JP2594935B2 - Sputter film forming method and apparatus - Google Patents

Sputter film forming method and apparatus

Info

Publication number
JP2594935B2
JP2594935B2 JP62077419A JP7741987A JP2594935B2 JP 2594935 B2 JP2594935 B2 JP 2594935B2 JP 62077419 A JP62077419 A JP 62077419A JP 7741987 A JP7741987 A JP 7741987A JP 2594935 B2 JP2594935 B2 JP 2594935B2
Authority
JP
Japan
Prior art keywords
substrate
target
magnetic field
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62077419A
Other languages
Japanese (ja)
Other versions
JPS63247364A (en
Inventor
秀樹 立石
裕 斉藤
新治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62077419A priority Critical patent/JP2594935B2/en
Priority to US07/137,562 priority patent/US4853102A/en
Priority to KR1019870015286A priority patent/KR910001879B1/en
Priority to EP88100054A priority patent/EP0275021B1/en
Priority to DE3854276T priority patent/DE3854276T2/en
Publication of JPS63247364A publication Critical patent/JPS63247364A/en
Application granted granted Critical
Publication of JP2594935B2 publication Critical patent/JP2594935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜のスパッタ成膜方法と装置に係り、特
に半導体装置等の基板表面の微細な段差,溝あるいは穴
に成膜材料をつき回りよく付着させるに好適なスパッタ
成膜方法と装置に関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a method and an apparatus for forming a thin film by sputtering, and more particularly, to applying a film forming material to fine steps, grooves or holes on a substrate surface of a semiconductor device or the like. The present invention relates to a method and an apparatus for forming a sputter film, which are suitable for making a good adhesion.

〔従来の技術〕[Conventional technology]

LSIの高集積化に伴い、Al配線の微細化および多層化
が進み、Alを深穴につき回りよく成膜することが必要で
ある。
With high integration of LSI, Al wiring is becoming finer and multi-layered, and it is necessary to form Al around a deep hole and form a film.

半導体装置の基板表面の微細な段差,溝あるいは穴に
成膜材料をつき回りよく付着させる従来技術としては、
USP3,325,394号に記載されるカスブ磁界スパッタ法およ
び特開昭60−221563号に記載されるものが上げられる。
前者はスパッタ電極と基板とを対峙して配設せしめ、そ
れぞれに係合する電磁石により、両者間にカスブ磁界を
形成するものである。カスブ磁界はプラズマ密度を向上
させ、成膜速度を早める効果を有するものである。一
方、他の成膜方法としてバイアススパッタ法が上げられ
る。これはスパッタ電極(マグネトロン型スパッタ電
極)と基板とを対向させ、基板に膜材料を堆積させなが
ら基板表面に負のバイアス電圧を印加せしめて、スパッ
タ電極上に発生するプラズマ中のイオンの一部を基板表
面に流入させて成膜を行うものである。バイアススパッ
タ方法は前記のカスブ磁界を発生させる方法に較べ、装
置構造が感嘆のため、スパッタ成膜方法としてはバイア
ススパッタ法が従来より一般に使用されていた。但し、
この方法により効果的な成膜を行うには基板に印加する
バイアス電圧を大きくする必要があるが、バイアス電圧
を高くすると基板が発熱すると共に基板表面がイオン突
入により破損する問題点が生ずる。このため前記の特開
昭61−221563号に開示した技術はターゲットに係合する
カソードを磁束密度制御可能な可変磁束カソードから構
成せしめ、バイアス電圧を高めることなく流入イオン量
を高めるようにしたものである。
As a conventional technique for attaching a film forming material to fine steps, grooves or holes on the substrate surface of a semiconductor device with good precision,
Examples include the cusp magnetic field sputtering method described in US Pat. No. 3,325,394 and the method described in JP-A-60-221563.
In the former method, a sputter electrode and a substrate are disposed so as to face each other, and a kasbu magnetic field is formed between the two by electromagnets engaged with each other. The cusp magnetic field has the effect of increasing the plasma density and increasing the film forming speed. On the other hand, as another film forming method, a bias sputtering method can be used. In this method, a sputter electrode (magnetron type sputter electrode) is opposed to a substrate, a negative bias voltage is applied to the substrate surface while depositing a film material on the substrate, and a part of the ions in the plasma generated on the sputter electrode. Into the substrate surface to form a film. The bias sputtering method is more admirable in the structure of the apparatus than the above-described method of generating a cascade magnetic field, and thus the bias sputtering method has been generally used as a sputtering film forming method. However,
In order to form an effective film by this method, it is necessary to increase the bias voltage applied to the substrate. However, if the bias voltage is increased, the substrate generates heat and the substrate surface is damaged by ion intrusion. For this reason, the technology disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-221563 is such that the cathode engaged with the target is constituted by a variable magnetic flux cathode whose magnetic flux density can be controlled, so that the amount of inflowing ions can be increased without increasing the bias voltage. It is.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

