JPS6015090B2 - Compound superconducting wire - Google Patents

Compound superconducting wire

Info

Publication number
JPS6015090B2
JPS6015090B2 JP51131933A JP13193376A JPS6015090B2 JP S6015090 B2 JPS6015090 B2 JP S6015090B2 JP 51131933 A JP51131933 A JP 51131933A JP 13193376 A JP13193376 A JP 13193376A JP S6015090 B2 JPS6015090 B2 JP S6015090B2
Authority
JP
Japan
Prior art keywords
partition wall
compound
wire
alloy
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51131933A
Other languages
Japanese (ja)
Other versions
JPS5356998A (en
Inventor
祐治 石上
正 梅沢
彰司 稲葉
英純 森合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP51131933A priority Critical patent/JPS6015090B2/en
Publication of JPS5356998A publication Critical patent/JPS5356998A/en
Publication of JPS6015090B2 publication Critical patent/JPS6015090B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は交流ロスがない安定な化合物系超電導線材に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stable compound-based superconducting wire without AC loss.

化合物系極細多心超電導線材の多くは目的とする化合物
超電導材の構成元素をそれぞれ加工容易な合金又は単一
金属状で所望の寸法、形状に複合加工した後に熱処理を
行ない、構成元素どうしを反応させて化合物超電導材を
生成させることによって得られている。
Most of the compound-based ultrafine multicore superconducting wires are made by compound-processing the constituent elements of the target compound superconducting material into the desired size and shape in the form of an easily processable alloy or single metal, and then heat-treating the material to cause the constituent elements to react with each other. It is obtained by producing a compound superconducting material.

NCSn極細多心超電導線を例に取って具体的に説明す
ると、Cu−Sn合金マトリックス中にNb又はNb合
金紬線を多数埋設した複合線を作成した後に最終熱処理
を行なってNb又はNq合金細緑表面にNbとマトリッ
クス中のSnの反応物であるNb3Sn層を生成させる
。V30a極細多心線の場合も同様でCu一Ga合金マ
トリツクスとV紬線との反応を行なわせている。このよ
うにマトリックスに高い電気抵抗をもつ合金を使用して
いるため超電導体がクェンチ、すなわち何らかの原因で
超電導体から常電導体に、移した場合に線材が焼損する
恐れがある。これに対する保護法として安定化用高純度
金属及びそれと反応性の少ない金属隔離を用いる方法が
提案されている。第1図にNbぶnを例に取って示すよ
うにCu−Sn合金2と安定化用高純度Cu4との間に
Ta、Nb等よりなる隔壁3を設け熱処理により4の純
度が低下させぬようにする方法である。この方法によれ
ば安定化上は有効であるがパルス磁場にこの線材を用い
る場合は渦電流損を生じ好ましくない。本発明の目的は
交流ロスがなくしかも安定な化合物系超電導線を提供す
ることにある。この発明に依れば斯かる目的は、前記隔
壁の肉厚を円周方向に部分的に変化させ、その肉厚の薄
い部分を通して超電導化合物の機成材のうち1つを高純
度金属中に拡散させて高純度金属を部分的に電気抵抗の
大きい合金に変化させ、その合金部と前記隔壁とによっ
て高純度金属を分割することによって達成することがで
きる。最終熱処理によって目的とする超電導化合物を生
成させる前段の複合体を以下のように製造する。
To explain concretely by taking NCSn ultrafine multicore superconducting wire as an example, a composite wire is created by embedding a large number of Nb or Nb alloy pongee wires in a Cu-Sn alloy matrix, and then a final heat treatment is performed to form Nb or Nq alloy fine wires. An Nb3Sn layer, which is a reaction product of Nb and Sn in the matrix, is formed on the green surface. Similarly, in the case of the V30a ultrafine multifilament wire, the reaction between the Cu-Ga alloy matrix and the V pongee wire is carried out. Since an alloy with high electrical resistance is used in the matrix, there is a risk that the wire will burn out if the superconductor is quenched, that is, transferred from the superconductor to the normal conductor for some reason. As a protection method against this, a method using a high-purity stabilizing metal and a metal sequestration with low reactivity with it has been proposed. As shown in Fig. 1 using Nb and n as an example, a partition wall 3 made of Ta, Nb, etc. is provided between the Cu-Sn alloy 2 and the stabilizing high-purity Cu 4, and the heat treatment prevents the purity of 4 from decreasing. This is the way to do it. Although this method is effective for stabilization, when this wire is used in a pulsed magnetic field, it causes eddy current loss, which is undesirable. An object of the present invention is to provide a compound-based superconducting wire that is free from AC loss and is stable. According to the present invention, the purpose is to partially change the wall thickness of the partition wall in the circumferential direction, and to diffuse one of the components of the superconducting compound into the high-purity metal through the thin wall portion. This can be achieved by partially changing the high-purity metal into an alloy with high electrical resistance, and dividing the high-purity metal by the alloy portion and the partition wall. The first-stage composite, in which the target superconducting compound is produced by final heat treatment, is manufactured as follows.

