JPH01275747A - Manufacture of thin metallic film - Google Patents

Manufacture of thin metallic film

Info

Publication number
JPH01275747A
JPH01275747A JP10639788A JP10639788A JPH01275747A JP H01275747 A JPH01275747 A JP H01275747A JP 10639788 A JP10639788 A JP 10639788A JP 10639788 A JP10639788 A JP 10639788A JP H01275747 A JPH01275747 A JP H01275747A
Authority
JP
Japan
Prior art keywords
vapor pressure
electron beam
vapor
pressure components
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10639788A
Other languages
Japanese (ja)
Other versions
JPH0610344B2 (en
Inventor
Shigeo Suzuki
茂夫 鈴木
Tomoaki Ando
智朗 安藤
Hidenobu Shintaku
秀信 新宅
Yoshiaki Yamamoto
義明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10639788A priority Critical patent/JPH0610344B2/en
Publication of JPH01275747A publication Critical patent/JPH01275747A/en
Publication of JPH0610344B2 publication Critical patent/JPH0610344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture a thin metallic film having high ratio of low vapor pressure components with a uniform compsn. over a long length by supplying a vapor-depositing material contg. low high vapor pressure components and a vapor-depositing material contg. high vapor pressure components higher than that while they are selectively heated to melt. CONSTITUTION:In a vacuum cell, molten metal 15 in a crucible 14 is heated to evaporate by the primary source 16 of an electron beam and is vapor-deposited onto a polymeric film substrate 11 running on the circumference of a can 12 to manufacture a thin metallic film. In the above manufacture, a primary vapor-depositing material 18 having the lower ratio of high vapor pressure components such as Cr than that in the compsn. of the desired film and a secondary vapor-depositing material 19 having the higher ratio of the high vapor pressure components than the above are supplied into the crucible 14 while they are heated to melt by the secondary source 22 of an electron beam. At this time, by the regulation of a monitor 23 for evaporating composition, an electron beam from the above secondary source 22 of an electron beam is deflected to selectively heat the vapor depositing materials 18 and 19. By this method, the compsn. of the molten metal 15 is regulated to stably form the thin film contg. the uniform compsn. having high ratio of low vapor pressure components such as Co and having low ratio of high vapor pressure components such as Cr over a long length.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、真空蒸着によって金属薄膜を安定に形成する
ための製造法に関するものであシ、特に金属薄膜表面に
おける異物と金属薄膜の組成が、その機能に重要な影響
を及ぼす例えば高密度記録特性に優れた垂直磁気記録媒
体等の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a manufacturing method for stably forming a metal thin film by vacuum evaporation. The present invention relates to a method for manufacturing perpendicular magnetic recording media, which have an important effect on functions, such as perpendicular magnetic recording media with excellent high-density recording characteristics.

