JPH0121537B2 - - Google Patents

Info

Publication number
JPH0121537B2
JPH0121537B2 JP12689982A JP12689982A JPH0121537B2 JP H0121537 B2 JPH0121537 B2 JP H0121537B2 JP 12689982 A JP12689982 A JP 12689982A JP 12689982 A JP12689982 A JP 12689982A JP H0121537 B2 JPH0121537 B2 JP H0121537B2
Authority
JP
Japan
Prior art keywords
substrate
width direction
uniform
magnetic
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12689982A
Other languages
Japanese (ja)
Other versions
JPS5916145A (en
Inventor
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12689982A priority Critical patent/JPS5916145A/en
Publication of JPS5916145A publication Critical patent/JPS5916145A/en
Publication of JPH0121537B2 publication Critical patent/JPH0121537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Description

【発明の詳細な説明】 本発明は、金属薄膜型磁気記録媒体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal thin film magnetic recording medium.

そして本発明は、Co、Co合金の斜方蒸着や、
Co−W等のスパツタリングによる面内磁化膜、
Co−Crに代表されるスパツタリング、蒸着、イ
オンプレーテイング等による垂直磁化膜のいずれ
の強磁性層の形成にも有用で、磁気テープ、磁気
デイスクのいずれの形態の媒体であつても、広幅
の高分子成形物基板上に、強磁性層を形成する工
程において、幅方向の特性の均一化を図りかつ量
産性を高めようとするものである。
The present invention also provides oblique deposition of Co, Co alloy,
In-plane magnetized film by sputtering such as Co-W,
It is useful for forming any ferromagnetic layer of perpendicularly magnetized films by sputtering, vapor deposition, ion plating, etc. such as Co-Cr, and can be used for wide-width media, whether in the form of magnetic tape or magnetic disk. In the process of forming a ferromagnetic layer on a polymer molded substrate, the aim is to make the characteristics uniform in the width direction and to improve mass productivity.

近年の磁気記録の高密度化は目覚しく、最短記
録波長は1μmをきるところまできた。
The density of magnetic recording has increased dramatically in recent years, and the shortest recording wavelength has reached the point where it is less than 1 μm.

さらに0.5μmm下を目ざし改良が重ねられている
が、これを実現する上で不可欠の媒体として、金
属薄膜型の媒体の開発が活発になつてきている。
Improvements are being made with the aim of achieving a further 0.5 μm or less, and the development of metal thin film media is becoming more active as an essential medium to achieve this goal.

かかる媒体の製造の基礎となる薄膜形成技術
は、広汎な用途を有し各方面で磨かれているもの
の、連続して大量の原反を得るとなると、未解決
の問題も数多く残されている。
Although the thin film forming technology that forms the basis of the production of such media has a wide range of applications and has been refined in various fields, there remain many unresolved problems when it comes to continuously obtaining large quantities of raw material. .

薄膜を高分子成形物基板上に連続して形成する
技術は巻取蒸着技術として、金属化フイルムコン
デンサ、装飾、包装分野で実用になつているもの
の、これらは、蒸着材料がAlであり、磁気記録
媒体用の材料であるCo系の合金に比較すると、
高分子成形物への輻射熱影響が小さいのと、媒体
が0.1μm程度の厚みが必要なのに対し、Alでは
高々0.03μm程度で凝縮熱影響も小さいことから、
基板への熱影響は殆んど問題にされていなかつ
た。
The technique of continuously forming a thin film on a polymer molded substrate is known as a roll-deposition technique, and has been put into practical use in the fields of metallized film capacitors, decorations, and packaging. Compared to Co-based alloys, which are materials for recording media,
The effect of radiant heat on the polymer molded product is small, and the thickness of the medium is required to be about 0.1 μm, whereas with Al, the thickness is only about 0.03 μm, and the effect of condensation heat is small.
Thermal effects on the substrate were hardly a problem.

巻取り蒸着機で、蒸発源を、電子ビーム加熱式
に置換えるか、スパツタ源に置き換えれば、磁性
薄膜の形成を行うことができる。
If the evaporation source in a winding evaporation machine is replaced with an electron beam heating type or a sputter source, a magnetic thin film can be formed.