すなわち超電導化合物の構成材のうちの1つを細線とし
て他の構成材を成分とする合金中に埋設し更にこの合金
の周囲にこれを連続的に取り囲む肉厚不連続な隔壁を設
けた複合体を単位として、この単位複合体を多数高純度
金属よりなる安定化材中に独立して埋設し、減面加工し
た熱処理前段の複合体を用意し、超電導化合物を生成さ
せる最終熱処理をほどこす。この熱処理によって超電導
化合物の構成材を成分とする合金中の成分は拡散し化合
物の構成材よりなる織線表面に超電導化合物を生成させ
ると同時に隔壁側にも拡散し隔壁の肉厚のうすい部分を
拡散通過した後安定化のための高純度金属中へも拡散し
部分的に合金を生成する。
In other words, it is a composite in which one of the constituent materials of a superconducting compound is embedded as a thin wire in an alloy containing other constituent materials, and a thick discontinuous partition wall is provided around this alloy to continuously surround it. A large number of these unit composites are individually buried in a stabilizing material made of high-purity metal, and the area-reduced composite is prepared before heat treatment, and the final heat treatment is performed to generate a superconducting compound. Through this heat treatment, the components in the alloy containing the constituent materials of the superconducting compound diffuse, forming superconducting compounds on the surface of the woven wire made of the constituent materials of the compound, and at the same time, diffusing to the partition wall side, forming thin parts of the partition wall. After passing through diffusion, it also diffuses into high-purity metals for stabilization and partially forms an alloy.

一方隔壁の肉厚の厚い部分では合金中の成分は隔壁中を
拡散通過して高純度金属へ到達しえないため肉厚の厚い
隔壁部に面した高純度金属は合金化せず、高純度金属は
隔壁と合金部すなわち高電気抵抗部によって細かく分割
されることになる。このような高純度金属による安定化
をはかりなおかつ高純度金属を分割することにより交流
磁場でのロスをなくすることのできる線材を提供できる
。本発明の具体的説明にはNb3Sn化合物超電導材を
用いるが、本発明はこれに限るものではなくV80a、
N広蛇、Nb3M等にも応用可能である。第1図及び第
2図は従来の化合物超電導線の例でN広Snを例につて
示す。第1図において1はN聡幕、2はNb線を囲むよ
うに設けられたCu−Sn合金、3はCu−Sn合金と
安定化用高純度Cu4の間の反応を防ぐための隔壁であ
る。
On the other hand, in the thick part of the partition wall, the components in the alloy cannot diffuse through the partition wall and reach the high-purity metal, so the high-purity metal facing the thick partition wall is not alloyed and becomes a high-purity metal. The metal is finely divided by the partition wall and the alloy part, that is, the high electrical resistance part. By further stabilizing the wire with such a high-purity metal and dividing the high-purity metal, it is possible to provide a wire that can eliminate loss in an alternating current magnetic field. Although the Nb3Sn compound superconducting material is used in the specific explanation of the present invention, the present invention is not limited to this, and V80a,
It can also be applied to N Hiroja, Nb3M, etc. FIGS. 1 and 2 show an example of a conventional compound superconducting wire, using N-based Sn as an example. In Fig. 1, 1 is an N curtain, 2 is a Cu-Sn alloy provided to surround the Nb wire, and 3 is a partition wall to prevent reaction between the Cu-Sn alloy and high-purity Cu4 for stabilization. .