従来の技術 一般に真空蒸着法はその高堆積速度の故に大面積、量産
用の薄膜形成法として用いられ、例えば金属薄膜形磁気
記録媒体の製造法としても適している。金属薄膜形の媒
体としてはCo基磁性薄膜媒体、特にCo −Cr媒体
が短波長記録特性の優れた垂直磁化型媒体として最適で
ある事がわかってろる。Co−Cr媒体においては、媒
体膜中におけるCoとCrのwt %が約80:20で
ある場合にその磁気的特性が優れておシ、それ故蒸着法
によって上記媒体を製膜する場合、膜中てこの濃度割合
となる様に、蒸発るつぼ中でその組成を制御する必要が
ある。一般にCoおよびCr金属は高融点材料であシ、
蒸着の場合その溶融蒸発手段としては電子線加熱法を用
いるのが一般的であシ、その例を第2図および第3図に
示す。第3図は単一るつぼの蒸発源を用いた方法であり
、あらかじめCo−Crの合金、この場合Co割合の多
い合金をるつぼ1に装填しておき、電子線2により加熱
溶融させるものである。この時、るつぼ1内の合金は、
その蒸気圧差が大きいために、蒸気圧の高いCr成分が
先に蒸発し、膜中のCr濃度が第4図に示す如くなシ、
例えば初期合金割合をCo93:Cr7としても蒸着初
期ではCr濃度が高く、蒸着時間の経過と共に膜中のC
r濃度が徐々に減少してゆく。そのため第3図において
は、Cr粒3を補給しながらその組成を制御するもので
ある。
2. Description of the Related Art Vacuum deposition is generally used as a method for forming thin films over large areas and for mass production because of its high deposition rate, and is also suitable as a method for manufacturing, for example, metal thin film magnetic recording media. As metal thin film media, it has been found that Co-based magnetic thin film media, particularly Co--Cr media, are most suitable as perpendicular magnetization media with excellent short wavelength recording characteristics. Co-Cr media has excellent magnetic properties when the wt% of Co and Cr in the media film is about 80:20. It is necessary to control the composition in the evaporation crucible so as to maintain the concentration ratio in the evaporation crucible. Co and Cr metals are generally high melting point materials;
In the case of vapor deposition, electron beam heating is generally used as the melting and evaporation means, examples of which are shown in FIGS. 2 and 3. Figure 3 shows a method using a single crucible evaporation source, in which a Co-Cr alloy, in this case an alloy with a high Co content, is loaded in advance into a crucible 1 and heated and melted with an electron beam 2. . At this time, the alloy in crucible 1 is
Because the vapor pressure difference is large, the Cr component with high vapor pressure evaporates first, and the Cr concentration in the film becomes as shown in Figure 4.
For example, even if the initial alloy ratio is Co93:Cr7, the Cr concentration is high at the initial stage of deposition, and as the deposition time progresses, the Cr concentration in the film increases.
The r concentration gradually decreases. Therefore, in FIG. 3, the composition is controlled while replenishing the Cr grains 3.

また第3図は、CoとCrの2元蒸着源を用いた方法で
の従来例を示した図であシ、Coおよびαを別々のるつ
ぼ4.6よシ蒸発させ、キャン6上を走行する高分子フ
ィルム基板7に堆積させるものである。この時8は防着
板であシ、9は巻出しローラ、1oは巻取ジロー2であ
る。第2図においても、第3図と同じく、防着板8.キ
ャン6゜巻出しロー291巻取シローラ1oを備えて薄
膜を連続的に形成している。
Fig. 3 is a diagram showing a conventional method using a binary evaporation source of Co and Cr, in which Co and α are evaporated in separate crucibles 4. It is deposited on a polymer film substrate 7. At this time, 8 is an adhesion prevention plate, 9 is an unwinding roller, and 1o is a winding roller 2. In FIG. 2, as in FIG. 3, the adhesion prevention plate 8. A can 6° unwinding row 291 and a winding roller 1o are provided to continuously form a thin film.

この様な真空蒸着法により製膜する場合、いずれも高分
子フィルム上に磁気記録媒体を構成し、磁気ヘッドと接
触して記録再生するため、媒体の平滑性、特にヘッドと
の間でスペーシング損失となるような異物のない事、あ
るいは磁気的特性が長尺に亘って維持されている事が必
要となシ、その長尺の程度は生産的規模に見合う長さで
ある事が必要とされる。しかるに第2図に示す方法では
以下の様な問題点を生じるものであった。すなわち、こ
の方法においては、蒸気圧の高いOrは、Cr濃度の高
い状態では金属状態としてその線材化等が難しく、それ
故金属粒としての補給となる。
When forming a film using such a vacuum evaporation method, the magnetic recording medium is constructed on a polymer film, and recording and reproduction are performed by contacting the magnetic head, so the smoothness of the medium, especially the spacing between it and the head is important. It is necessary that there are no foreign substances that could cause loss, or that the magnetic properties are maintained over a long length, and the length must be commensurate with the production scale. be done. However, the method shown in FIG. 2 has the following problems. That is, in this method, Or, which has a high vapor pressure, is in a metallic state when the Cr concentration is high and it is difficult to make it into a wire, and therefore it is replenished as metal particles.

