JPS6044836B2 - Compound superconducting wire - Google Patents

Compound superconducting wire

Info

Publication number
JPS6044836B2
JPS6044836B2 JP51051887A JP5188776A JPS6044836B2 JP S6044836 B2 JPS6044836 B2 JP S6044836B2 JP 51051887 A JP51051887 A JP 51051887A JP 5188776 A JP5188776 A JP 5188776A JP S6044836 B2 JPS6044836 B2 JP S6044836B2
Authority
JP
Japan
Prior art keywords
wire
compound
alloy
partition wall
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51051887A
Other languages
Japanese (ja)
Other versions
JPS52135291A (en
Inventor
祐治 石上
正 梅沢
英純 森合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP51051887A priority Critical patent/JPS6044836B2/en
Publication of JPS52135291A publication Critical patent/JPS52135291A/en
Publication of JPS6044836B2 publication Critical patent/JPS6044836B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Non-Insulated Conductors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は交流ロスがなく安定な化合物系超電導線材に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stable compound-based superconducting wire without AC loss.

化合物系極細多心超電導線材の主は製造法は、目的とす
る化合物超電導線材の構成元素をそれぞれ加工容易な合
金又は単一金属の形で所望の寸法、形状に複合加工した
後に熱処理を行ない、構成元素どうしを反応させて化合
物超電導材を生成させていることよりなる。
The main manufacturing method for compound-based ultrafine multicore superconducting wires is to compositely process the constituent elements of the target compound superconducting wire into desired dimensions and shapes in the form of an easy-to-process alloy or single metal, followed by heat treatment. It consists of producing a compound superconducting material by causing the constituent elements to react with each other.

Nb、Sn極細多心超電導線を例に取つて具体的に説明
すると、Cu−Sn合金マトリックス中にNb又はNb
合金細線を多数理設してなる複合線を作成した後に最終
熱処理を行なつてNb又はNb合金細線表面にNbとマ
トリックス中のSnと反応物であるNb、Snの層を生
成させる。
Taking a Nb, Sn ultrafine multicore superconducting wire as an example, to explain it specifically, Nb or Nb is present in the Cu-Sn alloy matrix.
After creating a composite wire consisting of a large number of thin alloy wires, a final heat treatment is performed to form a layer of Nb and Sn, which are reactants with Nb and Sn in the matrix, on the surface of the Nb or Nb alloy thin wire.

V3Ga極細多心線も同様でCu−Ga合金マトリック
スとV細線との反応を行なわせている。
The same applies to the V3Ga ultra-fine multifilament wire, in which the reaction between the Cu--Ga alloy matrix and the V-thin wire takes place.

このようにマトリックスに高い電気抵抗をもつ合金を使
用しているため超電導体がクエンチすなわち何らかの原
因で超電導体から常電導体に遷移した場合に線材が焼損
する恐れがある。これに対する保護法として第1図にN
b、Snを例にとつて示すように、Cu−Sn合金2と
安定化用高純度Cu4との間にTa、Nb等よりなる隔
壁3を設け熱処理により4の純度が低下しないようにす
る方法がある。この方法によれば安定向上は有効である
がパルス磁場にこの線材を用いる場合は渦電流損を生じ
好ましくない。本発明の目的は交流ロスがなく、しかも
安定な化合物系極細多心超電導線を提供することにある
。この発明に依れば斯かる目的は、前記隔壁を不連続に
し、その不連続個所を通して超電導化合物の構成材のう
ち1つを高純度金属中に拡散させて高純度金属を部分的
に合金化させ、その合金部と、前記隔壁とによつて高純
度金属を分割するこJとによつて達成することができる
Since an alloy with high electrical resistance is used in the matrix, there is a risk that the wire will burn out if the superconductor quenches, ie, transitions from a superconductor to a normal conductor for some reason. As a protection law against this, N
b. As shown by taking Sn as an example, a method of providing a partition wall 3 made of Ta, Nb, etc. between the Cu-Sn alloy 2 and the stabilizing high-purity Cu 4 to prevent the purity of 4 from decreasing due to heat treatment. There is. This method is effective in improving stability, but when this wire is used in a pulsed magnetic field, it causes eddy current loss, which is undesirable. An object of the present invention is to provide a compound-based ultrafine multicore superconducting wire that is free from AC loss and is stable. According to the invention, the purpose is to make the partition wall discontinuous and to diffuse one of the constituents of the superconducting compound into the high-purity metal through the discontinuity, thereby partially alloying the high-purity metal. This can be achieved by dividing the high-purity metal by the alloy portion and the partition wall.