このような形状に構成して減面加工した後に熱処理を行
ないCu−Sn合金中のSnとNbとを反応させてNb
線表面にNCSnの化合物層を生成させる。
After forming this shape and reducing the area, heat treatment is performed to react Sn and Nb in the Cu-Sn alloy to form Nb.
A compound layer of NCSn is generated on the wire surface.

この時隔壁3はSnが安定化用高純度Cu4中に拡散し
汚染するのを防止する。第2図はNb3Sn化合物超電
導線の他の列でCu−Sn合金2のマトリックスとして
その中にNb細線1が多数埋設される。
At this time, the partition wall 3 prevents Sn from diffusing and contaminating the stabilizing high-purity Cu4. FIG. 2 shows another row of Nb3Sn compound superconducting wires in which a large number of Nb thin wires 1 are embedded as a matrix of Cu--Sn alloy 2.

又安定化用高純度Cu4は隔壁3によって囲まれて埋設
される。この場合も最終的な熱処理によってNb紬線1
の表面にNQSn層が生成し高純度Cu4は汚染されな
い。第1図にみられる従釆の例では安定化用の高純度C
uは量的に充分であるが交流磁場で使用する場合渦電流
損が多い欠点がある。一方第2図の例では高純度Cuが
分割されているため交流ロスが小さし、が安定化の点で
不安がある。本発明による線村の構造は第3図にNはS
n化合物超電導線を例にとって示すようにNb線1の周
囲にCu−Sn合金2、更にそれを連続に囲むNb、T
a等からなる円周方向肉厚不連続な隔壁3及び安定化用
高純度Cu4よりなる。このような構造で所定の線径ま
で減面加工させた後NはSn化合物を生成させる最終熱
処理を行なえば第4図に示すようにNbとCu−Sn合
金2中のSnが反応してNbぶn化合物層がN均線1の
表面に生成する一方、Cu−Sn合金2中のSnは隔壁
3とも反応し、例えば隔壁がTaの場合はTa3Sn、
Nbの場合はNb3Snを生成するが、隔壁3の肉厚の
うすし、部分では上記反応後更にCu−Sn合金2中の
Snが安定化Cu4中に拡散してCu−Sn拡散層6を
形成する。このCu−Sn拡散層6は隔壁3と共に安定
化高純度Cu4を電気的に分割する働きをなし、渦電流
損による交流ロスをなくすることが出来る。尚隔壁3は
化合物層を生成させるための最終熱処理時においてNb
線1表面に生成させようとする化合物層5の厚さよりも
厚い部分とうすし、部分とよりなるような肉厚の不連続
さを円周方向にもたせるように構成することによって目
的をはたすことが出来る。本発明による線材の製造法の
一例を示すとまず最初に第5図のようなNb線1のまわ
りにCuSn合金2を被覆し、更にその周囲に円周方向
に肉厚不連続な隔壁3をもうけ、全体を高純度Cu7で
被覆した複合材9を用意する。この複合材9は高純度C
uパイプと肉厚不連続な隔壁材、Cu−Sn合金パイプ
及びNb線を複合加工することによって容易に得られる
ものである。次に第5図の複合材9を多数本局純度Cu
パイプ8中に挿入し、通常の方法により必要ならば中間
焼銘を入れつつ所定の線窪まで滅面加工をほどこす。こ
の加工により9の周囲の高純度Cuどうし及びパイプ8
の高純度Cuはあたかも‐−体のCuのように密着し、
第3図のような形状にすることが出来る。本発明の線材
を製造する例をあげたが要するに本発明は円周方向に肉
厚の不連続な隔壁をもうけ最終熱処理において隔壁の肉
厚不連続部より拡散した拡散層と隔壁により安定化の高
純度金属を電気的に分割して交流ロスをなくすることを
目的としたもので、例にあげたNGSnに限るものでな
いことはいうまでもない。尚肉厚不連続な隔壁としては
第3図の1すなわち目的とする超電導化合物の構成材の
1つよりなるものと同一材質でも同一材質でなくともよ
いが、同一材質の場合は隔壁と化合物の他の構成材の接
する面に化合物が生成し線材全体の電流容量を増加させ
ることが出来る利点がある。
Furthermore, the stabilizing high-purity Cu4 is surrounded by the partition wall 3 and buried therein. In this case as well, the final heat treatment results in Nb pongee wire 1
An NQSn layer is formed on the surface of the high purity Cu4, and the high purity Cu4 is not contaminated. In the secondary example shown in Figure 1, high-purity C for stabilization is used.
Although u is sufficient in quantity, it has the drawback of high eddy current loss when used in an alternating magnetic field. On the other hand, in the example shown in FIG. 2, the high purity Cu is divided, so the AC loss is small, but there are concerns about stability. The structure of the line village according to the present invention is shown in FIG.
As shown by taking an n-compound superconducting wire as an example, a Cu-Sn alloy 2 is surrounded by an Nb wire 1, and further Nb and T are continuously surrounded by a Cu-Sn alloy 2.
It consists of partition walls 3 having discontinuous thickness in the circumferential direction and stabilizing high-purity Cu4. After reducing the area to a predetermined wire diameter with this structure, if a final heat treatment is performed to form a Sn compound, Nb and Sn in the Cu-Sn alloy 2 will react to form Nb as shown in Figure 4. While a Sn compound layer is generated on the surface of the N-balance line 1, Sn in the Cu-Sn alloy 2 also reacts with the partition wall 3. For example, when the partition wall is Ta, Ta3Sn,
In the case of Nb, Nb3Sn is produced, but in the thinner parts of the partition wall 3, after the above reaction, Sn in the Cu-Sn alloy 2 further diffuses into the stabilized Cu4 to form a Cu-Sn diffusion layer 6. . This Cu--Sn diffusion layer 6 works to electrically divide the stabilized high-purity Cu 4 together with the partition wall 3, and can eliminate AC loss due to eddy current loss. Note that the partition wall 3 is made of Nb during the final heat treatment to form a compound layer.