この時、Cr金属は昇華性であるために加熱溶融させて
るつぼ1に補給する事ができず、それ故国に示す様な粒
状の供給となる。しかしながらこの場合、Cr粒は粒状
であるために種々の不凝縮ガスを吸着し易く、その状態
で溶湯内に供給されると所謂突沸現象が発生し、蒸着膜
中に比較的径の大きな溶湯と同一成分の異物が発生し、
磁気ヘッドとの接触において記録抜は等の大きな問題を
生じさせるものであった。また、第2図の従来例におい
て、Co材料を供給しなから長尺に対応する方法もある
が、基本的に上記問題点を有しているものである。
At this time, since the Cr metal is sublimable, it cannot be supplied to the crucible 1 by heating and melting it, and therefore it is supplied in the form of granules as shown in the original country. However, in this case, since the Cr grains are granular, they tend to adsorb various non-condensable gases, and if they are supplied into the molten metal in that state, a so-called bumping phenomenon occurs, causing molten metal with a relatively large diameter to form in the deposited film. Foreign matter with the same composition occurs,
Contact with the magnetic head has caused serious problems such as recording loss. In addition, in the conventional example shown in FIG. 2, there is a method to cope with long lengths without supplying Co material, but this method basically has the above-mentioned problems.

一方第3図に示す方法においては、基本的に第2図に示
した様な異物発生に対する問題はないが、次の様な問題
を有しているものである。すなわち、この様な磁気記録
媒体を真空蒸着法によって作製するメリットはその高速
量産性にあシ、蒸着速度は数千人/sec程度である。
On the other hand, the method shown in FIG. 3 basically does not have the problem of foreign matter generation as shown in FIG. 2, but it does have the following problems. That is, the advantage of manufacturing such a magnetic recording medium by the vacuum deposition method is that it can be mass-produced at high speed, and the deposition rate is about several thousand people/sec.

この様な高蒸着速度の場合、2元蒸着法に於てはその組
成制御がうまくいかず、すなわち両者の蒸発粒子の混合
が不均一となり、フィルム基板の上流側と下流側すなわ
ち膜厚方向に濃度不均一を生じ特性を確保できないとい
う問題があった。
In the case of such a high evaporation rate, the composition control is not successful in the binary evaporation method, which means that the evaporated particles of both types become unevenly mixed, and the evaporated particles become uneven on the upstream and downstream sides of the film substrate, that is, in the film thickness direction. There was a problem in that concentration non-uniformity occurred and characteristics could not be ensured.

発明が解決しようとする課題 このように蒸気圧差の大きい合金薄膜を製膜する場合に
は、蒸発源側で組成を制御する様に、例えば蒸気圧の高
い金属成分を補給したシ、2元蒸着源でそれぞれ組成を
制御する方法があるが、補給に際し、突沸現象を生じた
シ、長尺に亘っての膜組成が均一でなかったシ、膜厚方
向で組成ムラが発生するといった課題がある。
Problems to be Solved by the Invention When forming an alloy thin film with such a large vapor pressure difference, it is necessary to control the composition on the evaporation source side, for example by replenishing a metal component with a high vapor pressure, or by binary evaporation. There are methods to control the composition at each source, but there are problems such as bumping phenomenon occurring during replenishment, nonuniform film composition over a long length, and composition unevenness in the film thickness direction. .

課題を解決するための手段 蒸気圧の低い金属割合を大とし、蒸気圧の高い金属割合
を小とする合金薄膜を真空蒸着法によって形成する際に
、第1の電子線により蒸発るつぼを加熱し、第2の電子
線により所望膜組成での高蒸気圧成分の割合よりも、そ
の割合が少ない第1の蒸着材料と、第1の蒸着材料より
も蒸気圧の高い成分の割合を増やした第2の蒸着材料と
を選択的に加熱溶融させ、前記蒸発るつほに併給する。
Means for Solving the Problem When forming an alloy thin film in which the proportion of metals with low vapor pressure is large and the proportion of metals with high vapor pressure is small, the evaporation crucible is heated by a first electron beam. , a first vapor-deposited material whose proportion is lower than the proportion of high vapor pressure components in the desired film composition by the second electron beam, and a second vapor-deposited material in which the proportion of components whose vapor pressure is higher than that of the first vapor-deposited material is increased. The evaporation materials No. 2 and 2 are selectively heated and melted and fed together to the evaporation furnace.

作   用 蒸発るつぼからの蒸発組成に応じ、所望膜組成での高蒸
気圧成分の割合よりその割合の少ない蒸着材料と、それ
よりも蒸気圧の高い成分の割合を多くした蒸着材料とを
選択的に加熱溶融させてるつぼ内に供給する事により、
合金薄膜の膜組成を長尺に亘って均一化し、かつ突沸現
象をるつぼへの供給を溶湯状態で供給する事で防ぐ。
Action: Depending on the evaporation composition from the evaporation crucible, a evaporation material with a lower proportion of high vapor pressure components than the proportion of high vapor pressure components in the desired film composition and a evaporation material with a higher proportion of components with higher vapor pressure than that of the desired film composition are selectively selected. By heating and melting it and feeding it into the crucible,
The film composition of the alloy thin film is made uniform over a long length, and the bumping phenomenon is prevented by supplying the melt to the crucible in a molten state.

実施例 第1図は本発明の一実施例の製造法を具体化する真空蒸
着装置の内部構造である。
Embodiment FIG. 1 shows the internal structure of a vacuum evaporation apparatus embodying a manufacturing method according to an embodiment of the present invention.

図において、11は長尺幅広の高分子フィルム基板であ
り、回転する12の円筒状キャン周囲に沿って走行しな
がらその下部で合金薄膜を形成する。13は防着板兼マ
スクであり、前記高分子フィルム基板11への合金薄膜
の付着領域を限定している。この下部には、耐熱性材料
よシなるるつぼ14が設置されており、この時るつぼ1
4は高分子フィルム基板11の幅方向に細長い形状とし
ている。るつぼ14内には蒸気圧の低い金属とそれより
も蒸気圧の高い金属とが溶融した状態で存在し、この溶
融金属16は上方の第1の電子線16で加熱されて蒸発
し、前記高分子フィルム11上に堆積する。この時第1
の電子線源16は矢印で示す如く、るつぼ14の長さ方
向にある周波数でスキャンされているものである。また
この第1の電子線源16への投入パワーおよびスキャン
周波数は蒸発粒子空間に設けた蒸発速度モニター17に
より制御されている。
In the figure, 11 is a long and wide polymer film substrate, which forms an alloy thin film under the rotating cylindrical can 12 while traveling along the periphery of the cylindrical can. Reference numeral 13 denotes an adhesion prevention plate and mask, which limits the area to which the alloy thin film is adhered to the polymer film substrate 11. A crucible 14 made of heat-resistant material is installed at the bottom of this, and at this time, crucible 1
4 has an elongated shape in the width direction of the polymer film substrate 11. Inside the crucible 14, a metal with a low vapor pressure and a metal with a higher vapor pressure exist in a molten state, and this molten metal 16 is heated and evaporated by the first electron beam 16 above, and the metal with a higher vapor pressure It is deposited on the molecular film 11. At this time the first
The electron beam source 16 is scanned at a certain frequency in the longitudinal direction of the crucible 14, as shown by the arrow. Further, the power applied to the first electron beam source 16 and the scanning frequency are controlled by an evaporation rate monitor 17 provided in the evaporation particle space.

一方るつぼ14の端部には、所望の合金薄膜を得   
゛るために、まず所望膜組成中の高蒸気圧成分の割合よ
りその割合が少ない第1蒸着材料18と第1蒸着材料よ
りも、蒸気圧の高い成分の割合を高めた第2蒸着材料1
9とが、ロッド状で設置されており、それぞれは供給装
置20.21を介してるつぼ14上部に進入する如く構
成されている。またこの蒸着材料18.19の上部には
この蒸着材   。
On the other hand, at the end of the crucible 14, a desired alloy thin film is obtained.
In order to achieve this, first, the first vapor deposition material 18 has a lower proportion than the high vapor pressure component in the desired film composition, and the second vapor deposition material 1 has a higher proportion of high vapor pressure components than the first vapor deposition material.
9 are installed in the form of rods, each of which is configured to enter the upper part of the crucible 14 via a feeding device 20, 21. Further, this vapor deposition material is placed on top of the vapor deposition materials 18 and 19.

料18,19を加熱溶融させるための第2の電子線源2
2が位置されており、この電子線源22からの電子線は
、蒸着材料18.19にそれぞれ選択的に照射可能な様
に内部磁界により偏向される。
Second electron beam source 2 for heating and melting the materials 18 and 19
2 is located, and the electron beam from this electron beam source 22 is deflected by an internal magnetic field so that it can selectively irradiate the vapor deposition materials 18 and 19, respectively.