前記合金部は、最終的熱処理によつて超電導化合物を生
成させる際生成するが、最終的熱処理によつて目的とす
る超電導化合物を生成させる前後の複合体は以下のよう
に製造される。すなわち超丁電導化合物の構成材のうち
の1つを細線として他の構成材を成分とする合金中に埋
設し更にこの合金の周囲にこれを不連続に取り囲むよう
な隔壁を設けた複合体を単位として、この単位複合体を
高純度金属よりなる安定化材中に多数独立的に埋設して
減面加工し熱処理前段の複合体とする。しかして、超電
導化合物を生成させる最終的な熱処理がほどこされるが
、この熱処理によつて超電導化合物の構成材を成分とす
る合金中の成分は拡散し、化合物の構成材よりなる細線
表面に超電導化合物を生成させると同時に隔壁の不連続
部より安定化のための高純度金属中へも拡散し部分的に
合金を生成する。一方隔壁が連続している部分は合金化
しないため高純度金属は隔壁と合金部、すなわち高電気
抵抗部とによつて細かく分割されることになる。このよ
うに高純度金属による安定化をはかり、なおかつ高純度
金属を分割することにより交流磁場でのロスをなくすこ
とのできる線材を提供できる。第1図及び第2図は従来
の化合物超電導線の例で、Nb3Snを例にとつて示す
。第1図において1はNb線、2はNblを囲むように
設けられたCu−Sn合金、3はCu−Sn合金2と安
定化用高純度CU4との間の反応を防ぐための隔壁であ
る。このような形状に構成して減面加工した後に熱処理
を行ないCu−Sn合金2中のSnとNbとを反応させ
てNb線1表面にNb3Snの化合物層を生成させる。
この時隔壁3はSnが安定化用高純度一Cu4中へ拡散
し汚染するのを防止する。第2図はNb3Sn化合物超
電導線の他の例で、Cu−Sn合金2をマトリツクスと
してその中にNb細線1が多数理設される。又安定化用
高純度CU4は隔壁3によつて囲まれて埋設される。こ
の場合も最終.的な熱処理によつてNb細線1の表面に
Nb3Sn層が生成し高純度Cu4は汚染されない。第
1図にみられる従来の例では安定化用の高純度CU4は
量的に充分であるが交流磁場で使用する場合渦電流損が
多い欠点がある。一方第2図の例では高純!度Cu4が
分割されているため交流ロスが小さいが安定化の点で不
安がある。本発明による線材の構造は第3図にNb3S
n化合物超電導線を例にとつて示すように、Nb線1の
周囲にCu−Sn合金2、更にそれを不連続に囲む4N
b..Ta等からなる隔壁3及び安定化用高純度Cu4
よりなる。
The alloy part is produced when a superconducting compound is produced by the final heat treatment, and the composite before and after producing the target superconducting compound by the final heat treatment is manufactured as follows. In other words, a composite is created in which one of the constituent materials of the superconducting compound is made into a fine wire and is embedded in an alloy containing other constituent materials, and a partition wall is provided around the alloy to discontinuously surround it. As a unit, a large number of these unit composites are independently buried in a stabilizing material made of high-purity metal and subjected to area reduction processing to obtain a composite prior to heat treatment. Then, a final heat treatment is performed to form a superconducting compound, but through this heat treatment, the components in the alloy containing the constituent materials of the superconducting compound diffuse, and the surface of the thin wire made of the constituent materials of the compound becomes superconducting. At the same time as a compound is generated, it also diffuses into the high-purity metal for stabilization through the discontinuous part of the partition wall and partially forms an alloy. On the other hand, since the part where the partition wall is continuous is not alloyed, the high purity metal is finely divided by the partition wall and the alloy part, that is, the high electrical resistance part. In this way, it is possible to provide a wire rod that is stabilized by high-purity metal and can eliminate loss in an alternating current magnetic field by dividing the high-purity metal. FIGS. 1 and 2 show examples of conventional compound superconducting wires, taking Nb3Sn as an example. In FIG. 1, 1 is an Nb wire, 2 is a Cu-Sn alloy provided to surround Nbl, and 3 is a partition wall to prevent a reaction between the Cu-Sn alloy 2 and the stabilizing high-purity CU4. . After forming into such a shape and reducing the area, heat treatment is performed to cause the Sn in the Cu-Sn alloy 2 to react with Nb to form a compound layer of Nb3Sn on the surface of the Nb wire 1.
At this time, the partition wall 3 prevents Sn from diffusing into the stabilizing high-purity Cu4 and contaminating it. FIG. 2 shows another example of a Nb3Sn compound superconducting wire, in which a large number of Nb thin wires 1 are formed using a Cu--Sn alloy 2 as a matrix. Further, the stabilizing high-purity CU 4 is surrounded by the partition wall 3 and buried therein. In this case too, it is final. As a result of the heat treatment, an Nb3Sn layer is formed on the surface of the Nb thin wire 1, and the high purity Cu4 is not contaminated. In the conventional example shown in FIG. 1, high-purity CU4 for stabilization is sufficient in quantity, but has the drawback of high eddy current loss when used in an alternating magnetic field. On the other hand, the example in Figure 2 shows high purity! Since the degree Cu4 is divided, the AC loss is small, but there are concerns about stability. The structure of the wire rod according to the present invention is shown in Figure 3.
As shown using an n-compound superconducting wire as an example, an Nb wire 1 is surrounded by a Cu-Sn alloy 2, and a 4N alloy discontinuously surrounds the Nb wire 1.
b. .. Partition wall 3 made of Ta etc. and high purity Cu4 for stabilization
It becomes more.