The purpose can be achieved by configuring the wire 1 to have discontinuities in thickness in the circumferential direction, such as thicker parts and thinner parts than the thickness of the compound layer 5 to be generated on the surface of the wire 1. I can do it. To show an example of the method of manufacturing a wire rod according to the present invention, first, a CuSn alloy 2 is coated around an Nb wire 1 as shown in FIG. A composite material 9 is prepared which is entirely coated with high-purity Cu7. This composite material 9 has high purity C
This can be easily obtained by composite processing of a U-pipe, a partition wall material with discontinuous wall thickness, a Cu-Sn alloy pipe, and a Nb wire. Next, a large number of composite materials 9 in Fig. 5 are
It is inserted into the pipe 8, and the surface is machined to a predetermined line depression using a normal method, with an intermediate inscription added if necessary. By this processing, the high purity Cu around 9 and the pipe 8
The high-purity Cu adheres as if it were a body of Cu,
It can be shaped as shown in Figure 3. An example of manufacturing the wire of the present invention has been given, but in short, the present invention provides partition walls with discontinuous wall thickness in the circumferential direction, and in the final heat treatment, stabilization is achieved by the diffusion layer diffused from the discontinuous part of the partition wall and the partition wall. The purpose is to electrically divide high-purity metal to eliminate AC loss, and it goes without saying that it is not limited to the NGSn mentioned in the example. The partition wall with discontinuous wall thickness may or may not be made of the same material as 1 in Fig. 3, that is, one of the constituent materials of the target superconducting compound, but if it is made of the same material, the partition wall and the compound may be made of the same material. There is an advantage that a compound is generated on the surface in contact with other constituent materials, and the current capacity of the entire wire can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来法による化合物超電導線材の断面
図、第3図は本発明による線材の最終熱処理前の断面図
、第4図は熱処理後の断面図、第5図、第6図は本発明
の線材の製造法の例を示す断面図である。 1:Nb、2:Cu−Sn合金、3:隔壁、4:安定化
用高純度Cu、5:N広Sn層、6:Cu一Sn拡散層
、7:高純度℃u、8:高純度パイプ、9:複合材。 第1図 第2図 第3図 第4図 第5図 第6図
1 and 2 are cross-sectional views of a compound superconducting wire according to the conventional method, FIG. 3 is a cross-sectional view of the wire according to the present invention before final heat treatment, FIG. 4 is a cross-sectional view after heat treatment, and FIGS. 5 and 6 The figure is a sectional view showing an example of the method for manufacturing the wire rod of the present invention. 1: Nb, 2: Cu-Sn alloy, 3: Partition wall, 4: High purity Cu for stabilization, 5: N wide Sn layer, 6: Cu-Sn diffusion layer, 7: High purity °C, 8: High purity Pipe, 9: Composite material. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 最終熱処理により超電導化合物を生成させるように
配置された超電導化合物の構成材と、この構成材を囲む
ように配置され円周方向に肉厚変化のある隔壁と、この
隔壁を囲むように配置された安定化金属とを備え、前記
安定化金属は最終熱処理により、前記隔壁の薄肉部を通
して前記安定化金属中に拡散した前記超電導化合物の構
成材の1つと前記安定化金属との生成物である高電気抵
抗部によって分割されていることを特徴とする化合物系
超電導線材。
1 A constituent material of a superconducting compound arranged so as to produce a superconducting compound by final heat treatment, a partition wall arranged so as to surround this constituent material and having a wall thickness varying in the circumferential direction, and a partition wall arranged so as to surround this partition wall. a stabilizing metal, the stabilizing metal being a product of the stabilizing metal and one of the constituents of the superconducting compound diffused into the stabilizing metal through the thin wall portion of the partition wall by a final heat treatment. A compound superconducting wire characterized by being divided by high electrical resistance parts.
JP51131933A 1976-11-02 1976-11-02 Compound superconducting wire Expired JPS6015090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51131933A JPS6015090B2 (en) 1976-11-02 1976-11-02 Compound superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51131933A JPS6015090B2 (en) 1976-11-02 1976-11-02 Compound superconducting wire

Publications (2)

Publication Number Publication Date
JPS5356998A JPS5356998A (en) 1978-05-23
JPS6015090B2 true JPS6015090B2 (en) 1985-04-17

Family

ID=15069597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51131933A Expired JPS6015090B2 (en) 1976-11-02 1976-11-02 Compound superconducting wire

Country Status (1)

Country Link
JP (1) JPS6015090B2 (en)

Also Published As

Publication number Publication date
JPS5356998A (en) 1978-05-23

Similar Documents

Publication Publication Date Title
US3429032A (en) Method of making superconductors containing flux traps
GB1435459A (en) Manufacture of a composite electrical conductor including a superconductive conductor
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US4153986A (en) Method for producing composite superconductors
US3868768A (en) Method of producing a composite superconductor
JPS6015090B2 (en) Compound superconducting wire
US3676577A (en) Superconductors containing flux traps
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPS6044836B2 (en) Compound superconducting wire
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH0211733A (en) Manufacture of nb3 sn superconducting wire by internal diffusing method
JP2573491B2 (en) Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JPS5376698A (en) Compound superconductive wire
JP3095399B2 (en) Method for manufacturing compound superconducting conductor
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPH0266814A (en) Manufacture of nb3sn superconducting wire
JPH0362420A (en) Manufacture of compound superconductor
JPS524795A (en) Manufacturing method of superconductive cables
JPH024931A (en) Manufacture of nb3x super conducting material
JP2519035B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JPH0554741A (en) Manufacture of compound superconducting wire
JPS5933653B2 (en) Method for producing stabilized superconductor
JPH02260328A (en) Compound superconductor and manufacture thereof