-24
JPS63213662A (en) * 1986-11-26 1988-09-06 オプチカル コーティング ラボラトリー インコーポレーテッド Apparatus and method for vacuum vapor deposition of membrane
JPS63203767A (en) * 1987-02-19 1988-08-23 Ishikawajima Harima Heavy Ind Co Ltd Ion plating device
JPS63282257A (en) * 1987-05-12 1988-11-18 Citizen Watch Co Ltd Ion plating device

Also Published As

Publication number Publication date
JPH0196372A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US4197175A (en) Method and apparatus for evaporating materials in a vacuum coating plant
JPS60221566A (en) Thin film forming device
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
JPS63270458A (en) Device for forming compound thin film
JPS61201769A (en) Reactive vapor deposition of oxide, nitride and oxide nitride
JPS63274762A (en) Device for forming reaction vapor-deposited film
JPH0586474B2 (en)
JPH0625835A (en) Vacuum deposition method and vacuum deposition device
JP3406769B2 (en) Ion plating equipment
JPH11273894A (en) Thin film forming device
JP3186777B2 (en) Plasma source
JP3330159B2 (en) Dynamic mixing device
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JP2916972B2 (en) Plasma generation method and apparatus
JPS61227163A (en) Production of high hardness boron nitride film
JP3464998B2 (en) Ion plating apparatus and method for controlling thickness and composition distribution of deposited film by ion plating
JPH04191364A (en) Method and device for ion plating
JP2005290510A (en) Electron beam vapor deposition method and apparatus therefor
JP2620474B2 (en) Ion plating equipment
JP2004011007A (en) Film deposition method
JPH03150353A (en) Reactive ion plating method
JPS63213664A (en) Ion plating device
JP4408505B2 (en) Method and apparatus for forming diamond-like carbon film
JPH0368764A (en) Plasma treating device for forming thin film
JPS62180064A (en) Coating method for inside surface of pipe by arc melting method