このような構造で所定の線径まで減面加工された後NY
)3Sn化合物を生成させる最終熱処理を行なえば、第
4図に示すようにNb線1とCu−Sn合金2中のSn
が反応してNb3Sn層5がNb線1の表面に生成し、
さらに隔壁3の不連続部31よりCu−Sn合金2中の
Snが安定化Cu4中に拡散してCu−Sn拡散部6を
形成する。このCu−Sn拡散部6は隔壁3と共に安定
化高純度CU4を電気的に分割する働きをなし、渦電流
損による交流ロスをなくすることができる。本発明によ
る線材の製造法の1例を示すと、まず最初に第5図のよ
うなNb線1のまわりにCu−Sn合金2を被覆し、l
更にその周囲に不連続な隔壁3をもうけて全体を高純度
CU7で被覆した複合材9を用意する。この複合材は高
純度Cuパイプと板状隔壁材、Cu一Sn合金パイプ及
びNb線を複合加工することによつて容易に得られるも
のである。次に第5図の複合材9を多数本高純度Cuパ
イプ8中に挿入し、通常の方法により、必要ならば中間
焼鈍を入れつつ所定の線径まて減面加工をほどこす。こ
の加工により複合材9の周囲の高純度連U7及び8はあ
たかも一体物のように密着させることができ、第3図の
ような断面形状にすることが出来る。
With this structure, after the area is reduced to the specified wire diameter, NY
) 3Sn compound, the Sn in the Nb wire 1 and the Cu-Sn alloy 2 is removed as shown in Figure 4.
reacts to form a Nb3Sn layer 5 on the surface of the Nb wire 1,
Further, Sn in the Cu-Sn alloy 2 is diffused into the stabilized Cu 4 through the discontinuous portion 31 of the partition wall 3 to form a Cu-Sn diffusion portion 6. This Cu-Sn diffusion part 6 works to electrically divide the stabilized high-purity CU 4 together with the partition wall 3, and can eliminate AC loss due to eddy current loss. To show one example of the method of manufacturing a wire rod according to the present invention, first, a Cu-Sn alloy 2 is coated around an Nb wire 1 as shown in FIG.
Furthermore, a composite material 9 is prepared in which a discontinuous partition wall 3 is provided around the composite material 9 and the whole is covered with high purity CU7. This composite material can be easily obtained by composite processing of a high-purity Cu pipe, a plate-shaped partition material, a Cu-Sn alloy pipe, and a Nb wire. Next, a large number of composite materials 9 shown in FIG. 5 are inserted into the high-purity Cu pipes 8, and subjected to surface reduction processing to a predetermined wire diameter using an ordinary method, including intermediate annealing if necessary. By this processing, the high-purity chains U7 and 8 around the composite material 9 can be brought into close contact with each other as if they were a single piece, and the cross-sectional shape as shown in FIG. 3 can be obtained.