面内磁化膜にしても、垂直磁化膜にしても先ず
基本は、幅方向、長手方向に磁化特性を均一にす
ることである。
Regardless of whether it is an in-plane magnetized film or a perpendicularly magnetized film, the basic principle is to make the magnetization characteristics uniform in the width direction and the longitudinal direction.

この課題は、蒸着効果を無視して取組むならば
解決は容易であるといえる。
This problem can be easily solved if the vapor deposition effect is ignored.

すなわち、基板の幅の倍近い幅の蒸発源を用意
すればよいからである。
That is, it is sufficient to prepare an evaporation source with a width nearly twice the width of the substrate.

しかし大量生産技術として、この課題に取組む
のは、必ずしも容易ではない。
However, it is not necessarily easy to address this issue as a mass production technology.

蒸発源として電子ビーム蒸発源を用いた場合、
(i)幅方向に長軸を有する広幅の容器に蒸発材料を
挿入し、偏向磁界走査で、基板の幅方向の位置に
より、電子ビームの滞留時間を変化させて、膜厚
を一定にし、磁気特性を均一にする。(ii)小容量の
蒸発源容器を幅方向に複数個並べ、それぞれの蒸
発速度を個別に制御して、やはり特性を均一にす
ることが考えられるが、基板と蒸発源の相対位置
により、(i)も(ii)も再調整が必要である。
When using an electron beam evaporation source as the evaporation source,
(i) The evaporation material is inserted into a wide container with a long axis in the width direction, and the residence time of the electron beam is changed depending on the position in the width direction of the substrate using deflection magnetic field scanning, and the film thickness is kept constant. Uniform characteristics. (ii) It is conceivable to arrange multiple small-capacity evaporation source containers in the width direction and control the evaporation rate of each individually to make the characteristics uniform, but depending on the relative position of the substrate and the evaporation source, ( Both i) and (ii) need to be readjusted.

スパツタ源を用いた場合は、膜厚は比較的均一
であるが、逆にそれ以上の均一化を企てた時は、
工夫の余地がない。
When using a sputter source, the film thickness is relatively uniform, but if you try to make it more uniform,
There is no room for improvement.

またスパツタ源は膜形成速度が、ターゲツトが
磁性体であるため小さくなり、強引にパワーを投
入すると、基板への熱影響が大きくなり、かつ不
均一になる傾向があつた。
In addition, the sputtering source has a slow film formation rate because the target is a magnetic material, and when power is applied forcibly, the thermal effect on the substrate becomes large and tends to become non-uniform.

両者のいずれも、量産を前提とした条件、すな
わち広幅の基板(最低でも50cm)で長尺ものを短
時間で処理する能力をもつた上で、特性の良いこ
と、特性が均一であることのいずれを欠いても問
題であり、現状では満足のいく製法は見出されて
いない。
Both require good and uniform characteristics, as well as the ability to process long items on wide substrates (at least 50cm) in a short time. Lack of either is a problem, and no satisfactory manufacturing method has been found at present.

垂直磁化膜にしても電子ビーム蒸着(又はイオ
ンプレーテイング)で充分な実用特性が得られる
見通しがあるし、特定の用途であれば、投入パワ
ーを大きくとつたマグネトロンスパツタでも充分
実用速度になるのであるから、特性を均一にした
時の熱影響を均一にできれば、いずれも厳しい規
格を満足する磁気記録媒体を大量に生産する技術
として評価することができるわけである。
Even with perpendicularly magnetized films, there is a prospect that sufficient practical characteristics can be obtained by electron beam evaporation (or ion plating), and for specific applications, magnetron sputtering with a large input power can also provide sufficient practical speed. Therefore, if the thermal effects can be made uniform when the characteristics are made uniform, it can be evaluated as a technology for mass-producing magnetic recording media that meet strict standards.

