JPS62157208A - Multiple type valve mechanism - Google Patents

Multiple type valve mechanism

Info

Publication number
JPS62157208A
JPS62157208A JP29852285A JP29852285A JPS62157208A JP S62157208 A JPS62157208 A JP S62157208A JP 29852285 A JP29852285 A JP 29852285A JP 29852285 A JP29852285 A JP 29852285A JP S62157208 A JPS62157208 A JP S62157208A
Authority
JP
Japan
Prior art keywords
valve
pressure turbine
actuator
roller
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29852285A
Other languages
Japanese (ja)
Inventor
Masaharu Yasuda
正治 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29852285A priority Critical patent/JPS62157208A/en
Publication of JPS62157208A publication Critical patent/JPS62157208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To achieve the weight reduction of an engine by rolling a roller interlocked with an actuator inside grooves for a plural number of a valve levers, in a duplex type valve mechanism for controlling the tip clearance of gas turbine blades. CONSTITUTION:A roller 15 interlocked with an actuator is rolled inside grooves for a high-pressure turbine valve lever 13 and a low-pressure turbine valve lever 14. These grooves are made to have a crooked shape, and while the valve lever on one side is fixed, the valve lever on the other side is enabled to move. Thus, since a plural number of valves can be driven by one actuator and one system of piping can be eliminated, the weight of an engine can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は一般に、−個のアクチュエータにより数個の弁
を目的に応じ独立又は連動させて駆動させ\多連式弁機
構に関する。ことに本発明はガスタービンエンジンの翼
先端隙間制御用の二連式弁機構として好適である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention generally relates to a multiple valve mechanism in which several actuators drive several valves independently or in conjunction with each other depending on the purpose. In particular, the present invention is suitable as a dual valve mechanism for controlling the blade tip clearance of a gas turbine engine.

従来の技術 近年航空用大型ガスタービンエンジンでは燃料消費率改
善の目的から圧縮機部から導びいた空′9(を弁により
制御し、タービンケース表面に吹付は冷却することによ
って飛行状態に適したタービン翼先端隙間を調整する方
法が実用化されている。
Conventional technology In recent years, large gas turbine engines for aviation have been using valves to control the air drawn from the compressor section to improve fuel consumption, and the air is blown onto the surface of the turbine case to cool it, making it suitable for flight conditions. A method for adjusting the gap between turbine blade tips has been put into practical use.

高圧タービンおよび低圧タービンを有する二軸型ガスタ
ービンエンジンでは高圧タービン翼隙間が低圧タービン
翼隙間より燃料消費率への影響が犬であるが由に通常前
者は無段階制御を後者は二段階(全開・全閉)制御を行
い、各々独立の弁作動装置を有する。
In a two-shaft gas turbine engine that has a high-pressure turbine and a low-pressure turbine, the high-pressure turbine blade clearance has a greater influence on the fuel consumption rate than the low-pressure turbine blade clearance, so the former is normally controlled continuously, and the latter is controlled in two stages (fully open).・Completely closed) control, and each has an independent valve actuation device.

これを第4図について説明する。高圧タービン01のた
めの高圧タービン先端隙間制御用冷却マニホルド管03
に導入する圧縮空気入008からの圧縮空気はバタフラ
イ弁06で無段階的に制御される。この制御は電子制御
部09でアクチュエータ011を制御することによりリ
ンク010を介し油圧で行なわれる。
This will be explained with reference to FIG. Cooling manifold pipe 03 for high pressure turbine tip clearance control for high pressure turbine 01
The compressed air introduced from the compressed air inlet 008 is controlled steplessly by a butterfly valve 06. This control is performed hydraulically via a link 010 by controlling an actuator 011 with an electronic control section 09.

また低圧タービン04のための低圧タービン先端隙間制
御用冷却マニホルド管04に導入する圧縮空気人口07
からの圧縮空気はポペット弁05で開閉制御される。こ
の制御は電子制御部09でンレノイド弁012を制御す
ることにより空気圧で行なわれる。
Also, the compressed air population 07 introduced into the cooling manifold pipe 04 for low pressure turbine tip clearance control for the low pressure turbine 04
The compressed air from is opened and closed by a poppet valve 05. This control is performed pneumatically by controlling the lenoid valve 012 using the electronic control section 09.