本発明の線材を製造する例をあげたが、要するに本発明
は不連続な隔壁を設け最終熱処理において隔壁の不連続
点より拡散した拡散層と隔壁により安定化の高純度金属
を電気的に分割して交流ロスをなくすることを目的とし
たもので、例をあげたN1)3Snに限るものではなく
、3Ga,Nb3Ge,NFA1等にも応用可能である
An example of manufacturing the wire rod of the present invention has been given, but in short, the present invention provides a discontinuous partition wall and electrically divides the high purity metal stabilized by the partition wall and a diffusion layer that diffuses from the discontinuous point of the partition wall in the final heat treatment. The purpose is to eliminate alternating current loss, and it is not limited to the exemplified N1)3Sn, but can also be applied to 3Ga, Nb3Ge, NFA1, etc.

以上の説明から明らかなように、この発明は超電導化合
物の構成材の1つが安定化用高純度金属中に拡散するの
を防止する隔壁を不連続とすることによつて、その不連
続部を通して前記構成材の1つを安定化用高純度金属中
に拡散させて部分的に電気抵抗部となる合金部を形成し
、その合金部と前記隔壁とによつて安定化用高純度金属
を分割したものであるから、この線材をパルス磁場に用
いても渦電流損による交流ロスをなくすことができ、そ
の実用価値は極めて大である。
As is clear from the above description, the present invention provides discontinuous partition walls that prevent one of the components of the superconducting compound from diffusing into the high-purity stabilizing metal. One of the constituent materials is diffused into a high-purity stabilizing metal to partially form an alloy portion that becomes an electrical resistance portion, and the high-purity stabilizing metal is divided by the alloy portion and the partition wall. Therefore, even if this wire is used in a pulsed magnetic field, AC loss due to eddy current loss can be eliminated, and its practical value is extremely large.

尚、隔壁における不連続部は、線材の長手方向に延びる
ことが望ましく、直線状、らせん状何れの形態で存在し
てもよい。
Note that the discontinuous portion in the partition preferably extends in the longitudinal direction of the wire, and may be present in either a linear or helical form.

勿論隔壁としては最終熱処理で溶融せず、各構成材と反
応しにくい材質が望ましいが、超電導化合物の構成材の
1つと同一材質でもよく、その場合には隔壁の内側の面
に化合物が生成し、線材全体の電流容量を増加させるこ
とができるであろう。
Of course, it is desirable for the partition walls to be made of a material that does not melt during the final heat treatment and does not easily react with each constituent material, but it may also be made of the same material as one of the constituent materials of the superconducting compound, in which case the compound will not form on the inner surface of the partition wall. , it would be possible to increase the current capacity of the entire wire.