本発明は以上のような点に鑑みなされたもの
で、軸方向の磁気特性の均一化を図つた時に生ず
る基板の受ける熱影響の不均一を補償し、軸方向
に磁気特性以外の主要な物性を均一にするため
に、電子を基板に注入するもので、その注入過程
が、蒸着時と同じ回転支持体に沿つた状態で行わ
れることで目的を達成するものである。
The present invention was developed in view of the above points, and it compensates for the unevenness of the thermal effect on the substrate that occurs when trying to make the magnetic properties uniform in the axial direction, and improves the main physical properties other than the magnetic properties in the axial direction. In order to make the deposition uniform, electrons are injected into the substrate, and this purpose is achieved by performing the injection process along the same rotating support as during vapor deposition.

電子は例えば、グロー放電処理による程度のエ
ネルギーでは不充分であり、高分子成形物を基板
とする場合その厚みをt〔μm〕とすると、電子
のエネルギーは1.5t〔KV〕から5t〔KV〕、さらに
好しくは2tから3tの範囲を選べば良い。
For example, the energy generated by glow discharge treatment is insufficient for electrons, and when a polymer molded substrate is used and its thickness is t [μm], the energy of electrons is 1.5 t [KV] to 5 t [KV]. , more preferably a range of 2t to 3t.

次に電流密度の設計が重要であり、蒸発源から
の基板への入熱を計算で求めて(正確には求めら
れないがおよその見当をつけることはできる。)
それを補償するように幅方向の電流密度を変化さ
せ、全ての物性値が幅方向に均一になるように実
験的に求めていけば良い。
Next, it is important to design the current density, and the heat input from the evaporation source to the substrate must be calculated (it cannot be determined exactly, but it can be approximated).
The current density in the width direction may be changed to compensate for this, and all physical property values may be experimentally determined to be uniform in the width direction.

大ずかみに傾向をいえば、第2図A,Bに示す
ような関係を基礎にして調整すればいい。
Broadly speaking, adjustments can be made based on the relationships shown in Figure 2 A and B.

考え方は、入熱が磁気特性の均一化を図つた時
に例えばA,B(もちろんこれ以外のパターンも
当然予測される。)のように分布したとすると、
幅方向を蒸着時の冷却で補償するか、加熱で補償
するかであるが、単に加熱で補償するのは、高分
子成形物基板は融点が低いので危険であり、加熱
するにしても冷却条件の変動が幅、長手方向で小
さいようにすることが基本である。
The idea is that when heat input attempts to make the magnetic properties uniform, it will be distributed like A and B (of course, other patterns can be expected as well).
The width direction can be compensated for by cooling during vapor deposition or by heating, but simply compensating by heating is dangerous because the polymer molded substrate has a low melting point, and even if heated, the cooling conditions The basic idea is to keep the fluctuations small in the width and length directions.

電子注入により、トラツプされた電荷により生
ずる静電界による基板と回転支持体との間の密着
力が制御される点を利用して、入熱と冷却とをバ
ランスさせるのが本発明の思想である。
The idea of the present invention is to balance heat input and cooling by utilizing the fact that electron injection controls the adhesion between the substrate and the rotating support due to the electrostatic field generated by the trapped charges. .

第1図は本発明を実施するための蒸着装置の要
部構成例を示す。
FIG. 1 shows an example of the main part configuration of a vapor deposition apparatus for carrying out the present invention.

図に示すように、送り出し軸1より、送り出さ
れた高分子成形物基板2は、回転支持体3の表面
に導かれ、回転支持体に沿つた状態で、注入用電
子源4より放射される電子を注入される。
As shown in the figure, the polymer molded substrate 2 fed out from the feeding shaft 1 is guided to the surface of the rotating support 3, and is emitted from the injection electron source 4 along the rotating support. Electrons are injected.

次に、放熱用電子源5を動作させ、蒸発源6よ
り発生させた蒸気流7により磁性層が形成され
る。8は入射角を限定するマスクである。
Next, the heat dissipation electron source 5 is operated, and the vapor flow 7 generated from the evaporation source 6 forms a magnetic layer. 8 is a mask that limits the angle of incidence.

磁性層形成を終えた基板は、巻取り軸9に巻き
上げられる。
The substrate on which the magnetic layer has been formed is wound up on the winding shaft 9.

必要に応じてなされる前処理、後処理は、本発
明を何ら制約するものではない。
Pre-processing and post-processing performed as necessary do not limit the present invention in any way.

巻取り系、蒸発源系などは、真空容器10の内
部に収納される。11は真空排気系である。
A winding system, an evaporation source system, and the like are housed inside the vacuum container 10. 11 is a vacuum evacuation system.

さて第1図に示した装置を用いて、ポリエチレ
ンテレフタレート(フイルム厚さ10μm)上に
Co80%Ni20%から成る磁性層を、2×10-5Torr
の酸素中で0.15μmの厚さに形成した。
Now, using the apparatus shown in Figure 1, a
A magnetic layer consisting of 80% Co and 20% Ni was heated at 2×10 -5 Torr.
The film was formed to a thickness of 0.15 μm in oxygen.

円筒状キヤン(直径1m)の冷却媒体は5℃一
定である。蒸発源位置は、キヤンの直下27cmで、
最小入射角43゜である。
The temperature of the cooling medium in the cylindrical can (1 m in diameter) is constant at 5°C. The evaporation source position is 27cm directly below the can.
The minimum angle of incidence is 43°.

蒸着した幅方向は48cmにわたつて、保磁力、角
形比、膜厚全て、±3%に制御した。
The width direction of the vapor deposition was 48 cm, and the coercive force, squareness ratio, and film thickness were all controlled to ±3%.

これを用いて磁気テープを製造した結果(幅8
mm)60条中36条以外は、磁気テープの平担性が不
充分で実用にならなかつた。
The result of manufacturing magnetic tape using this (width 8
mm) All but 36 of the 60 strips were not practical due to insufficient flatness of the magnetic tape.

これに比較して本発明における電子注入を以下
の条件で適用して、平担性の分布を調べた。
In comparison, the electron injection according to the present invention was applied under the following conditions to examine the flatness distribution.

〔条件1〕 電子を25KVで幅方向に50cmにわたつて均一に
照射した。電流密度は1mA/cm2である。
[Condition 1] Electrons were uniformly irradiated at 25 KV over 50 cm in the width direction. The current density is 1 mA/cm 2 .

〔条件2〕 25KVの電子で幅方向に対称性を保ち、中心よ
り12cmまで1mA/cm2、12cmより25cmまで直線的
に増加させ25cmの位置で1.5mA/cm2となるよう
照射した。
[Condition 2] Irradiation was performed using 25 KV electrons, maintaining symmetry in the width direction, at 1 mA/cm 2 from the center to 12 cm, increasing linearly from 12 cm to 25 cm, and reaching 1.5 mA/cm 2 at the 25 cm position.

以上の実験の結果、条件1では良品が48条であ
つたが、条件2では60条全て良品であつた。次
に、Co80%Cr20%を垂直入射に近い成分だけで
ポリエチレンテレフタレートフイルム(厚さ14μ
m)上に0.2μmの厚さに形成した。
As a result of the above experiment, under condition 1, 48 pieces were good, but under condition 2, all 60 pieces were good. Next, a polyethylene terephthalate film (thickness 14 μ
m) to a thickness of 0.2 μm.

電子ビーム蒸着とスパツタリングの両者の方法
で実施した(磁気特性は±3%以内に制御)。
Both electron beam evaporation and sputtering were used (magnetic properties were controlled within ±3%).

電子注入の条件は、30KVで、幅方向に対称で
中心より10cmまでが0.5mA/cm2、10cmから18cm
までが直線的に増加、18cm位置で0.6mA/cm2
18cmから25cmまでが0.6mA/cm2一定とした。
The electron injection conditions are 30KV, symmetrical in the width direction, 0.5mA/cm 2 from the center to 10cm, and 18cm from 10cm.
increases linearly up to 0.6mA/cm 2 at 18cm position,
From 18 cm to 25 cm, 0.6 mA/cm 2 was constant.

この条件で幅方向全域にわたり、テープの平担
性が確保できた。
Under these conditions, the flatness of the tape could be ensured over the entire width direction.

またスパツタリングでは、この条件で電子注入
を行うことで、基板の移動速度21m/minを確保
できた。これに対し電子注入しない場合、このパ
ワーでは基板が溶けてしまい、パワーを1/5にし
たため基板の移動速度は3.8m/minの低速にな
つてしまつた。
In sputtering, by injecting electrons under these conditions, we were able to secure a substrate movement speed of 21 m/min. On the other hand, when electrons were not injected, the substrate would melt at this power, and since the power was reduced to 1/5, the substrate movement speed became as slow as 3.8 m/min.

以上のように本発明によると、量産性の高い条
件下で均質な金属薄膜型記録媒体を容易に得るこ
とができ、このことは短波長記録の要請の強い技
術分野においてきわめて有用である。
As described above, according to the present invention, a homogeneous metal thin film type recording medium can be easily obtained under conditions of high mass production, and this is extremely useful in technical fields where short wavelength recording is strongly required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例において用いられた装
置の要部の構成例を示す図、第2図は同じく本発
明の実施例における電子注入条件を説明するため
の図である。 2……基板、3……回転支持体、4……注入用
電子源、6……蒸発源、10……真空容器。
FIG. 1 is a diagram showing an example of the configuration of essential parts of an apparatus used in an embodiment of the present invention, and FIG. 2 is a diagram for explaining electron injection conditions in the same embodiment of the present invention. 2... Substrate, 3... Rotating support, 4... Injection electron source, 6... Evaporation source, 10... Vacuum container.

Claims (1)

【特許請求の範囲】[Claims] 1 支持体に沿つて移動する高分子成形物基板上
に真空蒸着法により強磁性層を形成するととも
に、上記強磁性層の形成に先立ち上記基板に電子
を注入しかつその電子注入量を上記基板の幅方向
において変化させることを特徴とする磁気記録媒
体の製造方法。
1. A ferromagnetic layer is formed by vacuum evaporation on a polymer molded substrate that moves along a support, and prior to forming the ferromagnetic layer, electrons are injected into the substrate and the amount of electron injection is adjusted to the substrate. 1. A method of manufacturing a magnetic recording medium, characterized in that the width of the medium is changed in the width direction.
JP12689982A 1982-07-20 1982-07-20 Production for magnetic recording medium Granted JPS5916145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12689982A JPS5916145A (en) 1982-07-20 1982-07-20 Production for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12689982A JPS5916145A (en) 1982-07-20 1982-07-20 Production for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5916145A JPS5916145A (en) 1984-01-27
JPH0121537B2 true JPH0121537B2 (en) 1989-04-21

Family

ID=14946630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12689982A Granted JPS5916145A (en) 1982-07-20 1982-07-20 Production for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5916145A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157208A (en) * 1985-12-28 1987-07-13 Mitsubishi Heavy Ind Ltd Multiple type valve mechanism
JPS6378337A (en) * 1986-09-19 1988-04-08 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Also Published As

Publication number Publication date
JPS5916145A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
EP0202645B1 (en) Method and apparatus for making magnetic recording media
US5328583A (en) Sputtering apparatus and process for forming lamination film employing the apparatus
US3342633A (en) Magnetic coating
JP2833230B2 (en) Vapor deposition equipment
JPH0121537B2 (en)
CA1162113A (en) Process for producing magnetic recording medium
JPH03240944A (en) Method and device for focusing target sputtering for forming thin aluminum film
JPS626746B2 (en)
JPS59124038A (en) Manufacture of magnetic recording medium
JPH0765367A (en) Production of magnetic recording medium
JPH059849B2 (en)
JPS63277752A (en) Vacuum deposition device
JP3404065B2 (en) Ion plating equipment with high deposition efficiency
JPS59175037A (en) Production of magnetic recording medium
JPS5925975A (en) Production of thin alloy film
JPH0550052B2 (en)
JP2563449B2 (en) Method of manufacturing magnetic recording medium
RU2122243C1 (en) Method for production of magnetically soft heat-resistant amorphous condensate of 3d metals
JPS63251936A (en) Production of magnetic recording medium
JPS60184674A (en) Vacuum device for forming continuous thin film
JPS59124939A (en) Wind-up metallizing method
JPS62211369A (en) Thin compound film and its production
JPH0688217A (en) Method and device for simultaneous formation of film by sputtering on both surfaces
JPH07192259A (en) Production of magnetic recording medium
JPS59148139A (en) Manufacture of vertical magnetic recording medium