発明が解決しようとする問題点 上述のような従来システムでは完全に高圧系統、低圧系
涜が分れており、重量、占拠空間、コストの点で必ずし
も最良のものと云えない。
Problems to be Solved by the Invention In the conventional system as described above, the high-pressure system and the low-pressure system are completely separated, and cannot necessarily be said to be the best in terms of weight, space occupied, and cost.

問題点を解決するための手段 本発明は上述の従来システムを改善せんとしてなされた
もので、一般に、1個のアクチュエータてよつ複数個の
弁を独立又は連動させて駆動させる多連式弁機構におい
て、前記アクチュエータの運動に従い直線上を移動する
コロが複数の弁軸にそれぞれ固定された弁レバーに設け
た溝の中を転動するように、これら弁レバーを配設し、
これらの溝を屈曲した溝とすることにより、特定の作動
範囲で溝形状を前記コロの直線運動に平行となら弁機構
にある。
Means for Solving the Problems The present invention has been made to improve the conventional system described above, and generally includes a multiple valve mechanism in which one actuator drives a plurality of valves independently or in conjunction with each other. wherein the valve levers are arranged so that rollers that move in a straight line according to the movement of the actuator roll in grooves provided in the valve levers respectively fixed to the plurality of valve shafts,
By forming these grooves into curved grooves, the valve mechanism has a groove shape that is parallel to the linear motion of the roller in a specific operating range.

作用 本発明を上述のガスタービンエンジンの14 先端隙間
制御用二連式弁機構に適用すれば、高圧タービンおよび
低圧タービン用制御弁を一個の制御用動力装置(アクチ
ュエータ)で前述の目的に応じた作動を可能にならしめ
るものである。
If the present invention is applied to the above-mentioned dual valve mechanism for controlling the tip clearance of the gas turbine engine, the control valves for the high-pressure turbine and the low-pressure turbine can be controlled by one control power unit (actuator) to meet the above-mentioned purpose. It is what makes it possible to operate.

実施例 第1図は高圧および低圧タービン翼先端隙間制御装置全
体の概念を示す。第2a図ないし第2d図は本発明によ
る二連式螺形弁を駆動するカム機構を示す。第3図は本
弁構造によって得られる一個のアクチュエータと二個の
弁の開度の関係を示している。
Embodiment FIG. 1 shows the overall concept of a high-pressure and low-pressure turbine blade tip clearance control device. Figures 2a-2d show a cam mechanism for driving a double screw valve according to the invention. FIG. 3 shows the relationship between the opening degrees of one actuator and two valves obtained by this valve structure.

第1図から明かなように、本発明によれば空気導入管3
から高圧タービンケース冷却管7への管路の途中に高圧
タービン用蝶形弁4が、また空気導入管3から低圧ター
ビンケース冷却管8への管路の途中洸低圧タービン用蝶
形弁5が、それぞれ配設しである。これらの螺形弁4.
5を、制御動力装置1で直線運動せしめられるブシュロ
ッド2の先端に設けたカム機構6で制御するのである。
As is clear from FIG. 1, according to the present invention, the air introduction pipe 3
A high-pressure turbine butterfly valve 4 is installed in the pipe line from the air intake pipe 3 to the high-pressure turbine case cooling pipe 7, and a low-pressure turbine butterfly valve 5 is installed in the pipe line from the air introduction pipe 3 to the low-pressure turbine case cooling pipe 8. , respectively. These spiral valves4.
5 is controlled by a cam mechanism 6 provided at the tip of a bushing rod 2 that is linearly moved by a control power unit 1.

第2a図にこのカム機構の具体例を示しである。FIG. 2a shows a concrete example of this cam mechanism.