【図面の簡単な説明】 第1図、第2図は従来法による化合物超電導線材の断面
図、第3図は本発明による線材の最終熱処理前の断面図
、第4図は熱処理後の断面図、第5、第6図は本発明の
線材の製造法の例を示す断面図である。 1・・・・・・Nb線、2・・・・・・Cu−Sn合金
、3・・・・・・隔壁、31・・・・・・不連続部、4
及び7・・・・・・安定化用高純度Cul5・・・・・
・Nb3Sn層、6・・・・・・Cu−Sn拡散部、8
・・・・・・高純度Cll/ぐイプ、9・・・・・・複
合体。
[Brief Description of the Drawings] Figures 1 and 2 are cross-sectional views of a compound superconducting wire according to the conventional method, Figure 3 is a cross-sectional view of the wire according to the present invention before final heat treatment, and Figure 4 is a cross-sectional view after heat treatment. , 5 and 6 are cross-sectional views showing an example of the method for manufacturing the wire rod of the present invention. DESCRIPTION OF SYMBOLS 1... Nb wire, 2... Cu-Sn alloy, 3... Partition wall, 31... Discontinuous part, 4
and 7...High purity Cul5 for stabilization...
・Nb3Sn layer, 6...Cu-Sn diffusion part, 8
...High purity Cll/Guip, 9...complex.

Claims (1)

【特許請求の範囲】[Claims] 1 化合物系超電導線材において最終熱処理により当該
超電導化合物を生成させるように配置した超電導化合物
の構成材を取り囲むように不連続な隔壁と安定化用高純
度金属を設け、最終熱処理において当該安定化高純度金
属を、隔壁と隔壁の不連続部を通して高純度金属中に拡
散した合金部である高電気抵抗部とによつて分割してな
ることを特徴とする化合物系超電導線材。
1. In a compound-based superconducting wire, a discontinuous partition wall and a stabilizing high-purity metal are provided to surround the constituent materials of the superconducting compound arranged so as to generate the superconducting compound during the final heat treatment, and the stabilizing high-purity metal is disposed in the final heat treatment. A compound-based superconducting wire characterized in that a metal is divided by a partition wall and a high electrical resistance part which is an alloy part diffused into a high purity metal through a discontinuous part of the partition wall.
JP51051887A 1976-05-06 1976-05-06 Compound superconducting wire Expired JPS6044836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51051887A JPS6044836B2 (en) 1976-05-06 1976-05-06 Compound superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51051887A JPS6044836B2 (en) 1976-05-06 1976-05-06 Compound superconducting wire

Publications (2)

Publication Number Publication Date
JPS52135291A JPS52135291A (en) 1977-11-12
JPS6044836B2 true JPS6044836B2 (en) 1985-10-05

Family

ID=12899380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51051887A Expired JPS6044836B2 (en) 1976-05-06 1976-05-06 Compound superconducting wire

Country Status (1)

Country Link
JP (1) JPS6044836B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127410A (en) * 1989-10-11 1991-05-30 Mitsubishi Heavy Ind Ltd Structure of superconductor
JPH0636625A (en) * 1992-07-20 1994-02-10 Mitsubishi Electric Corp Superconductor

Also Published As

Publication number Publication date
JPS52135291A (en) 1977-11-12

Similar Documents

Publication Publication Date Title
GB1435459A (en) Manufacture of a composite electrical conductor including a superconductive conductor
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
Suenaga et al. Fabrication techniques and properties of multifilamentary Nb 3 Sn conductors
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPS62113306A (en) Complex superconductor and manufacture of the same
JPS6044836B2 (en) Compound superconducting wire
US4153986A (en) Method for producing composite superconductors
JP2007311126A (en) Compound superconductor, and its manufacturing method
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPS6015090B2 (en) Compound superconducting wire
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP2573491B2 (en) Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
JPH0266814A (en) Manufacture of nb3sn superconducting wire
JP2519035B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JP3036160B2 (en) Stabilizer for superconducting conductor
JPH0422016A (en) Manufacture of compound superconductor
JPH11273469A (en) Superconductive precursor composite wire and manufacture of superconductive composite wire
JPS5933653B2 (en) Method for producing stabilized superconductor
JPH08287752A (en) Manufacture of superconducting wire material
JPH02260328A (en) Compound superconductor and manufacture thereof
JPH024931A (en) Manufacture of nb3x super conducting material
JPH0676662A (en) Manufacture of nb3sn superconducting wire
JPH0362420A (en) Manufacture of compound superconductor