基板表面につき回りよく成膜するには基板に入射する
イオン量を高める必要がある。このためには前記した如
く、バイアス電圧を向上させることが必要であるが、こ
の方法はスパッタ電極表面に閉じ込まれたプラズマを基
板表面に負のバイアス電圧を印加することにより基板側
にプラズマ中のイオンを引き寄せるもので、電圧が低い
場合には単に基板表面にバイアス電圧を印加しただけで
は基板表面上のプラズマ密度を十分に向上することはで
きない。またバイアス電圧を高めると前記の如き問題点
が生ずる。
In order to form a film around the substrate surface, it is necessary to increase the amount of ions incident on the substrate. For this purpose, as described above, it is necessary to increase the bias voltage.However, in this method, the plasma confined on the surface of the sputter electrode is applied to the substrate side by applying a negative bias voltage to the substrate surface. When the voltage is low, simply applying a bias voltage to the substrate surface cannot sufficiently improve the plasma density on the substrate surface. When the bias voltage is increased, the above-mentioned problem occurs.

以上のことをより具体的に説明すると、バイアス電圧
が−100Vの時、基板上のプラズマ密度は2×1010cm-3
度であり、この時に基板に流入するイオン電流は0.5A/
φ125程度である。この条件では1.0μm×1.0μmの深
角穴へのAlのつき回りは十分でないことが判った。一
方、バイアス電圧を高めるとスパッタ膜に吸蔵されるAr
ガス量が増加するが、スパッタ膜にボイド,フクレが発
生しバイアス電圧としては−140Vが限度であることが判
った。
More specifically, when the bias voltage is −100 V, the plasma density on the substrate is about 2 × 10 10 cm −3 , and the ion current flowing into the substrate at this time is 0.5 A /
It is about φ125. Under these conditions, it was found that the rotation of Al to the deep-angled hole of 1.0 μm × 1.0 μm was not sufficient. On the other hand, when the bias voltage is increased, Ar
Although the gas amount increased, voids and blisters were generated in the sputtered film, and it was found that the bias voltage was limited to -140 V.

本発明はバイアス電圧を高めることなく、基板表面の
微細な段差,溝,穴等に成膜材料をつき回りよく付着さ
せると共に高品質の薄膜を形成し得るスパッタ成膜方法
と装置を提供することを目的とする。
An object of the present invention is to provide a sputter film forming method and apparatus capable of forming a high quality thin film while adhering a film forming material to fine steps, grooves, holes, etc. on a substrate surface without increasing a bias voltage. With the goal.

〔問題を解決するための手段〕[Means for solving the problem]

前記問題点を解決するために、本発明では、スパッタ
成膜方法を、真空に排気された容器内にArガス等の不活
性ガスを導入して所定の圧力に設定し、容器の内部に対
向して配置されたターゲットと基板との間にカスプ磁界
を発生させ、ターゲットに第1の電力を印加してプラズ
マを発生さてカスプ磁界により該プラズマをターゲット
と基板との間に閉じ込め、基板を載置する基板電極に第
2の電力を印加して基板の表面にバイアス電位を発生さ
せ、カスプ磁界によりターゲットと基板との間に閉じ込
めたプラズマによりターゲットをスパッタして基板上に
成膜すると共にバイアス電位よりプラズマ中からイオン
を成膜している基板の表面に入射させ、基板と基板電極
との間にガスを導入して成膜している基板を冷却するこ
とにより行うようにした。
In order to solve the above problem, in the present invention, the sputtering film forming method is set to a predetermined pressure by introducing an inert gas such as Ar gas into a vacuum-evacuated container, and facing the inside of the container. A cusp magnetic field is generated between the target and the substrate, and a first power is applied to the target to generate plasma. The plasma is confined between the target and the substrate by the cusp magnetic field, and the substrate is mounted. A second electric power is applied to the substrate electrode to be placed to generate a bias potential on the surface of the substrate, and the target is sputtered by plasma confined between the target and the substrate by a cusp magnetic field, and a film is formed on the substrate while bias is applied. It is performed by letting ions from plasma into the surface of a substrate on which a film is formed from plasma, introducing a gas between the substrate and the substrate electrode, and cooling the substrate on which the film is formed. It was.

また、本発明では、スパッタ成膜装置を、真空排気部
とガス導入部とを有する真空容器手段と、この真空容器
手段の内部にスパッタされるターゲット面を有するター
ゲット手段と、真空容器手段の内部でターゲット面と対
向して被処理基板を載置し保持する基板電極手段と、タ
ーゲット手段に第1の電力を印加してプラズマを発生さ
せてターゲット面をスパッタし被処理基板上に成膜させ
る第1の電力印加手段と、ターゲット手段の側と基板電
極手段の側とに対向して設置されてターゲット面と基板
電極手段に保持される被処理基板との間にカスプ磁界を
形成し該カスプ磁界中にプラズマを閉じ込める磁場発生
手段と、基板電極手段に第2の電力を印加して被処理基
板の表面にバイアス電位を発生させカスプ磁場で閉じ込
めたプラズマ中からイオンを成膜中の被処理基板の表面
に入射させる第2の電力印加手段と、被処理基板と基板
電極手段との間にガスを導入してイオンを入射させなが
ら成膜中の被処理基板を冷却するガス導入手段とを備え
て構成した。
Further, according to the present invention, a sputter film forming apparatus includes: a vacuum container means having a vacuum exhaust unit and a gas introduction unit; a target means having a target surface to be sputtered inside the vacuum container means; A substrate electrode means for placing and holding a substrate to be processed in opposition to the target surface, generating plasma by applying first power to the target means, and sputtering the target surface to form a film on the substrate to be processed A cusp magnetic field formed between the target surface and the substrate to be processed held by the first power application means and the target means side and the substrate electrode means side; A magnetic field generating means for confining the plasma in the magnetic field, and a bias electric potential generated on the surface of the substrate to be processed by applying the second power to the substrate electrode means, from the plasma confined by the cusp magnetic field. Second power application means for turning on the surface of the substrate to be processed during film formation; and substrate to be processed during film formation while introducing a gas between the substrate to be processed and the substrate electrode means so as to make ions incident. And a gas introduction means for cooling.

〔作 用〕(Operation)

カスブ磁界の形成により高密度プラズマをスパッタ電
極から試料表面近傍まで発生させる。またカスブ磁界と
は独立に試料表面に膜不良を生じさせない負の低バイア
ス電圧等を印加し、プラズマ中の高密度イオンを試料基
板側に引き込む。これにより基板流入イオン電流が向上
すると共に試料基板表面に付着したスパッタ粒子の基板
表面上での移動度を向上することができる。この結果段
差,溝,穴等へのスパッタ材料のつき回りを向上させる
ことができる。更に試料基板を一定温度に制御すること
により膜品質を一定に保持することができる。
A high-density plasma is generated from the sputter electrode to the vicinity of the sample surface by the formation of the cusp magnetic field. In addition, independently of the cusp magnetic field, a negative low bias voltage or the like that does not cause a film defect on the sample surface is applied to draw high-density ions in the plasma toward the sample substrate. Thereby, the ion current flowing into the substrate can be improved, and the mobility of sputtered particles adhering to the surface of the sample substrate on the substrate surface can be improved. As a result, the spread of the sputtered material on steps, grooves, holes, and the like can be improved. Further, the film quality can be kept constant by controlling the temperature of the sample substrate to a constant temperature.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例について説明す
る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図に示す如く、真空容器1の上方の開口2には絶
縁物3を介しスパッタ電極4が取付けられ、スパッタ電
極4の真空容器1側にはスパッタ成膜材料より成るター
ゲット5が取付けられると共にその大気側にはターゲッ
トコイル6およびこれを覆うヨーク7が設けられてい
る。ターゲットコイル6にはターゲットコイル電源23が
連結する。なおヨーク7はターゲットコイル6により発
生する漏洩磁束密度を強めるためのものである。またス
パッタ電極4にはスパッタ電源20が連結する。ターゲッ
ト5の外周にはターゲット5から放電が生じない間隙を
隔てアノード28が設けられ、アノード28は絶縁体8を介
して真空容器1に固定される。なおアノード28の電位は
必要に応じ、フローティング,アース又は任意の正又は
負の電圧に設定される。
As shown in FIG. 1, a sputter electrode 4 is attached to an opening 2 above a vacuum vessel 1 with an insulator 3 interposed therebetween, and a target 5 made of a sputter deposition material is attached to the sputter electrode 4 on the vacuum vessel 1 side. A target coil 6 and a yoke 7 for covering the target coil 6 are provided on the atmosphere side. A target coil power supply 23 is connected to the target coil 6. The yoke 7 is for increasing the leakage magnetic flux density generated by the target coil 6. A sputter power source 20 is connected to the sputter electrode 4. An anode 28 is provided on the outer periphery of the target 5 with a gap where no discharge occurs from the target 5, and the anode 28 is fixed to the vacuum vessel 1 via the insulator 8. The potential of the anode 28 is set to floating, ground, or any positive or negative voltage as required.

真空容器1の下方の開口9には適宜間隔を隔てターゲ
ット5と対峙して配設される試料基板25(以下、基板25
という)を載置する基板電極10が設けられる。基板電極
10は基板5を載置する基板支持部10Aとこれから図の下
方に伸延する伸延部10Bとから形成される。基板電極10
の周囲には真空シール機能を持つ絶縁体11を介し、基板
おさえ12が基板電極10を囲縁すると共に基板25の周縁を
保持して配設される。なお基板おさえ12は基板25の表面
と垂直方向(図の上下方向)に移動可能に形成される
(移動手段は図示せず)。基板おさえ12の周囲には同じ
く真空シール機能を持つ絶縁体13を介しシールド14が基
板おさえ12を囲繞して設けられ、シールド14は真空容器
1の開口9に固定される。基板コイル17は真空容器1の
下方の開口15に固定するコイル容器16内に設けられ、真
空容器1と真空シールされる。また基板コイル17には基
板コイル電源24が連結する。基板電極10および基板おさ
え12には高周波電源21および直流電源22が連結される。
なお基板25の表面に直流バイアス電圧のみを印加する場
合には高周波電源21が不要であり、高周波バイアス電圧
のみを印加する場合には直流電源22がそれぞれ不要とな
る。また高周波バイアス電圧を印加する場合には基板お
さえ12は絶縁物で作られ、高周波プラズマをシールドす
る。
A sample substrate 25 (hereinafter, referred to as a substrate 25) provided at an opening 9 below the vacuum vessel 1 so as to face the target 5 at an appropriate interval.
) Is provided. Substrate electrode
Reference numeral 10 denotes a substrate supporting portion 10A on which the substrate 5 is placed, and an extending portion 10B extending downward in the drawing. Substrate electrode 10
A substrate holder 12 surrounds the substrate electrode 10 and holds a peripheral edge of the substrate 25 via an insulator 11 having a vacuum sealing function. The substrate holder 12 is formed so as to be movable in a direction perpendicular to the surface of the substrate 25 (up and down direction in the figure) (moving means is not shown). A shield 14 is provided around the substrate holder 12 via an insulator 13 also having a vacuum sealing function so as to surround the substrate holder 12, and the shield 14 is fixed to the opening 9 of the vacuum container 1. The substrate coil 17 is provided in a coil container 16 fixed to the opening 15 below the vacuum container 1, and is vacuum-sealed with the vacuum container 1. A board coil power supply 24 is connected to the board coil 17. A high frequency power supply 21 and a DC power supply 22 are connected to the substrate electrode 10 and the substrate holder 12.
When only the DC bias voltage is applied to the surface of the substrate 25, the high-frequency power supply 21 is unnecessary, and when only the high-frequency bias voltage is applied, the DC power supply 22 is unnecessary. When a high-frequency bias voltage is applied, the substrate holder 12 is made of an insulating material to shield high-frequency plasma.

真空容器1にはガス導入手段19を介しArガス等の不活
性ガスが導入され、排気手段18により真空排気される。
なおその圧力は約10-3Torrの圧力に保持される。
An inert gas such as Ar gas is introduced into the vacuum vessel 1 through a gas introduction unit 19, and is evacuated by an exhaust unit 18.
The pressure is kept at about 10 -3 Torr.

前記温度制御手段は基板25を冷却するもので、本実施
例では基板電極10の基板支持部10Aおよび伸延部10Bの中
心に穿設され、基板25側および反対側に開放する貫通孔
内に嵌入されるガス導入管29およびガス導入管29内に真
空容器1内に充填されるガス(Arガス等1と)と同一性
状の冷却ガスを導入する図示しない導入装置およびガス
温度をコントロールする図示しない調温装置等とから形
成される。
The temperature control means cools the substrate 25. In the present embodiment, the temperature control means is formed at the center of the substrate supporting portion 10A and the extension portion 10B of the substrate electrode 10, and fits into a through hole opened to the substrate 25 side and the opposite side. Gas introducing pipe 29 to be introduced, an introducing device (not shown) for introducing a cooling gas having the same state as the gas (with Ar gas 1 or the like) charged in the vacuum vessel 1 into the gas introducing pipe 29, and an unillustrated device for controlling the gas temperature It is formed from a temperature control device and the like.

第2図は基板25を支持する基板電極10の基準支持部10
Aの詳細構造を示すものである。
FIG. 2 shows a reference support 10 of a substrate electrode 10 for supporting a substrate 25.
3 shows the detailed structure of A.

基準支持部10Aの基板25と接する部分は図示の如く基
板25側に盛り上るゆるい凸面状(正確には球面状)に形
成される。これは次の理由による。
The portion of the reference support portion 10A in contact with the substrate 25 is formed in a loose convex shape (accurately, a spherical shape) rising toward the substrate 25 as shown in the figure. This is for the following reason.

基板25は前記の如く基板おさえ12により周縁を保持さ
れると共に、ガス導入管29よりの冷却ガスが下面に当る
ように配設される。基板25の上方側(真空容器1側)は
10-3Torr程度の真空になっているため、冷却ガスの導入
により基板25の中央部100μm程たわむ。一方、基板25
と基板電極10間の熱伝達率を一定に保持するには、基板
25と基板電極10との隙間を10μm以下にし密着係合する
ことが必要である。従って予め基板25がガス圧によりた
わむ相当分だけ基準支持部10Aを凸状に形成することに
より基板25と基板電極との密着性を保持することができ
る。
As described above, the periphery of the substrate 25 is held by the substrate retainer 12, and the substrate 25 is disposed so that the cooling gas from the gas introduction pipe 29 hits the lower surface. The upper side of the substrate 25 (the vacuum vessel 1 side)
Since the vacuum is about 10 −3 Torr, the central part of the substrate 25 bends by about 100 μm by introducing the cooling gas. On the other hand, the substrate 25
In order to maintain a constant heat transfer coefficient between
It is necessary to reduce the gap between the substrate electrode 10 and the substrate electrode 10 to 10 μm or less, and to make close contact engagement. Therefore, by forming the reference support portion 10A in a convex shape by an amount corresponding to the substrate 25 being bent by the gas pressure in advance, the adhesion between the substrate 25 and the substrate electrode can be maintained.

次に、本実施例の作用を更に詳しく説明する。 Next, the operation of the present embodiment will be described in more detail.

スパッタ成膜処理を受ける基板25は真空容器1の図示
しない入口から挿入され、基板電極10の基板支持部10A
上に載置される。この場合、基板おさえ12は基板電極10
から離隔したターゲット5側に位置決めされる。基板25
が載置されると基板おさえ12が図示しない搬送機構によ
り基板25側に移動し、この周縁に係合し基板25を保持す
る。排気手段18により真空容器1内の高真空を排気した
後、ガス導入手段19およびガス導入管29よりArガスを導
入し所定のスパッタ圧に保持する。ターゲットコイル電
源23および基板コイル電源24によりターゲットコイル6
および基板コイル17に両者の磁界が逆向きになるように
コイル電流を印加する。これにより第1図に示す磁力線
26の如き形状のカスブ磁界が発生する。次にスパッタ電
源20によりスパッタ電極4にスパッタ電圧を印加する
と、磁力線26と同形状の高密度のプラズマ27がターット
5の表面から基板25の表面近傍まで発生する。次に、直
流電源22により基板おさえ12を介して基板25の表面に直
流バイアスを印加するか、又は高周波電源21により基板
電源10に高周波電力を印加し基板25の上に更に高周波プ
ラズマを発生させ、基板25の表面にバイアス電圧と該起
して基板25の表面を負のバイアス電位に保ち、プラズマ
27中のイオンを基板25に流入させる。この際ガス導入管
29より導入されたArガスにより基板25は所定の温度に制
御保持される。
The substrate 25 to be subjected to the sputter film forming process is inserted from an inlet (not shown) of the vacuum vessel 1 and the substrate supporting portion 10A of the substrate electrode 10
Placed on top. In this case, the substrate holder 12 is the substrate electrode 10
Is positioned on the side of the target 5 which is separated from the target. Board 25
Is placed, the substrate holder 12 is moved to the substrate 25 side by a transport mechanism (not shown), and engages with the peripheral edge to hold the substrate 25. After the high vacuum in the vacuum vessel 1 is evacuated by the evacuating means 18, Ar gas is introduced from the gas introducing means 19 and the gas introducing pipe 29 to maintain a predetermined sputtering pressure. The target coil 6 is controlled by the target coil power supply 23 and the substrate coil power supply 24.
And a coil current is applied to the substrate coil 17 so that the two magnetic fields are in opposite directions. As a result, the magnetic field lines shown in FIG.
A cusp magnetic field having a shape like 26 is generated. Next, when a sputtering voltage is applied to the sputtering electrode 4 by the sputtering power supply 20, a high-density plasma 27 having the same shape as the lines of magnetic force 26 is generated from the surface of the tart 5 to the vicinity of the surface of the substrate 25. Next, a DC bias is applied to the surface of the substrate 25 through the substrate holder 12 by the DC power supply 22, or a high-frequency power is applied to the substrate power supply 10 by the high-frequency power supply 21 to further generate a high-frequency plasma on the substrate 25. A bias voltage is applied to the surface of the substrate 25, and the surface of the substrate 25 is maintained at a negative bias potential.
The ions in 27 flow into the substrate 25. At this time, gas introduction pipe
The substrate 25 is controlled and maintained at a predetermined temperature by the Ar gas introduced from 29.

次に、本実施例の装置によりAl材料を成膜した結果を
第3図および第4図により説明する。
Next, the result of forming an Al material by the apparatus of this embodiment will be described with reference to FIGS. 3 and 4. FIG.

第3図は横軸に基板コイル電流とターゲットコイル電
流との比をとり、縦軸に成膜速度(mm/min)および膜厚
分布(%)を表示したものである(線図上実線は成膜速
度点線は膜厚分布を示す)。コイル電流比を高めると、
カスブ磁界の磁力線26がターゲット5側に押し付けら
れ、プラズマのターゲット上の領域は基板25の外径より
も大きい範囲から次第に中心側に移動し、成膜速度は上
昇すると共に、膜厚分布は基板25の周縁が厚い凹分布形
から基板中心の厚い凸分布形のものに変化する。今、目
標の成膜速度を1000mm/min以上とし、膜厚分布を±5%
以下とすると、この条件を満たすコイル電流比は0.95以
上となる。
FIG. 3 shows the ratio between the substrate coil current and the target coil current on the horizontal axis, and shows the film forming rate (mm / min) and the film thickness distribution (%) on the vertical axis. The dotted line indicates the film thickness distribution). By increasing the coil current ratio,
The magnetic field lines 26 of the cusp magnetic field are pressed against the target 5, and the region of the plasma on the target gradually moves from a range larger than the outer diameter of the substrate 25 to the center side, and the film forming speed increases and the film thickness distribution increases. The periphery of 25 changes from a thick concave distribution type to a thick convex distribution type at the center of the substrate. Now, set the target film forming speed to 1000 mm / min or more and set the film thickness distribution to ± 5%.
In the following case, the coil current ratio satisfying this condition is 0.95 or more.

第4図は成膜速度1180mm/min(1000mm/min以上)でコ
イル電流比を0.95としたときの基板昇温特性を示すもの
である。横軸には成膜開始後の時間(S)、縦軸には基
板25の温度(℃)を示す。成膜開始後20Sを経過すると
基板25は350℃になり、温度制御手段による基板25の冷
却が行われないと点線の如く、上昇をつづけ、膜厚1.2
μmを得るに必要な時間60S後には約650℃になる。一
方、Alの融点が約650℃のため、該温度では成膜されたA
l材料の一部が溶けてしまう不具合が生ずる。そこで成
膜後20S程度過したのち基板温度制御手段によりガス冷
却を開始すると、成膜開始後60Sたっても基板25は約350
℃に保持される。以上の如く、基板をガス冷却しながら
基板25の表面近傍まで高密度プラズマを発生せしめるこ
とにより、膜不良を生じさせない低バイアス電圧で、ス
パッタ材料を基板表面の段差,溝,深穴等につき回りよ
く成膜することができると共に、基板の発熱とイオンに
よる破損等が防止され、高品質の薄膜を形成することが
できる。
FIG. 4 shows the substrate temperature rise characteristics when the coil current ratio is 0.95 at a film forming speed of 1180 mm / min (1000 mm / min or more). The horizontal axis shows the time (S) after the start of film formation, and the vertical axis shows the temperature (° C.) of the substrate 25. After elapse of 20S from the start of film formation, the temperature of the substrate 25 becomes 350 ° C., and unless the substrate 25 is cooled by the temperature control means, the temperature of the substrate 25 continues to rise as indicated by a dotted line, and the film thickness becomes 1.2.
The temperature reaches about 650 ° C. after 60S required to obtain μm. On the other hand, since the melting point of Al is about 650 ° C.,
l There is a problem that a part of the material is melted. Therefore, after about 20 S after film formation, when gas cooling is started by the substrate temperature control means, even after 60 S after film formation starts, the substrate 25 is about 350 S
It is kept at ° C. As described above, by generating high-density plasma up to the vicinity of the surface of the substrate 25 while gas-cooling the substrate, the sputtered material can be turned around steps, grooves, deep holes, etc. on the substrate surface at a low bias voltage that does not cause film defects. In addition to being able to form a film well, heat generation of the substrate and damage due to ions are prevented, and a high-quality thin film can be formed.

本実施例において、ターゲットコイル6,基板コイル17
を電磁石としたが、これに限定するものでなくこれ等と
等価な磁界を発生する永久磁石であってもよい。また本
実施例では基板温度制御手段は基板25を冷却するものと
したが、これに限定するものでなく、成膜速度がおそ
く、基板25への熱入力が少ない場合には、逆に基板電極
10を高温に維持すべくガス媒体により成膜中の基板を加
熱することも行われる。
In the present embodiment, the target coil 6, the substrate coil 17
Is an electromagnet, but the present invention is not limited to this, and a permanent magnet that generates a magnetic field equivalent to these may be used. In this embodiment, the substrate temperature control means cools the substrate 25.However, the present invention is not limited to this. When the film forming speed is low and the heat input to the substrate 25 is small, the substrate electrode
In order to maintain 10 at a high temperature, the substrate during film formation is heated by a gas medium.

〔発明の効果〕〔The invention's effect〕

以上の説明によって明らかな如く、本発明によれば低
バイアス電圧で高い基板流入イオン電流を得ることがで
きるので、ボイド,フクレまでの膜不良を生ずることな
く、段差,溝,穴につき回りよくスパッタ膜を付着させ
ることができる。また高密度プラズマの発生とは独立し
た基板バイアス電圧を設定できるので、基板に流入する
イオン量をほぼ一定に保ったまま、イオンエネルギを制
御することができる。更に基板を一定温度に制御できる
ので膜の高品質化がはかれる。
As is clear from the above description, according to the present invention, a high ion current flowing into the substrate can be obtained at a low bias voltage, so that the steps, grooves and holes can be sputtered without causing film defects such as voids and blisters. A film can be deposited. Further, since the substrate bias voltage can be set independently of the generation of high-density plasma, the ion energy can be controlled while keeping the amount of ions flowing into the substrate almost constant. Further, since the substrate can be controlled at a constant temperature, the quality of the film can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の縦総面図、第2図は第1図
の部分拡大図、第3図は本発明の一実施例による成膜特
性を示す線図、第4図は基板昇温特性を示す線図であ
る。 1……真空容器、2,15……開口、3……絶縁物、4……
スパッタ電極、5……ターゲット、6……ターゲットコ
イル、7……ヨーク、8,11,13……絶縁体、9……開
口、10……基板電極、12……基板おさえ、14……シール
ド、16……コイル容器、17……基板コイル、18……排気
手段、19……ガス導入手段、20……スパッタ電源、21…
…高周波電源、22……直流電源、23……ターゲットコイ
ル電源、24……基板コイル電源、25……基板、26……磁
力線、27……プラズマ、28……アノード、29……ガス導
入管。
FIG. 1 is a vertical overall view of one embodiment of the present invention, FIG. 2 is a partially enlarged view of FIG. 1, FIG. 3 is a diagram showing film forming characteristics according to one embodiment of the present invention, FIG. FIG. 3 is a diagram showing substrate temperature rising characteristics. 1 ... Vacuum container, 2,15 ... Opening, 3 ... Insulator, 4 ...
Sputtering electrode, 5 ... Target, 6 ... Target coil, 7 ... Yoke, 8,11,13 ... Insulator, 9 ... Opening, 10 ... Substrate electrode, 12 ... Substrate support, 14 ... Shield , 16 ... coil container, 17 ... substrate coil, 18 ... exhaust means, 19 ... gas introduction means, 20 ... sputter power supply, 21 ...
... High frequency power supply, 22 ... DC power supply, 23 ... Target coil power supply, 24 ... Substrate coil power supply, 25 ... Substrate, 26 ... Magnetic field lines, 27 ... Plasma, 28 ... Anode, 29 ... Gas inlet tube .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−207173(JP,A) 特開 昭61−12866(JP,A) 特開 昭61−221363(JP,A) 特開 昭52−56084(JP,A) 特公 昭52−49992(JP,B2) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-57-207173 (JP, A) JP-A-61-12866 (JP, A) JP-A-61-221363 (JP, A) JP-A 52-207 56084 (JP, A) JP 52-49992 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空に排気された容器内にArガス等の不活
性ガスを導入して所定の圧力に設定し、前記容器の内部
に対向して配置されたターゲットと基板との間にカスプ
磁界を発生させ、前記ターゲットに第1の電力を印加し
てプラズマを発生さて前記カスプ磁界により該プラズマ
を前記ターゲットと基板との間に閉じ込め、前記基板を
載置する基板電極に第2の電力を印加して前記基板の表
面にバイアス電位を発生させ、前記カスプ磁界により前
記ターゲットと基板との間に閉じ込めたプラズマにより
前記ターゲットをスパッタして前記基板上に成膜すると
共に前記バイアス電位より前記プラズマ中からイオンを
前記成膜している基板の表面に入射させ、前記基板と前
記基板電極との間にガスを導入して前記成膜している基
板を冷却することを特徴とするスパッタ成膜方法。
An inert gas such as an Ar gas is introduced into a container evacuated to a vacuum, a predetermined pressure is set, and a cusp is placed between a target and a substrate disposed inside the container. A magnetic field is generated, a first power is applied to the target to generate plasma, the plasma is confined between the target and the substrate by the cusp magnetic field, and a second power is applied to a substrate electrode on which the substrate is mounted. Is applied to generate a bias potential on the surface of the substrate, and the target is sputtered by plasma confined between the target and the substrate by the cusp magnetic field to form a film on the substrate, and the bias potential is applied from the bias potential. Irradiating ions from the plasma onto the surface of the substrate on which the film is formed, and introducing a gas between the substrate and the substrate electrode to cool the substrate on which the film is formed. Sputtering film forming method which is characterized.
【請求項2】真空排気部とガス導入部とを有する真空容
器手段と、該真空容器手段の内部にスパッタされるター
ゲット面を有するターゲット手段と、前記真空容器手段
の内部で前記ターゲット面と対向して被処理基板を載置
し保持する基板電極手段と、前記ターゲット手段に第1
の電力を印加してプラズマを発生させて前記ターゲット
面をスパッタし前記被処理基板上に成膜させる第1の電
力印加手段と、前記ターゲット手段の側と前記基板電極
手段の側とに対向して設置されて前記ターゲット面と前
記基板電極手段に保持される被処理基板との間にカスプ
磁界を形成し該カスプ磁界中に前記プラズマを閉じ込め
る磁場発生手段と、前記基板電極手段に第2の電力を印
加して前記被処理基板の表面にバイアス電位を発生させ
前記カスプ磁場で閉じ込めたプラズマ中からイオン前記
成膜中の被処理基板の表面に入射させる第2の電力印加
手段と、前記被処理基板と前記基板電極手段との間にガ
スを導入して前記イオンを入射させながら成膜中の被処
理基板を冷却するガス導入手段とを備えたことを特徴と
するスパッタ成膜装置。
2. A vacuum vessel means having an evacuation section and a gas introduction section, a target means having a target surface sputtered inside the vacuum vessel means, and facing the target surface inside the vacuum vessel means. A substrate electrode means for mounting and holding the substrate to be processed, and a first
A first power application unit that generates plasma by applying power of the above-described manner, sputters the target surface to form a film on the substrate to be processed, and faces the target unit side and the substrate electrode unit side. Magnetic field generating means for forming a cusp magnetic field between the target surface and the substrate to be processed held by the substrate electrode means and confining the plasma in the cusp magnetic field; A second power application means for applying power to generate a bias potential on the surface of the substrate to be processed and for causing ions from plasma confined by the cusp magnetic field to be incident on the surface of the substrate to be processed during film formation; Gas introduction means for introducing a gas between a processing substrate and said substrate electrode means and cooling said substrate to be processed during film formation while allowing said ions to be incident thereon. Location.
JP62077419A 1987-01-07 1987-04-01 Sputter film forming method and apparatus Expired - Lifetime JP2594935B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62077419A JP2594935B2 (en) 1987-04-01 1987-04-01 Sputter film forming method and apparatus
US07/137,562 US4853102A (en) 1987-01-07 1987-12-24 Sputtering process and an apparatus for carrying out the same
KR1019870015286A KR910001879B1 (en) 1987-01-07 1987-12-30 Method and apparatus for sputtering film formation
EP88100054A EP0275021B1 (en) 1987-01-07 1988-01-05 Sputtering process and an apparatus for carrying out the same
DE3854276T DE3854276T2 (en) 1987-01-07 1988-01-05 Cathode sputtering method and device for carrying out the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62077419A JP2594935B2 (en) 1987-04-01 1987-04-01 Sputter film forming method and apparatus

Publications (2)

Publication Number Publication Date
JPS63247364A JPS63247364A (en) 1988-10-14
JP2594935B2 true JP2594935B2 (en) 1997-03-26

Family

ID=13633436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077419A Expired - Lifetime JP2594935B2 (en) 1987-01-07 1987-04-01 Sputter film forming method and apparatus

Country Status (1)

Country Link
JP (1) JP2594935B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW399245B (en) 1997-10-29 2000-07-21 Nec Corp Sputtering apparatus for sputtering high melting point metal and method for manufacturing semiconductor device having high melting point metal
JP2002050809A (en) 2000-08-01 2002-02-15 Anelva Corp Substrate treating device and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2324755A1 (en) * 1975-09-19 1977-04-15 Anvar HIGH SPEED OF DEPOSIT CATHODIC SPRAY DEVICE
JPS5249992A (en) * 1975-10-17 1977-04-21 Nitto Electric Ind Co Ltd Membrane-forming liquid used for the production of semipermeable membr anes for separation of a solvent
JPS6012426B2 (en) * 1981-06-15 1985-04-01 ワ−ルドエンジニアリング株式会社 Magnetic field compression type magnetron sputtering equipment
JPH0660393B2 (en) * 1984-06-26 1994-08-10 松下電器産業株式会社 Plasma concentrated high-speed sputter device
JPH079062B2 (en) * 1985-03-27 1995-02-01 富士通株式会社 Spatter device
JPS6250462A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Sputtering device

Also Published As

Publication number Publication date
JPS63247364A (en) 1988-10-14

Similar Documents

Publication Publication Date Title
KR910001879B1 (en) Method and apparatus for sputtering film formation
JP5309150B2 (en) Sputtering apparatus and method of manufacturing field effect transistor
US5267607A (en) Substrate processing apparatus
KR20010040034A (en) Improved coil for sputter deposition
JP2594935B2 (en) Sputter film forming method and apparatus
JPH03240944A (en) Method and device for focusing target sputtering for forming thin aluminum film
JP5334984B2 (en) Sputtering apparatus, thin film forming method, and field effect transistor manufacturing method
JP2946402B2 (en) Plasma processing method and plasma processing apparatus
JPS6187868A (en) Method and device for forming thin film
JPH06124998A (en) Plasma process equipment
JP2674995B2 (en) Substrate processing method and apparatus
US6620298B1 (en) Magnetron sputtering method and apparatus
JPH0334616B2 (en)
JP3066673B2 (en) Dry etching method
JPH03177020A (en) Etching device
JP3305654B2 (en) Plasma CVD apparatus and recording medium
JPH0791639B2 (en) Spatter method
JPH02125864A (en) Plasma vacuum device with plasma gun utilized therefor
JPS637364A (en) Bias sputtering device
JPH02148722A (en) Manufacture of semiconductor integrated circuit device
JP2909087B2 (en) Thin film forming equipment
JPS6013067B2 (en) Vacuum deposition equipment
JP2744505B2 (en) Silicon sputtering equipment
JP2605341B2 (en) Sputtering method
JPH0625845A (en) Sputtering device