この図から明かなように、先端にレバー駆動用コロ15
を固定したブシュロッド16が直線運動をなすように配
設されている。このブシュロッド16は後述するフェー
ルセーフ用バネ17で前方に付勢されていると共に、第
1図の駆動用動力装置1により直線運動を支配されてい
る。
As is clear from this figure, there is a lever drive roller 15 at the tip.
A bushing rod 16 to which is fixed is arranged so as to move linearly. This bushing rod 16 is biased forward by a fail-safe spring 17, which will be described later, and its linear motion is controlled by the driving power unit 1 shown in FIG.

レバー駆動用コロ15は、高圧タービン側弁レバー13
の屈曲溝内を摺動すると共に、低圧タービン側弁レバー
14の屈曲溝内を摺動する。高圧タービン側弁レバー1
3は高圧タービン用1i[1]11に固定されており、
低圧タービン側弁レバー12は低圧タービン用弁軸12
に固定されている。
The lever driving roller 15 is connected to the high pressure turbine side valve lever 13.
It slides in the bent groove of the low pressure turbine side valve lever 14, and also slides in the bent groove of the low pressure turbine side valve lever 14. High pressure turbine side valve lever 1
3 is fixed to 1i [1] 11 for high pressure turbine,
The low pressure turbine side valve lever 12 is a low pressure turbine valve shaft 12
is fixed.

この第2a図のコロ15および弁レバー13.14の実
線位置は第3図の点DK相当し、第2b図の位置は第3
図の点Cに相当し、第2C図の位置は第3図の点Bに相
当し、第2d図の位置は第3図の点Eに相当する。
The solid line positions of the roller 15 and the valve lever 13.14 in FIG. 2a correspond to point DK in FIG. 3, and the positions in FIG. 2b correspond to point DK in FIG.
The position in FIG. 2C corresponds to point B in FIG. 3, and the position in FIG. 2d corresponds to point E in FIG. 3.

第3図においてブシュロッド16が点AからB(第2c
図位置)K作動することによって低圧タービン用蝶形弁
5は全閉から70チ開となり、この間高圧タービン用螺
形弁4は全閉を維持する。
In FIG. 3, the bushing rod 16 is moved from point A to point B (second c).
By operating K, the low-pressure turbine butterfly valve 5 changes from fully closed to 70 degrees open, and during this time the high-pressure turbine spiral valve 4 remains fully closed.

さらに点C(第2b図位置)に作動すると低圧タービン
用蝶形弁5は全開、高圧タービン用蝶形弁4は25%開
となる。0点(第2b図位置)からD点(第2a図位置
)までは低圧タービン用蝶形弁5が全開を維持したまま
高圧タービン用蝶形弁4のみ適切な弁開度に制御される
範囲である。E点(第2d図位置)は制御用動力装置1
(第1図)等が故障した時バネ17(第2a図)の力に
より自動的に停止する位置で、低圧タービン用蝶形弁5
は40チ開、高圧タービン用蝶形弁4は全閉状態となり
、エンジンの運転を安全に維持するいわゆるフェールセ
ーフの目的で設けられている。
Further, when actuated to point C (position in Fig. 2b), the butterfly valve 5 for the low pressure turbine is fully opened, and the butterfly valve 4 for the high pressure turbine is 25% open. The range from point 0 (position in Figure 2b) to point D (position in Figure 2a) is a range in which only the butterfly valve 4 for the high pressure turbine is controlled to an appropriate valve opening while the butterfly valve 5 for the low pressure turbine remains fully open. It is. Point E (position in Figure 2d) is the control power plant 1
(Fig. 1) etc. is in a position where it automatically stops by the force of the spring 17 (Fig. 2a).
is opened by 40 degrees, and the high-pressure turbine butterfly valve 4 is fully closed, which is provided for the so-called fail-safe purpose of maintaining safe engine operation.

以上の具体例で示した如く本発明の特徴は二個の弁の弁
軸に固定されたレバーに設けられた屈曲した溝の一方の
形状をある部分で溝の中を転動するコロの直線運動と一
致ならしめ一方の弁を固定したまま、他方の弁を制御可
能にしたことである。
As shown in the above specific examples, the feature of the present invention is that one of the curved grooves provided in the lever fixed to the valve stem of the two valves has a straight line shape in a certain part of the roller rolling in the groove. This allows one valve to remain fixed while the other valve can be controlled to match the movement.

具体例に示した以外に一個のアクチュエータにより数個
の弁を目的に応じ独立又は連動させて駆動させるカム装
置は本発明の応用によって容易に可能である。
In addition to those shown in the specific examples, a cam device in which a single actuator drives several valves independently or in conjunction with each other depending on the purpose can be easily realized by applying the present invention.

発明の効果 本発明の採用により、低圧タービン用および高圧タービ
ン用のため独立した二系統の弁駆動装置(アクチュエー
タ)とこれに付帯する配管等を一系統に減らすことが可
能で価格の低減はもちろん航空用エンジンの重量軽減に
寄与することができる。
Effects of the Invention By adopting the present invention, it is possible to reduce the number of independent valve drive devices (actuators) for the low-pressure turbine and high-pressure turbine to one system, as well as the associated piping, etc., which not only reduces costs. It can contribute to reducing the weight of aircraft engines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する高圧タービン及び低圧
タービン翼先端隙間制御装置の配置を示す略図、第2a
図はそのカム機構の詳細を示す断面図、第2b図、第2
c図および第2d図はそのブシュロッドとカム位置との
関係を示す同様な図、第3図は弁開度とブシュロッドの
ストロークとの関係を示すグラフ、第4図は従来のガス
タービンエンジンの翼先端隙間制御機構を示す略図であ
る。 01−−高圧タービン、02・・低圧タービン、03・
・高圧タービン先端隙間制御用冷却マニホルド管、04
・・低圧タービン先端隙間制御用冷却マニホルド管、0
5・・ポペット弁、06・・バタフライ弁、07,08
・・圧縮空気入口、09・・電子制御部、010・・リ
ンク、011・・アクチュエータ、012・・ンレノイ
ド弁、■・・士jj iM]用動力装置、2・・プンユ
ロツド、3・・空気導入管、4・・高圧タービン用蝶形
弁、5・・低圧タービン用蝶形弁、6・・カム機構、7
・・高圧タービンケース冷却管、8・・低圧タービン冷
却管、11・・高圧ターピ/用弁軸、12・・低圧ター
ビン用弁軸、13・・高圧タービン側弁レバー、14・
・低圧タービン側弁レバー、15・・vバーm動用コロ
、16・・ブシュロッド、17フエールセーフ用バネ。 復代理人 木村正巳 (ほか7名)
FIG. 1 is a schematic diagram showing the arrangement of a high-pressure turbine and a low-pressure turbine blade tip clearance control device to explain the present invention in detail;
The figure is a sectional view showing details of the cam mechanism, Figure 2b, Figure 2.
Figures c and 2d are similar views showing the relationship between the bushing rod and the cam position, Figure 3 is a graph showing the relationship between the valve opening and the stroke of the bushing rod, and Figure 4 is a graph showing the blade of a conventional gas turbine engine. It is a schematic diagram showing a tip clearance control mechanism. 01--High pressure turbine, 02...Low pressure turbine, 03...
・Cooling manifold pipe for high pressure turbine tip clearance control, 04
・Cooling manifold pipe for low pressure turbine tip clearance control, 0
5...Poppet valve, 06...Butterfly valve, 07,08
・・Compressed air inlet, 09・・Electronic control unit, 010・・Link, 011・・Actuator, 012・・Nlenoid valve, ■・・・Power unit for [Jij iM], 2・・Punyurod, 3・・Air introduction Pipe, 4. Butterfly valve for high pressure turbine, 5. Butterfly valve for low pressure turbine, 6. Cam mechanism, 7
...High pressure turbine case cooling pipe, 8..Low pressure turbine cooling pipe, 11..Valve shaft for high pressure turbine/, 12..Valve shaft for low pressure turbine, 13..High pressure turbine side valve lever, 14..
・Low-pressure turbine side valve lever, 15... v-bar m motion roller, 16... bush rod, 17 fail-safe spring. Sub-agent Masami Kimura (and 7 others)

Claims (1)

【特許請求の範囲】[Claims] 1個のアクチュエータにより複数個の弁を独立又は連動
させて駆動させる多連式弁機構において、前記アクチュ
エータの運動に従い直線上を移動するコロが複数の弁軸
にそれぞれ固定された弁レバーに設けた溝の中を転動す
るように、これら弁レバーを配設し、これらの溝を屈曲
した溝とすることにより、特定の作動範囲で溝形状を前
記コロの直線運動に平行とならしめ、この弁レバーに関
する弁を固定したまま他の弁を制御するようにしたこと
を特徴とする多連式弁機構。
In a multiple valve mechanism in which a single actuator drives a plurality of valves independently or in conjunction, a roller that moves in a straight line according to the movement of the actuator is provided on a valve lever fixed to each of the plurality of valve shafts. By arranging these valve levers so as to roll in the grooves and making these grooves curved, the groove shape is made parallel to the linear motion of the roller in a specific operating range, and this A multiple valve mechanism characterized in that a valve related to a valve lever is fixed while controlling other valves.
JP29852285A 1985-12-28 1985-12-28 Multiple type valve mechanism Pending JPS62157208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29852285A JPS62157208A (en) 1985-12-28 1985-12-28 Multiple type valve mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29852285A JPS62157208A (en) 1985-12-28 1985-12-28 Multiple type valve mechanism

Publications (1)

Publication Number Publication Date
JPS62157208A true JPS62157208A (en) 1987-07-13

Family

ID=17860816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29852285A Pending JPS62157208A (en) 1985-12-28 1985-12-28 Multiple type valve mechanism

Country Status (1)

Country Link
JP (1) JPS62157208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523485A (en) * 2012-04-27 2015-08-13 ゼネラル・エレクトリック・カンパニイ Air valve driven by vane type rotary actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916145A (en) * 1982-07-20 1984-01-27 Matsushita Electric Ind Co Ltd Production for magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916145A (en) * 1982-07-20 1984-01-27 Matsushita Electric Ind Co Ltd Production for magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523485A (en) * 2012-04-27 2015-08-13 ゼネラル・エレクトリック・カンパニイ Air valve driven by vane type rotary actuator

Similar Documents

Publication Publication Date Title
US1816787A (en) Control mechanism for superchargers
US7594403B2 (en) Bleed off valve system
US8333546B2 (en) System for controlling at least two variable-geometry equipments of a gas turbine engine, particularly by cam mechanism
RU2529762C2 (en) System for controlling variable geometry devices in turbo machines and turbo machine having said system
US7721549B2 (en) Fan variable area nozzle for a gas turbine engine fan nacelle with cam drive ring actuation system
JP5608657B2 (en) System for controlling a variable geometry device of a gas turbine engine with a barrel link in particular
US6938408B2 (en) Thrust vectoring and variable exhaust area for jet engine nozzle
US4978280A (en) Variable guide vane arrangement for a compressor
JP5349602B2 (en) Variable geometry equipment for turbine engines, especially systems for controlling bell cranks
US8328500B2 (en) System for controlling variable-geometry equipments of a turbomachine, particularly by articulated bellcranks
US20100162684A1 (en) Aircraft nozzle
US20080089782A1 (en) Variable geometry turbine
EP2074313B1 (en) Fan variable area nozzle with electromechanical actuator
CN202140128U (en) Integrated air-leakage type engine brake device
WO2008045049A1 (en) Gas turbine engine with axial movable fan variable area nozzle
US7322325B1 (en) Apparatus and methods for varying valve lift in an internal combustion engine
JP2010038164A (en) Partial exhaust flow extracting device and internal combustion engine equipped therewith
CA1290576C (en) Steam chest modifications for improved turbine operations
EP2206901B1 (en) Turbocharger system with turbine bypass valve actuated by multiple-rate fluid pressure actuator
JP5364166B2 (en) In particular, a system for controlling a variable geometry device with a guide track connection, in particular for a gas turbine engine with a guide track connection
JPS62157208A (en) Multiple type valve mechanism
US8978604B2 (en) Variable valve actuator
CN212407601U (en) Pneumatic combination valve
US4903490A (en) Cam-driven valve system for steam turbines
CN104712397A (en) Combined rocker engine braking device