更にこの電子線照射の選択と投入パワーおよび蒸着材料
18.19の送り速度は蒸発粒子空間に設けた蒸発組成
モニター23の信号により制御されているものである。
Further, the selection of electron beam irradiation, input power, and feeding speed of the vapor deposition material 18, 19 are controlled by signals from an evaporation composition monitor 23 provided in the evaporation particle space.

この様に構成された実施例での作用様態は次の如くであ
る。すなわち、蒸着を開始するにあたり、まず所望膜組
成例えばCo−0rの垂直媒体でその  ゛組成が、C
o80%−Cr20チの膜を得ようとする場合、第2成
分であるCrの割合が所望膜組成のCr割合よりも少な
い第1蒸着材料18を供給装置2oにより供給しながら
第2の電子線源22よりの電子線で選択的に加熱溶融さ
せてるつぼ14内に供給し、第1電子線源16により加
熱蒸発させる。この時蒸発粒子の組成は第4図に示す如
く、供給材料のCr割合が低いCo93%−Cr7%の
場合でも初期にはおよそ30チのCr組成となり、その
後徐々にCr濃度が減少し、ある所定時間経過後に所望
の膜組成であるCo80%−〇r20%になる。この状
態になった時点でシャッター24を開放し高分子フィル
ム基板11に蒸着させるものである。またこの状態でし
ばらくするとCr濃度が減少する。そこでCr割合が高
い第2蒸着材料19に第2電子線源22よシの電子線を
照射して加熱溶融させてるつぼ14に供給する事により
蒸発粒子の組成をCo 80 % −Cr 20%に維
持させる事が可能となる。またこの時、そのままで第2
蒸着材料19のみを加熱溶融させていると、再びCr割
合が高くなるので、第2電子線源22の照射を第1蒸着
材料へ再照射して制御する。この時るつぼ14内の溶湯
量をある程度維持して長時間連続蒸着するためには、第
1蒸着材料の加熱浴―量で制御する事が望ましく、更に
そのためには、第1蒸着材料中の蒸気圧の高い成分の割
合を極力低く抑えた材料組成とする方が良く(例えば、
Or濃度2〜3チ)、こうする事によって蒸着の立上げ
から蒸着開始までのロス時間も少なして済む。
The mode of operation of the embodiment configured in this manner is as follows. That is, to start vapor deposition, first, a vertical medium of a desired film composition, for example Co-0r, is used, and its composition is C.
When attempting to obtain a film of o80% - Cr20, the second electron beam is supplied while supplying the first vapor deposition material 18 in which the proportion of Cr as the second component is lower than the proportion of Cr in the desired film composition. The material is selectively heated and melted by an electron beam from a source 22, supplied into a crucible 14, and heated and evaporated by a first electron beam source 16. At this time, the composition of the evaporated particles is as shown in Figure 4, even when the Cr content of the feed material is low (93% Co-7% Cr), the Cr composition is approximately 30% at the beginning, and then the Cr concentration gradually decreases to a certain level. After a predetermined period of time, the desired film composition becomes 80% Co-20% Co. When this state is reached, the shutter 24 is opened and the polymer film substrate 11 is evaporated. Further, after a while in this state, the Cr concentration decreases. Therefore, the second evaporation material 19 having a high Cr content is irradiated with an electron beam from the second electron beam source 22, heated and melted, and then supplied to the crucible 14, thereby changing the composition of the evaporated particles to 80% Co - 20% Cr. It is possible to maintain it. At this time, the second
If only the vapor deposition material 19 is heated and melted, the Cr ratio will increase again, so the irradiation from the second electron beam source 22 is controlled by re-irradiating the first vapor deposition material. At this time, in order to maintain the amount of molten metal in the crucible 14 to some extent and perform continuous vapor deposition for a long time, it is desirable to control the amount of the heating bath of the first vapor deposition material. It is better to have a material composition that keeps the proportion of high-pressure components as low as possible (for example,
By doing so, the loss time from the start of vapor deposition to the start of vapor deposition can be reduced.

層材料と、それよりも高蒸気圧成分割合を高めた蒸着材
料とを選択的に電子線によって加熱溶融させてるつぼに
供給し、更にるつぼを別の電子線によって加熱する事で
、蒸着材料を直接るつぼ内に供給する場合に発生するよ
うな突沸現象がなく、もし蒸着材料に不純物があったと
しても供給部で発生するだけであり、基板に付着させな
い構成とする事が容易であり、結果として膜表面性に優
れた媒体を作製できる。更に、蒸発中の組成制御は、蒸
着材料へ選択的に電子線を照射するだけで可能であり、
また量産時等のかなシの長尺に亘っても、その組成が制
御できるものである。
The layer material and the vapor deposition material with a higher vapor pressure component ratio are selectively supplied to a crucible that is heated and melted with an electron beam, and the crucible is further heated with another electron beam to melt the vapor deposition material. There is no bumping phenomenon that occurs when directly feeding the material into the crucible, and even if there is impurity in the evaporation material, it will only be generated in the supply section, and it is easy to configure the material so that it does not adhere to the substrate. As a result, a medium with excellent film surface properties can be produced. Furthermore, composition control during evaporation is possible simply by selectively irradiating the evaporation material with an electron beam.
In addition, the composition can be controlled even over a long length of kana during mass production.

また、本実施例では、蒸着材料の供給部としてるつぼの
片端に設けているが、基板が幅広となった場合には、他
端にも設けると基板幅方向での組成均一化が図れる。
Furthermore, in this embodiment, the supply section for vapor deposition material is provided at one end of the crucible, but if the substrate becomes wider, it may be provided at the other end as well, thereby making the composition uniform in the width direction of the substrate.

発明の効果 本発明によれば、所望膜組成での高蒸気圧成分割合より
も、その成分割合が少ない蒸着材料と、この蒸着材料よ
りも高蒸気圧成分の割合が多い蒸着材料とを選択的に加
碕熔融させてるつぼに供給しながら蒸着する事により、
突沸現象等のない平滑な膜を作製でき、更に長尺に亘っ
て安定に膜組成の均一な垂直磁気媒体を作製する事がで
きる。
Effects of the Invention According to the present invention, a vapor deposition material having a lower proportion of high vapor pressure components than the proportion of high vapor pressure components in a desired film composition and a vapor deposition material having a higher proportion of high vapor pressure components than this vapor deposition material can be selectively used. By vapor-depositing it while melting it and supplying it to a crucible,
A smooth film without bumping phenomena can be produced, and furthermore, a perpendicular magnetic medium with a uniform film composition over a long length can be produced stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の金属薄膜製造法を具体化す
る蒸着装置の構成図、第2図および第3図は従来法によ
る金属薄膜製造装置の構成図、第4図はCo−Cr合金
蒸発におけるCr濃度と時間の関係を示す図である。 11・・・・・・高分子フィルム基板、14・・・・・
・るつぼ、16・・・・・・第1の電子線源、18・・
・・・・第1の蒸着材料、19・・・・・・第2の蒸着
材料、22・旧・・第2の電子線源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
−一一高々ト子フィルム3tk[ lΔ−4)lコ゛′ /6−−− ;l−7の電子線源 18−−−矛1め蒸着#料 19−−一矛どの蒸着2甘看 第2図 ? 第3図
FIG. 1 is a block diagram of a vapor deposition apparatus embodying a metal thin film production method according to an embodiment of the present invention, FIGS. 2 and 3 are block diagrams of a metal thin film production apparatus according to a conventional method, and FIG. 4 is a Co- It is a figure showing the relationship between Cr concentration and time in Cr alloy evaporation. 11... Polymer film substrate, 14...
- Crucible, 16...First electron beam source, 18...
...First vapor deposition material, 19... Second vapor deposition material, 22. Old... Second electron beam source. Name of agent: Patent attorney Toshio Nakao and 1 other person11
-11 at most electron film 3tk[lΔ-4)lco'/6---;l-7 electron beam source 18---1st evaporation material 19---1st evaporation 2nd observation point Figure 2? Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)第1の電子線により坩堝内を加熱し、所望膜組成
中の高蒸気圧成分の割合よりその割合が少ない第1蒸着
材料と、前記第1蒸着材料よりも高蒸気圧成分の割合が
多い第2蒸着材料とを第2の電子線により選択的に加熱
溶融しながら前記坩堝内に供給し、低蒸気圧成分割合を
大とし、高蒸気圧成分割合を小とする金属薄膜を真空蒸
着法によって形成することを特徴とする金属薄膜の製造
法。
(1) The inside of the crucible is heated by a first electron beam, and a first vapor deposition material whose proportion is lower than the proportion of high vapor pressure components in the desired film composition and a proportion of vapor pressure components higher than the first vapor pressure component A second evaporation material with a high vapor pressure is supplied into the crucible while being selectively heated and melted by a second electron beam, and a metal thin film having a large proportion of low vapor pressure components and a small proportion of high vapor pressure components is evaporated under vacuum. A method for producing a metal thin film, characterized in that it is formed by a vapor deposition method.
(2)高蒸気圧成分としてはCrであり、低蒸気圧成分
としてはCoであることを特徴とした請求項1記載の金
属薄膜の製造法。
(2) The method for producing a metal thin film according to claim 1, wherein the high vapor pressure component is Cr and the low vapor pressure component is Co.
JP10639788A 1988-04-28 1988-04-28 Metal thin film manufacturing method Expired - Fee Related JPH0610344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10639788A JPH0610344B2 (en) 1988-04-28 1988-04-28 Metal thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10639788A JPH0610344B2 (en) 1988-04-28 1988-04-28 Metal thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH01275747A true JPH01275747A (en) 1989-11-06
JPH0610344B2 JPH0610344B2 (en) 1994-02-09

Family

ID=14432558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10639788A Expired - Fee Related JPH0610344B2 (en) 1988-04-28 1988-04-28 Metal thin film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0610344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053303A1 (en) * 2021-03-01 2022-09-07 Carl Zeiss Vision International GmbH Vapor deposition method for coating a spectacle lens, physical vapor deposition system and crucible for physical vapor deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053303A1 (en) * 2021-03-01 2022-09-07 Carl Zeiss Vision International GmbH Vapor deposition method for coating a spectacle lens, physical vapor deposition system and crucible for physical vapor deposition
WO2022184585A1 (en) 2021-03-01 2022-09-09 Carl Zeiss Vision International Gmbh Vapor deposition method for coating a spectacle lens, physical vapor deposition system and crucible for physical vapor deposition
US11866818B2 (en) 2021-03-01 2024-01-09 Carl Zeiss Vision International Gmbh Vapor deposition method for coating a spectacle lens, physical vapor deposition system and crucible for physical vapor deposition

Also Published As

Publication number Publication date
JPH0610344B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US4543275A (en) Method of forming thin vapor deposited film of organic material
JPH01275747A (en) Manufacture of thin metallic film
JPH10154329A (en) Apparatus for production of magnetic recording medium
JPH0222462A (en) Crucible and production of metallic thin film using said crucible
JP2502653B2 (en) Metal thin film manufacturing equipment
JP3091577B2 (en) Method of controlling film thickness in vacuum deposition
JPH0798868A (en) Production of magnetic recording medium
JP2661208B2 (en) Manufacturing method of magnetic recording medium
JP4371881B2 (en) Magnetic recording medium manufacturing apparatus and manufacturing method
JP3818719B2 (en) Vapor deposition method on flexible support
JPH02137126A (en) Production of magnetic recording medium
JPH01286119A (en) Manufacture of magnetic recording medium
JP2000195044A (en) Apparatus for manufacturing magnetic storage medium
JPS5887269A (en) Vapor source device
JP3091576B2 (en) Method of controlling film thickness in vacuum deposition
JPH02168428A (en) Manufacture of magnetic recording medium
JPS60217531A (en) Production of magnetic recording medium
JPH04182933A (en) Production of magnetic recording medium and production of material to be vacuum-deposited
JPH0590060A (en) Manufacture of magnetic recording medium and crucible for vacuum evaporation
JPH0765367A (en) Production of magnetic recording medium
JPH0927125A (en) Production of magnetic recording medium
JPS60197870A (en) Vapor deposition device
JPH05255839A (en) Production of thin film and apparatus for production of the same
JPH0562186A (en) Manufacture of magnetic recording medium
JPH116055A (en) Manufacture of thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees