JPH10219433A - Method for vapor deposition on flexible base - Google Patents

Method for vapor deposition on flexible base

Info

Publication number
JPH10219433A
JPH10219433A JP4010397A JP4010397A JPH10219433A JP H10219433 A JPH10219433 A JP H10219433A JP 4010397 A JP4010397 A JP 4010397A JP 4010397 A JP4010397 A JP 4010397A JP H10219433 A JPH10219433 A JP H10219433A
Authority
JP
Japan
Prior art keywords
metal
vapor deposition
shielding plate
cooling drum
flexible support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4010397A
Other languages
Japanese (ja)
Other versions
JP3818719B2 (en
Inventor
Toshiyuki Otsuka
俊幸 大塚
Shunichi Yamanaka
俊一 山中
Mitsuru Takai
充 高井
Nobuo Ariga
信雄 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP04010397A priority Critical patent/JP3818719B2/en
Publication of JPH10219433A publication Critical patent/JPH10219433A/en
Application granted granted Critical
Publication of JP3818719B2 publication Critical patent/JP3818719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vapor deposition method capable of preventing the rupture, etc., of a flexible base (base film) even when the acceleration voltage of an electron beam is increased at the time of vapor deposition of a ferromagnetic metal on the base film in production of magnetic recording media, etc. SOLUTION: This method for vapor deposition on the flexible base consists in irradiating the metal 10 for vapor deposition in a crucible 8 with an electron beam and depositing the metal on the surface of the flexible base transported along the surface of a cooling drum 5 from the aperture of a shielding plate 4. The shielding plate 9 is kept open during the evaporation rate of the metal for vapor deposition in the crucible attains the desired rate. The degree of the opening is kept in such a manner that the min. opening angle (θmin) formed by the line connecting the aperture and the metal for vapor deposition and the line connecting the contact point with the cooling drum and the line connecting the contact point and the center of the cooling drum attains 65 to 85 deg.. The shielding plate is then opened to the prescribed degree after the evaporation rate of the metal attains the desired rate. The metal is deposited by evaporation on the surface of the flexible base from the aperture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は可撓性支持体への蒸
着方法に関し、特に磁気記録媒体などの製造において、
可撓性支持体(ベースフィルム)への強磁性金属の蒸着
に際し、電子ビームの加速電圧を高めた場合において
も、ベースフィルムの破断等を簡便に防止し得る可撓性
支持体への蒸着方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for vapor deposition on a flexible support, and more particularly to a method for producing a magnetic recording medium.
A method of vapor deposition on a flexible support that can easily prevent breakage of the base film even when the accelerating voltage of the electron beam is increased upon vapor deposition of the ferromagnetic metal on the flexible support (base film) About.

【0002】[0002]

【従来の技術】従来、磁気記録媒体などの製造において
は、例えば磁気記録層の形成に際し、長尺状の可撓性支
持体(ベースフィルム)に、Co、Co−Ni合金、そ
の他のCo合金等の強磁性金属を蒸着法により被着して
金属薄膜(磁気記録層)を形成することが行われてい
る。
2. Description of the Related Art Conventionally, in the production of magnetic recording media and the like, for example, when forming a magnetic recording layer, a long flexible support (base film) is coated with a Co, Co-Ni alloy, or another Co alloy. Is formed by depositing a ferromagnetic metal such as a metal thin film (magnetic recording layer) by a vapor deposition method.

【0003】このような金属蒸着法においては、例え
ば、真空槽内において、繰出しロールから繰出されたベ
ースフィルムを冷却ドラム表面を沿って搬送させ、この
冷却ドラム表面搬送時に、蒸着させる金属を所定の圧力
下に高エネルギーの電子ビームを照射し、ベースフィル
ム上に所定角度で金属を蒸着させて金属薄膜を形成し、
これを巻取りロールで巻取っている。
In such a metal vapor deposition method, for example, a base film fed from a feed roll is conveyed along the surface of a cooling drum in a vacuum chamber. Irradiate a high energy electron beam under pressure, deposit metal at a predetermined angle on the base film to form a metal thin film,
This is taken up by a take-up roll.

【0004】従来、このような蒸着方法においては、例
えば蒸着用金属を入れたるつぼ等の容器を、前記冷却ド
ラムと開閉自在な遮蔽板を隔てて真空槽内に離隔配置
し、この蒸着用金属に電子ビームを照射し、蒸着可能と
なるまでの間、すなわち金属の蒸発量が所望の量になる
までの間、遮蔽板を完全に閉じた状態とし、所望の金属
蒸発量に達した後に初めて遮蔽板を蒸着用に開口し、こ
の開口部から金属蒸気をベースフィルム上に蒸着してい
た。
Conventionally, in such a vapor deposition method, for example, a vessel such as a crucible containing a metal for vapor deposition is separated from the cooling drum and an openable and closable shield plate in a vacuum chamber, and the metal for vapor deposition is disposed. Irradiate the electron beam, until the vapor deposition is possible, that is, until the amount of metal evaporation reaches the desired amount, the shield plate is completely closed, and only after reaching the desired amount of metal evaporation The shielding plate was opened for vapor deposition, and metal vapor was vapor-deposited on the base film from this opening.

【0005】ところで近年、磁気記録媒体の高機能化、
高精度化、高生産性が要求されるようになり、電子ビー
ムの加速電圧をより高めて、例えば従来20〜30kV
程度のパワーから、40〜50kV程度のパワーの電子
ビームで蒸着を行うようになってきている。
In recent years, the performance of magnetic recording media has been improved,
High precision and high productivity are required, and the acceleration voltage of the electron beam is further increased.
Vapor deposition has been performed with an electron beam having a power of about 40 to 50 kV.

【0006】しかしながら、電子ビームの加速電圧を高
めた場合、従来のように蒸着用金属に電子ビームを照射
し、金属の蒸発量が所望の量になるまでの間、遮蔽板を
閉じていて、金属蒸発量が所望の量となった後に初めて
遮蔽板を開口し、この開口部より金属蒸気を可撓性支持
体上に蒸着すると、電子ビームの2次電子等の影響で可
撓性支持体の帯電量が増大し、冷却ドラムから離れる際
に放電し、可撓性支持体の端面にキズが入り、可撓性支
持体が破断してしまうという不具合が生じていた。そこ
で帯電を防止するために、例えば冷却ドラム前後に帯電
防止・除電装置等を設ける、あるいは可撓性支持体に振
動を与えて除電する、等の方法が行われているが、いず
れの場合も十分に満足し得る効果を得るに至っていな
い。
However, when the accelerating voltage of the electron beam is increased, the metal for deposition is irradiated with the electron beam as in the prior art, and the shielding plate is closed until the evaporation amount of the metal reaches a desired amount. The shielding plate is opened for the first time after the amount of metal evaporation reaches a desired amount, and when metal vapor is vapor-deposited on the flexible support through this opening, the flexible support is affected by the secondary electrons of the electron beam. Of the flexible support, the discharge occurs when the flexible support is separated from the cooling drum, the end face of the flexible support is scratched, and the flexible support is broken. Therefore, in order to prevent electrification, for example, a method of providing an antistatic / static elimination device or the like before and after the cooling drum, or applying a vibration to the flexible support to eliminate static, and the like, are performed. The effect is not sufficiently satisfactory.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたもので、特に磁気記録媒体などの製造にお
いて、可撓性支持体(ベースフィルム)への強磁性金属
の蒸着に際し、電子ビームの加速電圧を高めた場合にお
いても、ベースフィルムの破断等を簡便に防止し得る可
撓性支持体への蒸着方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and particularly, in the manufacture of a magnetic recording medium or the like, when a ferromagnetic metal is deposited on a flexible support (base film), an It is an object of the present invention to provide a method for vapor deposition on a flexible support that can easily prevent breakage of the base film even when the acceleration voltage of the beam is increased.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた結果、蒸着用金属に
電子ビームを照射して蒸着可能とするまでの間、従来の
ように遮蔽板を完全に閉じて、冷却ドラム上を搬送され
る被蒸着体である可撓性支持体と、金属蒸気雰囲気との
間を完全に遮蔽し、蒸着開始時に初めて遮蔽板を開き、
その開口部から金属蒸気を可撓性支持体上へ蒸着するの
ではなく、金属に電子ビームを照射し、金属の蒸発量が
所望の量になるまでの間、遮蔽板を所定の程度開口する
ことにより可撓性支持体を蒸着可能な金属蒸気雰囲気下
におき、次いで、本蒸着時、前記遮蔽板の開口部を本蒸
着用に所定の程度開口して蒸着を開始することにより、
上記課題を解決し得るという知見を得、これに基づき本
発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to solve the above-mentioned problems, and as a result, until the metal for evaporation is irradiated with an electron beam so that the metal can be vapor-deposited, the conventional metal is used. The shield plate is completely closed, and the flexible support, which is the object to be deposited conveyed on the cooling drum, completely shields the space between the metal vapor atmosphere and the shield plate is opened for the first time at the start of deposition.
Instead of depositing metal vapor on the flexible support through the opening, the metal is irradiated with an electron beam, and the shielding plate is opened to a predetermined degree until the amount of metal evaporation reaches a desired amount. By placing the flexible support under a metal vapor atmosphere capable of being vapor-deposited, and then, at the time of main vapor deposition, by opening the opening of the shielding plate to a predetermined extent for main vapor deposition and starting vapor deposition,
The inventors have found that the above problems can be solved, and have completed the present invention based on the findings.

【0009】すなわち本発明は、可撓性支持体をその表
面に沿わせて搬送する冷却ドラムと、開閉自在な遮蔽板
と、該遮蔽板を介して前記冷却ドラムと離隔配置された
蒸着用金属を収容したるつぼとを備えた真空槽内におい
て、るつぼ内の蒸着用金属に電子ビームを照射して、遮
蔽板の開口部から前記冷却ドラムの表面に沿って搬送さ
れる可撓性支持体表面に金属を蒸着させる可撓性支持体
への蒸着方法において、前記蒸着用金属に電子ビームを
照射し、るつぼ内の蒸着用金属の蒸発量が所望量となる
までの間、遮蔽板を開口するとともに、この開口の程度
を、該開口部と蒸着用金属とを結ぶ線と冷却ドラムとの
接点と、該接点と冷却ドラムの中心とを結ぶ線とがなす
最小開口角度(θmin)が65°〜85°となるよう
に保ち、次いで、金属蒸発量が所望量となった後に遮蔽
板を所定の程度開口し、この開口部から可撓性支持体表
面に金属を蒸着させることを特徴とする、可撓性支持体
への蒸着方法に関する。
That is, the present invention provides a cooling drum for transporting a flexible support along its surface, a shield plate which can be opened and closed, and a metal for vapor deposition which is spaced apart from the cooling drum via the shield plate. In a vacuum vessel provided with a crucible containing a crucible, a surface of a flexible support which is irradiated with an electron beam to the metal for vapor deposition in the crucible and is conveyed along the surface of the cooling drum from the opening of the shielding plate. In the method for vapor-deposition on a flexible support for vapor-depositing a metal, a metal plate is irradiated with an electron beam, and the shielding plate is opened until the evaporation amount of the metal for vapor deposition in the crucible becomes a desired amount. At the same time, the minimum opening angle (θmin) between the line connecting the opening and the metal for vapor deposition and the contact between the cooling drum and the line connecting the contact and the center of the cooling drum is 65 °. ~ 85 ° and then gold Evaporation amount is a predetermined extent opening the shielding plate after reaching a desired amount, characterized in that depositing a metal on the flexible support surface through the opening, the method relates to the deposition of the flexible support.

【0010】[0010]

【発明の実施の形態】以下、本発明について図面を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0011】図1は本発明の蒸着方法の一例を示す説明
図である。図1において、真空槽1内には、繰出しロー
ル2、冷却ドラム5、巻取りロール3が配設され、繰出
しロール2から繰出された可撓性支持体(ベースフィル
ム)4は、矢印方向に回転する冷却ドラム5に沿って搬
送され、巻取りロール3に巻取られるようになってい
る。
FIG. 1 is an explanatory view showing an example of the vapor deposition method of the present invention. In FIG. 1, a delivery roll 2, a cooling drum 5, and a take-up roll 3 are provided in a vacuum chamber 1, and a flexible support (base film) 4 delivered from the delivery roll 2 is moved in the direction of the arrow. It is conveyed along the rotating cooling drum 5 and wound up on the winding roll 3.

【0012】冷却ドラム5の外方所定位置には開閉自在
な遮蔽板9が配設され、該遮蔽板9を介して蒸着用金属
10を収容した容器(るつぼ)8および該蒸着用金属1
0に電子ビーム7を照射する電子銃6が配設されてい
る。
At a predetermined position outside the cooling drum 5, a shield plate 9 which can be opened and closed is disposed, and a container (crucible) 8 containing a metal 10 for vapor deposition and the metal 1 for vapor deposition via the shield plate 9.
An electron gun 6 for irradiating the electron beam 7 to the electron beam 0 is provided.

【0013】そして、るつぼ8内に収容された蒸着用金
属10を、電子銃6から発生させた電子ビーム7を照射
することにより溶融し、発生する金属蒸気が遮蔽板9の
開口部から蒸気流11となって、冷却ドラム5上を走行
するベースフィルム4上に蒸着されて磁性薄膜を形成す
る。
The metal 10 for vapor deposition accommodated in the crucible 8 is melted by irradiating the electron beam 7 generated from the electron gun 6, and the generated metal vapor flows through the opening of the shielding plate 9. At 11, it is deposited on the base film 4 running on the cooling drum 5 to form a magnetic thin film.

【0014】ここで、遮蔽板9の構成は、開閉自在で、
金属蒸着時に所望の程度開口するようになっていれば特
に限定されるものではない。図では、前遮蔽板9a、後
遮蔽板9bからなる構成のものを例示し、遮蔽時は前遮
蔽板9aの後端部と後遮蔽板9bの前端部とが相接し
て、冷却ドラム5上のベースフィルム4と蒸着用金属1
0との間を遮断する。そして開口時には、前遮蔽板9a
の後端部と後遮蔽板9bの前端部とを離隔させて開口す
るようになっている。なお、前遮蔽板9a、後遮蔽板9
bは、例えば「SUS 304」等の鉄鋼板からなり、
遮蔽板の開閉手段は、例えばラック・アンド・ピニオン
により行うことができるが、これに限定されるものでな
いことはもちろんである。また遮蔽板の材質、開閉手段
なども従来より公知のものを使用することができる。
Here, the structure of the shielding plate 9 can be freely opened and closed.
There is no particular limitation as long as the openings are formed to a desired extent during metal deposition. In the drawing, a configuration including a front shielding plate 9a and a rear shielding plate 9b is illustrated, and at the time of shielding, the rear end of the front shielding plate 9a and the front end of the rear shielding plate 9b are in contact with each other. Upper base film 4 and metal 1 for vapor deposition
Cut off between 0. At the time of opening, the front shielding plate 9a
The front end of the rear shield plate 9b is separated from the rear end of the rear shield plate 9b. The front shielding plate 9a and the rear shielding plate 9
b is made of an iron steel plate such as “SUS 304”,
The means for opening and closing the shield plate can be performed by, for example, a rack and pinion, but is not limited to this. In addition, conventionally known materials can be used for the material of the shielding plate and the opening / closing means.

【0015】このような真空蒸着方法において、従来遮
蔽板9はるつぼ8内の蒸着用金属10が溶融し、金属蒸
発量が所望量となるまでの間は閉じられて、ベースフィ
ルム4は金属蒸気雰囲気下に曝されることがなかった
が、本発明においては、図2に示すように、この金属溶
融開始時(電子ビーム照射開始時)から金属蒸発量が所
望の程度となるまでの間、遮蔽板9を開口するととも
に、この開口の程度を、該開口部と蒸着用金属10とを
結ぶ線と冷却ドラム5との接点(S)と、該接点(S)
と冷却ドラム5の中心(O)とを結ぶ線とがなす最小開
口角度(θmin)が65°〜85°となるように保つ
点に特徴がある。このように設定することにより蒸着中
の不良品(破断等)の発生を防止することが可能とな
り、また製造上のロスの低下を図ることができる。
In such a vacuum vapor deposition method, the conventional shielding plate 9 is closed until the vapor deposition metal 10 in the crucible 8 is melted and the metal vaporization amount reaches a desired amount, and the base film 4 is made of metal vapor. Although it was not exposed to the atmosphere, in the present invention, as shown in FIG. 2, from the start of melting of the metal (at the start of electron beam irradiation) to the time when the amount of evaporated metal reaches a desired level, The shielding plate 9 is opened, and the degree of the opening is determined by the contact (S) between the line connecting the opening and the metal 10 for vapor deposition and the cooling drum 5, and the contact (S).
It is characterized in that a minimum opening angle (θmin) formed by a line connecting the cooling drum 5 and the center (O) is kept at 65 ° to 85 °. By setting in this way, it is possible to prevent the occurrence of defective products (such as breakage) during vapor deposition, and it is possible to reduce the production loss.

【0016】ここで上記最小開口角度(θmin)が8
5°を超えると、従来の遮蔽板を閉じた状態と同様に、
冷却ドラムからの剥離時の放電によるベースフィルムの
破断などの不具合が発生し、一方、65°未満では開口
面積が大きくなるため、輻射熱等による熱負けでベース
フィルムの破断が発生することとなる。
Here, the minimum opening angle (θmin) is 8
If it exceeds 5 °, similar to the state where the conventional shielding plate is closed,
Problems such as breakage of the base film due to electric discharge at the time of peeling from the cooling drum occur. On the other hand, when the angle is less than 65 °, the opening area becomes large, and the base film breaks due to heat loss due to radiant heat or the like.

【0017】本発明において「蒸着用金属に電子ビーム
を照射し、るつぼ内の蒸着用金属の蒸発量が所望量とな
るまでの間」とは、以下のように定義される。すなわ
ち、電子ビームを照射して蒸着用金属の溶融を開始する
と、るつぼ内の溶融された金属部分の蒸発が行われる一
方、残りの未溶融金属部分の溶融が並行して進行する。
このように溶融された金属の蒸発と未溶融金属の溶融と
が並行して行われている間は、金属の蒸発速度は一定で
はなく徐々に増大するが、一般にるつぼ内の金属がすべ
て完全に溶融すれば、電子ビームの投入パワーによりあ
る量の蒸発量が得られ、金属の蒸発速度は一定速度とな
る。「蒸着用金属に電子ビームを照射し、るつぼ内の蒸
着用金属の蒸発量が所望量となるまでの間」とは、具体
的には、電子ビーム照射開始からこの金属蒸発の一定速
度が得られるまでの間をいう。なお、この一定の金属蒸
発速度は、必要とする金属蒸着膜厚に応じて、ベースフ
ィルムの走行速度、真空槽の大きさ、るつぼ内に収める
金属量など、種々の要件を勘案して設定することができ
る。この一定速度は一般に1m2あたり5000ナ/se
c以上であれば好ましい生産スケールとなるが、これに
限定されるものではない。
In the present invention, "between irradiating the metal for deposition with an electron beam and the amount of evaporation of the metal for deposition in the crucible reaching a desired amount" is defined as follows. That is, when the melting of the metal for vapor deposition is started by irradiating the electron beam, the melted metal portion in the crucible is evaporated, while the melting of the remaining unmelted metal portion proceeds in parallel.
While the evaporation of the molten metal and the melting of the unmelted metal are performed in parallel, the evaporation rate of the metal is not constant but gradually increases, but generally, all the metal in the crucible is completely removed. Upon melting, a certain amount of evaporation is obtained by the input power of the electron beam, and the evaporation rate of the metal is constant. “Between irradiating the metal for deposition with an electron beam and evaporating the amount of the metal for deposition in the crucible to a desired amount” means, specifically, a constant rate of evaporation of the metal from the start of the electron beam irradiation. Until it is done. In addition, this constant metal evaporation rate is set in consideration of various requirements, such as the running speed of the base film, the size of the vacuum chamber, the amount of metal contained in the crucible, and the like, according to the required metal deposition thickness. be able to. This constant speed is generally 5000 Na / sec per m 2
If the value is c or more, a preferable production scale is obtained, but the present invention is not limited to this.

【0018】上記最小開口角度(θmin)が65°〜
85°となるように保つ間、ベースフィルム4の走行速
度は、製品のロスを招かず、また遮蔽板9が所定程度開
口されていることによる輻射熱の影響を受けない範囲で
設定すればよく、通常は蒸着時の搬送速度(100〜2
00m/min)の数分の一から十数分の一程度の、3
〜50m/min程度の値とすればよい。またこの速度
は、遮蔽板開放中、一定としたり、あるいは金属の溶融
程度(金属の蒸発量の変化)に応じて順次速度を上げる
など、適宜変更し得る。
The minimum opening angle (θmin) is 65 ° or more.
While keeping at 85 °, the running speed of the base film 4 may be set within a range that does not cause loss of the product and is not affected by radiant heat due to the opening of the shielding plate 9 to a predetermined degree. Usually, the transport speed during vapor deposition (100 to 2
00m / min) to about one-tenth to one-tenth
The value may be about 50 m / min. This speed can be changed as appropriate, such as keeping the speed constant while the shield plate is open, or increasing the speed sequentially according to the degree of melting of the metal (change in the amount of evaporation of the metal).

【0019】次いで、金属蒸発量が所望の量となった後
に遮蔽板を所定の程度開口して、この開口部から可撓性
支持体表面に金属を本蒸着させる。ただし、本蒸着時に
おける遮蔽板の開口量は、金属溶融時の上記最小開口角
度(θmin)と同程度開いてもよく、あるいは狭めた
り広めたりするなどしてもよい。
Next, after the metal evaporation amount reaches a desired amount, the shielding plate is opened to a predetermined degree, and the metal is fully deposited on the surface of the flexible support through the opening. However, the opening amount of the shielding plate at the time of the main vapor deposition may be approximately the same as the minimum opening angle (θmin) at the time of melting the metal, or may be narrowed or widened.

【0020】本発明において、蒸着装置、蒸着用金属あ
るいは合金、ベースフィルム等は、従来より公知のもの
を使用することができる。
In the present invention, conventionally known materials can be used for the vapor deposition device, metal or alloy for vapor deposition, base film and the like.

【0021】ベースフィルム(可撓性支持体)として
は、例えばポリエチレンテレフタレート、ポリエチレン
ナフタレート、ポリアミド、ポリアミドイミド、ポリイ
ミド等のプラスチックフィルム、紙や金属箔等からなる
長尺の可撓性支持体等を挙げることができ、特に制限は
ない。また、ベースフィルムはあらかじめ種々の処理層
が形成されたものであってもよい。
As the base film (flexible support), for example, a plastic film such as polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamide imide, or polyimide; a long flexible support made of paper or metal foil; And there is no particular limitation. Further, the base film may be one in which various processing layers are formed in advance.

【0022】蒸着用金属としては、特に限定されるもの
でないが、強磁性金属等が挙げられる。なかでもコバル
ト、コバルト合金、Fe、Crが含有されている金属等
が好ましく用いられ、特にはコバルト、コバルト合金が
好ましく用いられるが、これらに限定されるものでな
い。
The metal for vapor deposition is not particularly limited, but examples thereof include ferromagnetic metals. Of these, cobalt, cobalt alloys, metals containing Fe and Cr are preferably used, and particularly, cobalt and cobalt alloys are preferably used, but are not limited thereto.

【0023】[0023]

【実施例】次に、実施例を挙げて本発明をより詳細に説
明する。
Next, the present invention will be described in more detail with reference to examples.

【0024】実施例1 図1における真空槽1の圧力を1×10-4Torr以下
とした後、遮蔽板9を図2に示す最小開口角度(θmi
n)85°となるように設定してマグネシアるつぼ内8
のコバルト(Co)に電子銃6により40kVのパワー
の電子ビーム7を照射して溶解を開始するとともに、直
径1mの冷却ドラム5上にベースフィルム4としてポリ
エステルベースフィルム(厚さ7μm)を10m/分の
速度で走行させてコバルトの溶解を行い、金属の蒸発量
が1m2あたり5000ナ/secに達したらベースフィ
ルム4の走行速度を100m/分に上げて蒸着を行い、
金属薄膜(膜厚0.2μm)を形成した。
Example 1 After the pressure of the vacuum chamber 1 in FIG. 1 was reduced to 1 × 10 −4 Torr or less, the shielding plate 9 was moved to the minimum opening angle (θmi) shown in FIG.
n) Magnesia crucible 8 set at 85 °
Of cobalt (Co) is irradiated with an electron beam 7 having a power of 40 kV by an electron gun 6 to start melting, and a polyester base film (thickness 7 μm) is formed as a base film 4 on a cooling drum 5 having a diameter of 1 m by 10 m / cm. Minute, the cobalt is dissolved, and when the evaporation amount of the metal reaches 5000 na / sec per 1 m 2 , the traveling speed of the base film 4 is increased to 100 m / min to perform vapor deposition.
A metal thin film (0.2 μm thickness) was formed.

【0025】実施例2 実施例1において、最小開口角度(θmin)を70°
とした以外は、実施例1の場合と同様の方法により蒸着
を行った。
Embodiment 2 In Embodiment 1, the minimum opening angle (θmin) is set to 70 °.
The vapor deposition was performed in the same manner as in Example 1 except that the above conditions were satisfied.

【0026】実施例3 実施例1において、最小開口角度(θmin)を65°
とした以外は、実施例1の場合と同様の方法により蒸着
を行った。
Embodiment 3 In Embodiment 1, the minimum opening angle (θmin) is 65 °.
The vapor deposition was performed in the same manner as in Example 1 except that the above conditions were satisfied.

【0027】比較例1 実施例1において、最小開口角度(θmin)を90°
(図3)とした以外は、実施例1の場合と同様の方法に
より蒸着を行った。
Comparative Example 1 In Example 1, the minimum opening angle (θmin) was 90 °.
Except for (FIG. 3), vapor deposition was performed in the same manner as in Example 1.

【0028】比較例2 実施例1において、最小開口角度(θmin)を60°
とした以外は、実施例1の場合と同様の方法により蒸着
を行った。
Comparative Example 2 In Example 1, the minimum opening angle (θmin) was set to 60 °.
The vapor deposition was performed in the same manner as in Example 1 except that the above conditions were satisfied.

【0029】蒸気実施例1〜3、比較例1、2につき、
ベースフィルムの帯電と、ベースフィルムの損傷につい
て、下記の評価基準により評価した。結果を表1に示
す。 [ベースフィルムの帯電による破断]蒸着中のベースフ
ィルムの状態を目視で確認し、帯電による破断について
評価した。 [ベースフィルムの熱負け]蒸着中のベースフィルムの
状態を目視で確認し、熱負けについて評価した。
Steam Examples 1 to 3 and Comparative Examples 1 and 2
The charging of the base film and the damage to the base film were evaluated according to the following evaluation criteria. Table 1 shows the results. [Breakage due to Charging of Base Film] The state of the base film during vapor deposition was visually confirmed, and the breakage due to charging was evaluated. [Heat Loss of Base Film] The state of the base film during vapor deposition was visually confirmed, and the heat loss was evaluated.

【0030】[0030]

【表1】 表1の結果から明らかなように、本発明の蒸着方法によ
り蒸着されたベースフィルムは、いずれも熱負け、破断
等の発生がなく、良好な結果が得られた。一方、遮蔽板
の最小開口角度(θmin)が85°を上回る場合、走
行するベースフィルムへ蒸着される金属量が少ないため
2次電子による帯電の防止効果がほとんどなく、ベース
フィルム走行中破断を防ぐことができなかった。また遮
蔽板の最小開口角度(θmin)が65°を下回る場
合、蒸発源からの輻射熱によりベースフィルムが熱的ダ
メージを受け、熱負けを発生した。
[Table 1] As is clear from the results in Table 1, the base films deposited by the deposition method of the present invention did not lose heat, did not break, and the like, and good results were obtained. On the other hand, when the minimum opening angle (θmin) of the shielding plate exceeds 85 °, the amount of metal deposited on the running base film is small, so that there is almost no effect of preventing charging by secondary electrons, and breakage during running of the base film is prevented. I couldn't do that. Further, when the minimum opening angle (θmin) of the shielding plate was less than 65 °, the base film was thermally damaged by radiant heat from the evaporation source, causing heat loss.

【0031】[0031]

【発明の効果】以上詳述したように、本発明によれば、
可撓性支持体(ベースフィルム)への強磁性金属の蒸着
に際し、電子ビームの加速電圧を高めた場合において
も、ベースフィルムの破断等を簡便に防止することがで
きるという効果を奏する。
As described in detail above, according to the present invention,
When the ferromagnetic metal is vapor-deposited on the flexible support (base film), even when the acceleration voltage of the electron beam is increased, it is possible to easily prevent the base film from breaking or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蒸着方法に用いられる真空蒸着装置の
一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating an example of a vacuum evaporation apparatus used in an evaporation method of the present invention.

【図2】発明の最小開口角度(θmin)の説明図であ
る。
FIG. 2 is an explanatory diagram of a minimum opening angle (θmin) of the present invention.

【図3】比較1における最小開口角度(θmin)の態
様を示す図である。
FIG. 3 is a diagram showing an aspect of a minimum opening angle (θmin) in Comparative Example 1.

【符号の説明】 1 真空槽 2 繰出しロール 3 巻取りロール 4 可撓性支持体(ベースフィルム) 5 冷却ドラム 6 電子銃 7 電子ビーム 8 るつぼ 9 遮蔽板 9a 前遮蔽板 9b 後遮蔽板 10 蒸着用金属 11 蒸気金属の蒸気流[Description of Signs] 1 Vacuum tank 2 Feeding roll 3 Winding roll 4 Flexible support (base film) 5 Cooling drum 6 Electron gun 7 Electron beam 8 Crucible 9 Shielding plate 9a Front shielding plate 9b Rear shielding plate 10 For vapor deposition Metal 11 Steam steam flow of metal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有賀 信雄 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Nobuo Ariga Inventor, 1-13-1, Nihonbashi, Chuo-ku, Tokyo Inside TDK Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 可撓性支持体をその表面に沿わせて搬送
する冷却ドラムと、開閉自在な遮蔽板と、該遮蔽板を介
して前記冷却ドラムと離隔配置された蒸着用金属を収容
したるつぼとを備えた真空槽内において、るつぼ内の蒸
着用金属に電子ビームを照射して、遮蔽板の開口部から
前記冷却ドラムの表面に沿って搬送される可撓性支持体
表面に金属を蒸着させる可撓性支持体への蒸着方法にお
いて、 前記蒸着用金属に電子ビームを照射し、るつぼ内の蒸着
用金属の蒸発量が所望量となるまでの間、遮蔽板を開口
するとともに、この開口の程度を、該開口部と蒸着用金
属とを結ぶ線と冷却ドラムとの接点と、該接点と冷却ド
ラムの中心とを結ぶ線とがなす最小開口角度(θmi
n)が65°〜85°となるように保ち、次いで、金属
蒸発量が所望量となった後に遮蔽板を所定の程度開口
し、この開口部から可撓性支持体表面に金属を蒸着させ
ることを特徴とする、可撓性支持体への蒸着方法。
1. A cooling drum for transporting a flexible support along its surface, a shield plate that can be opened and closed, and a metal for vapor deposition that is spaced apart from the cooling drum via the shield plate. In a vacuum vessel provided with a crucible, the metal for vapor deposition in the crucible is irradiated with an electron beam, and the metal is deposited on the surface of the flexible support conveyed along the surface of the cooling drum from the opening of the shielding plate. In the method of vapor deposition on the flexible support to be vapor-deposited, irradiating the vapor-deposited metal with an electron beam until the evaporation amount of the vapor-deposited metal in the crucible becomes a desired amount, while opening the shielding plate, The degree of the opening is determined by the minimum opening angle (θmi) formed by the line connecting the opening and the metal for vapor deposition with the contact point between the cooling drum and the line connecting the contact point and the center of the cooling drum.
n) is kept at 65 ° to 85 °, and after the metal evaporation amount reaches a desired amount, the shielding plate is opened to a predetermined degree, and metal is vapor-deposited from the opening on the surface of the flexible support. A method for vapor deposition on a flexible support, characterized in that:
JP04010397A 1997-02-07 1997-02-07 Vapor deposition method on flexible support Expired - Fee Related JP3818719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04010397A JP3818719B2 (en) 1997-02-07 1997-02-07 Vapor deposition method on flexible support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04010397A JP3818719B2 (en) 1997-02-07 1997-02-07 Vapor deposition method on flexible support

Publications (2)

Publication Number Publication Date
JPH10219433A true JPH10219433A (en) 1998-08-18
JP3818719B2 JP3818719B2 (en) 2006-09-06

Family

ID=12571535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04010397A Expired - Fee Related JP3818719B2 (en) 1997-02-07 1997-02-07 Vapor deposition method on flexible support

Country Status (1)

Country Link
JP (1) JP3818719B2 (en)

Also Published As

Publication number Publication date
JP3818719B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
US4543275A (en) Method of forming thin vapor deposited film of organic material
US3183563A (en) Apparatus for continuous foil production by vapor deposition
US5065697A (en) Laser sputtering apparatus
EP0041850B1 (en) A method of vacuum depositing a layer on a plastics film substrate
US6852362B2 (en) Film vapor deposition method
JPH10219433A (en) Method for vapor deposition on flexible base
JPS6312939B2 (en)
JPH0798868A (en) Production of magnetic recording medium
JPH02137126A (en) Production of magnetic recording medium
JP2003308609A (en) Manufacturing method and manufacturing apparatus for recording medium, and recording medium
JP2002020857A (en) Vacuum film deposition apparatus, and crucible for film deposition
JPH0762536A (en) Film forming device
JP2000030964A (en) Device and method for manufacturing magnetic recording medium
JPH0633226A (en) Raw material metal supply method in vacuum deposition
JPH08100252A (en) Film forming device
JPS6358622A (en) Apparatus for forming thin metallic film
JPH04182933A (en) Production of magnetic recording medium and production of material to be vacuum-deposited
JPH06173003A (en) Vapor-deposition device
JPH11236668A (en) Thin film forming device and vacuum deposition device
JPH0562186A (en) Manufacture of magnetic recording medium
JPS5920468A (en) Vapor deposition method
JPH01275747A (en) Manufacture of thin metallic film
JPH01286119A (en) Manufacture of magnetic recording medium
JPH08315359A (en) Production of metal thin film type magnetic recording medium and producing device therefor
JPH05101384A (en) Manufacture of magnetic recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050915

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050922

A521 Written amendment

Effective date: 20051121

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Effective date: 20060613

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees