JPH0636625A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH0636625A
JPH0636625A JP4192296A JP19229692A JPH0636625A JP H0636625 A JPH0636625 A JP H0636625A JP 4192296 A JP4192296 A JP 4192296A JP 19229692 A JP19229692 A JP 19229692A JP H0636625 A JPH0636625 A JP H0636625A
Authority
JP
Japan
Prior art keywords
aluminum
superconducting conductor
superconducting
current
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4192296A
Other languages
Japanese (ja)
Inventor
Tsuneaki Minato
恒明 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4192296A priority Critical patent/JPH0636625A/en
Publication of JPH0636625A publication Critical patent/JPH0636625A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enable a superconductor of steady conductive state to easily return to superconducting state by restraining a current flow across stabilizing materials, while a part of a boundary between the materials being divided with an insulation material. CONSTITUTION:An insulation material 8 such as polyamide resin is laid at a boundary between copper 1 and aluminum 4 as stabilizing materials. When a superconductor turns into steady conductive state due to an instantaneous temperature rise, electrical current flows across the aluminum 4 or copper wires 4 and 5 having low electrical resistance, and not across a superconducting wire 2. Consequently, electrical field is generated within the cross section of the superconductor, due to the interaction of current and magnetic field. In this case, the copper 1 and the aluminum 4 are electrically isolated from each other with an insulation material 8 and, therefore, no current is generated within the section, thereby reducing the calorific value of generated heat. As a result, the superconductor returns to superconducting state and allows electrical current to flow as original.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、複数種類の安定化材
を備えて構成される超電導導体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting conductor including a plurality of types of stabilizing materials.

【0002】[0002]

【従来の技術】図7は、例えば「第43回(1990
年)春季低温工学・超電導学会予稿集48頁」に示され
た従来の超電導導体を示す断面図であり、図において、
符号1は安定化材としての銅、2は超電導素線、3は多
数の超電導素線2を撚り合わせて形成された超電導撚
線、4と5は安定化材としてのアルミニウムと銅、6は
アルミニウムと銅とからなる安定化材として複合金属、
そして、符号7はこれらの素材を接合する鉛錫はんだで
ある。
2. Description of the Related Art FIG.
(Year) Spring Low Temperature Engineering / Superconductivity Society Proceedings page 48 "is a cross-sectional view showing a conventional superconducting conductor.
Reference numeral 1 is copper as a stabilizing material, 2 is a superconducting element wire, 3 is a superconducting twisted wire formed by twisting a number of superconducting element wires 2, 4 and 5 are aluminum and copper as a stabilizing material, and 6 is Composite metal as a stabilizing material consisting of aluminum and copper,
Reference numeral 7 is lead-tin solder that joins these materials.

【0003】このような構成において、超電導導体は液
体ヘリウム等の冷媒によって約−267℃の極低温に冷
却されると、超電導素線2が超電導状態となるため、抵
抗損失無しで電流を流すことができる。また、この性質
を利用して超電導導体を巻回して磁界を発生するマグネ
ットを製作し、超電導導体に電流を流すと、通電中は、
外部磁界および超電導導体自身に流れる電流によって電
磁力が働き、このために導体が動いたりすると、そのと
きの摩擦によって発熱し、瞬間的に超電導導体の温度が
上昇して常電導状態に至る場合がある。
In such a structure, when the superconducting conductor is cooled to a cryogenic temperature of about -267 ° C. by a coolant such as liquid helium, the superconducting element wire 2 is in a superconducting state, so that current can flow without resistance loss. You can Also, by utilizing this property, a magnet that generates a magnetic field by winding a superconducting conductor is manufactured, and when a current is passed through the superconducting conductor,
Electromagnetic force is generated by the external magnetic field and the current flowing through the superconducting conductor itself, and if the conductor moves for this reason, heat may be generated due to friction at that time, and the temperature of the superconducting conductor may momentarily rise to the normal conducting state. is there.

【0004】このとき、電流は超電導素線2を流れない
で電気抵抗の小さいアルミニウム4または銅1および5
を流れる。このとき、アルミニウム4または銅1および
5は常電導物質であるため、抵抗損失による発熱を免れ
ないが、発熱量が冷媒によって除去可能な、超電導導体
の温度が超電導状態に復帰できる程度の極僅かであれ
ば、超電導導体は再度超電導状態となり、元のように通
電可能になる。
At this time, the current does not flow through the superconducting element wire 2 and aluminum 4 or copper 1 and 5 having a small electric resistance.
Flowing through. At this time, since aluminum 4 or copper 1 and 5 are normally conductive substances, they are inevitable to generate heat due to resistance loss. In that case, the superconducting conductor is brought into a superconducting state again and can be energized as before.

【0005】なお、上記記載では、外部磁界と超電導導
体に流れる電流による電磁力によって、超電導導体に常
電状態が発生する場合について説明したが、外部の変動
磁界による渦電流による発熱や外部からの機械的騒乱に
よっても常電状態が発生する場合があり、この場合に
も、同様の動作により超電導導体は再度、超電導状態と
なり、元のように通電可能になる。
In the above description, the case where a normal state is generated in the superconducting conductor due to the electromagnetic force due to the external magnetic field and the current flowing in the superconducting conductor has been described. A normal state may occur due to mechanical disturbance, and in this case as well, the same operation causes the superconducting conductor to be in the superconducting state again, and the current can be supplied as before.

【0006】実際、高純度アルミニウムの極低温下の電
気抵抗率は1×10-11 Ωmであり、また、電気銅の電
気抵抗率は1×10-10 Ωmと非常に小さく、導体を適
当な断面積にすれば、前記のように超電導導体が例え一
旦常電状態になったとしても超電導状態に復帰する。
Actually, the electric resistivity of high-purity aluminum at cryogenic temperature is 1 × 10 -11 Ωm, and the electric resistivity of electrolytic copper is very small, 1 × 10 -10 Ωm, and a suitable conductor is used. With the cross-sectional area, even if the superconducting conductor is once in the normal state as described above, it returns to the superconducting state.

【0007】[0007]

【発明が解決しようとする課題】従来の超電導導体は以
上のように構成されているので、冷却状態では電気抵抗
損失の無い状態で電流を流すことができるが、外部から
印加された磁界がある場合、なんらかの騒乱によって超
電導導体の温度が上がって常電状態になり、安定化材に
電流が流れる状態になったとき、安定化材に流れる電流
と磁界との相互作用によって超電導導体の断面内に電界
が生ずる(ホール効果)。
Since the conventional superconducting conductor is constructed as described above, it is possible to pass an electric current in a cooled state without electric resistance loss, but there is a magnetic field applied from the outside. In this case, when the temperature of the superconducting conductor rises to the normal state due to some disturbance and a current flows in the stabilizing material, the interaction between the current flowing in the stabilizing material and the magnetic field causes Electric field is generated (Hall effect).

【0008】このとき、安定化材として全て同質の金属
が使用されている場合には、一様な電界が生ずるのみ
で、特に支障を来すことはないが、安定化材の材質が異
なると、生ずる磁界も異なるので、超電導導体の断面内
を循環する電流が発生し、その結果、冷媒では対処でき
ないほどに発熱量が増大するという課題があった。
At this time, when all the same metals are used as the stabilizing material, a uniform electric field is generated and no particular trouble is caused, but if the stabilizing material is different. Since the generated magnetic fields are also different, a current is circulated in the cross section of the superconducting conductor, and as a result, there is a problem that the amount of heat generation increases to the extent that the refrigerant cannot handle it.

【0009】この発明は、上記のような課題を解決する
ためになされたもので、常電状態での発熱量(電気抵抗
損失)を可能な限り低減すると共に一旦常電導状態にな
った超電導導体の超電導状態への復帰を容易にすること
を可能にした超電導導体を提供することを目的とする。
The present invention has been made to solve the above problems, and reduces the heat generation amount (electrical resistance loss) in the normal state as much as possible and at the same time sets the superconducting conductor into the normal conducting state. It is an object of the present invention to provide a superconducting conductor capable of easily returning to the superconducting state of.

【0010】[0010]

【課題を解決するための手段】この発明に係る請求項第
1項記載の超電導導体は、安定化材間の境界の一部を前
記安定化材間の電流の流れを遮る絶縁材または前記安定
化材間の電流の流れを抑制する、高抵抗率を有する金属
で区切ることにより構成されている。
According to a first aspect of the present invention, there is provided a superconducting conductor, wherein a part of a boundary between the stabilizing materials is an insulating material which blocks a current flow between the stabilizing materials or the stabilizing material. It is configured by partitioning with a metal having a high resistivity that suppresses the flow of current between the chemicals.

【0011】また、この発明に係る請求項第2項記載の
超電導導体は、安定化材間の境界の全周を前記安定化材
間の電流の流れを抑制する、高抵抗率を有する金属で区
切ることにより構成されている。
A superconducting conductor according to a second aspect of the present invention is a metal having a high resistivity that suppresses a current flow between the stabilizing materials along the entire circumference of the boundary between the stabilizing materials. It is composed by dividing it.

【0012】[0012]

【作用】この発明に係る請求項第1項記載の超電導導体
おいては、安定化材間の境界に設けられた絶縁材または
高抵抗率を有する金属によって超電導導体の断面内に発
生する循環電流が遮られるか、または著しく抑制される
ので、超電導導体が常電状態になったときに発生する熱
量がきわめて小さく、したがって、冷媒によって容易に
超電導状態に復帰される。
In the superconducting conductor according to the first aspect of the present invention, the circulating current generated in the cross section of the superconducting conductor by the insulating material or the metal having high resistivity provided at the boundary between the stabilizing materials. Is blocked or significantly suppressed, the amount of heat generated when the superconducting conductor is in the normal state is extremely small, and therefore the refrigerant is easily returned to the superconducting state.

【0013】また、この発明に係る請求項第2項記載の
超電導導体おいては、安定化材間の境界に設けられた絶
縁材または高抵抗率を有する金属によって、さらに、超
電導導体の剛性の向上が図れる。
In the superconducting conductor according to the second aspect of the present invention, the rigidity of the superconducting conductor can be further improved by the insulating material or the metal having a high resistivity provided at the boundary between the stabilizing materials. Can be improved.

【0014】[0014]

【実施例】【Example】

実施例1.図1は、この発明に係る請求項第1項記載の
超電導導体の第1実施例の断面図であり、図において、
前記従来例と同一部分および相当する部分は、同一符号
を付し、その説明を省略する。符号8は銅1とアルミニ
ウム4間の電気的接続を絶縁する絶縁材である。
Example 1. 1 is a sectional view of a first embodiment of a superconducting conductor according to claim 1 of the present invention.
The same parts and corresponding parts as those of the conventional example are designated by the same reference numerals, and the description thereof will be omitted. Reference numeral 8 is an insulating material that insulates the electrical connection between the copper 1 and the aluminum 4.

【0015】絶縁材8は銅1とアルミニウム4との境界
に介在され、この絶縁材8によって銅1とアルミニウム
4間の電流の流れが遮断されている。絶縁材8には、超
電導導体の製造時の温度に充分耐えられるもの、例えば
ポリアミド樹脂、セラミックス等が使用されている。
The insulating material 8 is interposed at the boundary between the copper 1 and the aluminum 4, and the insulating material 8 blocks the current flow between the copper 1 and the aluminum 4. As the insulating material 8, a material that can sufficiently withstand the temperature at the time of manufacturing the superconducting conductor, such as polyamide resin or ceramics, is used.

【0016】このような構成において、超電導導体は液
体ヘリウム等の冷媒によって約−267℃の極低温に冷
却されると、超電導素線2が超電導状態となるため、抵
抗損失無しで電流を流すことができる。また、この性質
を利用して超電導導体を巻回して磁界を発生するマグネ
ットを製作し、超電導導体に電流を流すと、通電中は、
外部磁界および超電導導体自身に流れる電流によって電
磁力が働き、このために導体が動いたりすると、そのと
きの摩擦によって発熱し、瞬間的に超電導導体の温度が
上昇して常電導状態となる場合がある。
In such a structure, when the superconducting conductor is cooled to a cryogenic temperature of about -267 ° C. by a coolant such as liquid helium, the superconducting element wire 2 is in a superconducting state, so that current can flow without resistance loss. You can Also, by utilizing this property, a magnet that generates a magnetic field by winding a superconducting conductor is manufactured, and when a current is passed through the superconducting conductor,
Electromagnetic force is generated by the external magnetic field and the current flowing in the superconducting conductor itself, and when the conductor moves due to this, heat is generated due to the friction at that time, and the temperature of the superconducting conductor may momentarily rise to the normal conducting state. is there.

【0017】このとき、電流は超電導素線2を流れない
で電気抵抗の小さいアルミニウム4または銅線1および
5を流れる。アルミニウム4または銅1および5は常電
導物質であるため、抵抗損失によって発熱するを免れな
い。また、磁界中で銅1と5およびアルミニウム4に電
流が流れるため、電流と磁界との相互作用(ホール効
果)によって超電導導体の断面内に電界が生ずる。
At this time, the current does not flow through the superconducting element wire 2 but through the aluminum 4 or copper wires 1 and 5 having a low electric resistance. Since aluminum 4 or copper 1 and 5 are normally conductive substances, they are inevitably heated by resistance loss. Further, since a current flows through the copper 1 and 5 and the aluminum 4 in the magnetic field, an electric field is generated in the cross section of the superconducting conductor due to the interaction between the current and the magnetic field (Hall effect).

【0018】しかし、銅線とアルミニウム4との境界に
絶縁材8が介在され、この絶縁材8によって銅1とアル
ミニウム4とが電気的に絶縁されているので、断面内に
は電流は生じず、絶縁物を介在しない場合より発熱量は
小さい。このときの熱量が冷媒によって除去でき、超電
導導体の温度が超電導状態に復帰できる程度のごく僅か
な量であれば、超電導導体は再度超電導状態となり、も
とのように通電でき、したがって、冷却状態で安定して
電流を流すことができる。
However, since the insulating material 8 is interposed at the boundary between the copper wire and the aluminum 4 and the insulating material 8 electrically insulates the copper 1 and the aluminum 4, no current is generated in the cross section. The amount of heat generated is smaller than that without an insulator. If the amount of heat at this time can be removed by the refrigerant and the temperature of the superconducting conductor is such a small amount that it can return to the superconducting state, the superconducting conductor becomes the superconducting state again and can be energized as before, and therefore, the cooling state. With this, a stable current can be passed.

【0019】また、外部から印加された磁界がある場
合、なんらかの騒乱によって超電導導体の温度が上がっ
て常電状態になり、安定化材として銅1,5およびアル
ミニウム4に電流が流れる状態になったとき、安定化材
に流れる電流と磁界との相互作用によって超電導導体の
断面内に電界が生じた(ホール効果)としても、安定化
材としての銅1とアルミニウム4との境界に絶縁材8が
介在されているので、超電導導体の断面内に電流が生じ
ず、したがって発熱もないので、安定性が低下するとい
うことはない。
When there is a magnetic field applied from the outside, the temperature of the superconducting conductor rises to a normal state due to some disturbance, and a current flows in the copper 1, 5 and aluminum 4 as a stabilizing material. At this time, even if an electric field is generated in the cross section of the superconducting conductor (Hall effect) due to the interaction between the current flowing through the stabilizing material and the magnetic field, the insulating material 8 is formed at the boundary between the copper 1 and the aluminum 4 as the stabilizing material. Since it is interposed, no current is generated in the cross section of the superconducting conductor, and therefore, there is no heat generation, so that stability is not reduced.

【0020】実施例2.図2はこの発明に係る請求項第
1項記載の超電導導体の第2実施例を示したものであ
り、図において、実施例1と同一部分および相当する部
分には同一符号を付しその説明を省略する。符号9は安
定化材としてのアルミニウム、10はアルミニウム9と
銅1間およびアルミニウム9,9間の電気的接続を絶縁
する絶縁材である。
Example 2. FIG. 2 shows a second embodiment of the superconducting conductor according to the first aspect of the present invention. In the figure, the same parts as those of the first embodiment and the corresponding parts are designated by the same reference numerals and their description is omitted. Is omitted. Reference numeral 9 is aluminum as a stabilizing material, and 10 is an insulating material for insulating electrical connection between the aluminum 9 and the copper 1 and between the aluminum 9 and 9.

【0021】アルミニウム9は超電導素線2の周囲に上
下・左右にそれぞれ対称に複数本設置され、絶縁材10
はアルミニウム9と銅1間および隣合うアルミニウム
9,9間の境界にそれぞれ介在されている。また、絶縁
材10はアルミニウム9と同様に超電導素線2の周囲に
上下・左右にそれぞれ対称に設置されている。
A plurality of aluminums 9 are vertically and horizontally symmetrically provided around the superconducting wire 2, and the insulating material 10 is used.
Are interposed between the aluminum 9 and the copper 1 and at the boundaries between the adjacent aluminum 9 and 9, respectively. Further, the insulating material 10 is vertically and horizontally symmetrically installed around the superconducting element wire 2 like the aluminum 9.

【0022】この実施例によれば、アルミニウム9が超
電導導体の断面内に複数本あってもアルミニウム9と銅
1間および隣合うアルミニウム9,9間の境界に絶縁材
10が介在されていれば、実施例1と同様の効果を奏す
る。また、アルミニウム9および絶縁材10が超電導導
体の断面内に対称に配置されているので、コイルを巻回
するときに超電導導体の曲げ方向によって曲げ特性が変
わることがなく、曲げ加工がし易いという効果がある。
According to this embodiment, even if there are a plurality of aluminums 9 in the cross section of the superconducting conductor, if the insulating material 10 is provided at the boundary between the aluminum 9 and the copper 1 and the adjacent aluminums 9 and 9. The same effect as the first embodiment is obtained. Moreover, since the aluminum 9 and the insulating material 10 are symmetrically arranged in the cross section of the superconducting conductor, the bending characteristics do not change depending on the bending direction of the superconducting conductor when the coil is wound, and the bending process is easy. effective.

【0023】実施例3.図3はこの発明に係る請求項第
1項記載の超電導導体の第3実施例を示したものであ
り、図において、実施例1と同一部分および相当する部
分には同一符号を付しその説明を省略する。符号11は
アルミニウム4と銅1間の電流の流れを可能な限り抑制
する高抵抗率を有する金属である。高抵抗率を有する金
属材11には、例えば銅ニッケル合金のような極低温に
おける電気抵抗率が銅の1000倍程度有するものが使
用されている。
Example 3. FIG. 3 shows a third embodiment of the superconducting conductor according to the first aspect of the present invention. In the figure, the same parts as those of the first embodiment and the corresponding parts are designated by the same reference numerals and their description is omitted. Is omitted. Reference numeral 11 is a metal having a high resistivity that suppresses the current flow between the aluminum 4 and the copper 1 as much as possible. As the metal material 11 having a high resistivity, for example, a copper-nickel alloy having an electrical resistivity at extremely low temperatures of about 1000 times that of copper is used.

【0024】この実施例によれば、超電導導体の断面内
の電流を実質的に0とすることができ、絶縁材を使用し
たのと同等の効果を奏すると共に、鉛錫ハンダによる超
電導導体の接合が改善でき、さらに、超電導導体の剛性
を高めることができるという効果がある。なお、高抵抗
率を有する金属材としては、銅ニッケル合金に限られる
ものではなく、電気抵抗率の高い性質を有するステンレ
ス鋼を使用しても同様の効果を奏し、さらに、ステンレ
ス鋼として非磁性ステンレス鋼を使用すれば、超電導導
体によって構成されるコイルは磁界精度の良好なものが
得られるという効果がある。
According to this embodiment, the current in the cross section of the superconducting conductor can be made substantially zero, and the same effect as using the insulating material is obtained, and the superconducting conductor is joined by the lead-tin solder. And the rigidity of the superconducting conductor can be increased. The metal material having a high resistivity is not limited to the copper-nickel alloy, and the same effect can be obtained even if stainless steel having a property of high electrical resistivity is used. If stainless steel is used, there is an effect that a coil constituted by a superconducting conductor can have good magnetic field accuracy.

【0025】実施例4.図4はこの発明に係る請求項第
2項記載の超電導導体の第1実施例を示したものであ
り、図において、実施例1と同一部分および相当する部
分には同一符号を付し、その説明を省略する。符号12
はアルミニウム4と超電導素線2および銅1間の電流の
流れを可能な限り抑制する高抵抗率を有する金属材であ
る。高抵抗率を有する金属12はアルミニウム4の周囲
を超電導素線2および銅1と完全に仕切るように介在さ
れている。
Example 4. FIG. 4 shows a first embodiment of the superconducting conductor according to the second aspect of the present invention. In the figure, the same parts as those of the first embodiment and the corresponding parts are designated by the same reference numerals, and The description is omitted. Code 12
Is a metal material having a high resistivity that suppresses the flow of current between the aluminum 4, the superconducting element wire 2 and the copper 1 as much as possible. The metal 12 having a high resistivity is interposed so as to completely separate the periphery of the aluminum 4 from the superconducting element wire 2 and the copper 1.

【0026】この実施例によれば、高抵抗率を有する金
属材12がアルミニウム4の周囲を完全に取り巻くよう
に設置されているので、超電導導体の剛性がより高めら
れるという効果がある。なお、超電導導体の断面寸法に
比べて超電導導体の長さは十分に長いので、安定化材と
してのアルミニウム4の周囲の全てに高抵抗率の金属1
2が介在されていても、超電導導体が常電状態になった
場合に超電導素線からアルミニウム4に電流が移行する
のに問題はない。
According to this embodiment, since the metal material 12 having a high resistivity is installed so as to completely surround the periphery of the aluminum 4, there is an effect that the rigidity of the superconducting conductor can be further enhanced. Since the length of the superconducting conductor is sufficiently long as compared with the cross-sectional dimension of the superconducting conductor, the metal 1 having a high resistivity all around the aluminum 4 as the stabilizing material.
Even if 2 is interposed, there is no problem in transferring the current from the superconducting element wire to the aluminum 4 when the superconducting conductor is in the normal state.

【0027】実施例5.図5はこの発明に係る請求項第
2項記載の第2実施例を示したものであり、図におい
て、実施例1と同一部分および相当する部分には同一符
号を付し、その説明を省略する。符号13は超電導導体
の断面内の電流の流れを可能な限り抑制する高抵抗率を
有するの金属材である。高抵抗率を有する金属13は銅
1の断面内に、図上、上下方向への電流の流れを遮るよ
うに設置されている。
Example 5. FIG. 5 shows a second embodiment according to the second aspect of the present invention. In the drawing, the same parts and corresponding parts as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. To do. Reference numeral 13 is a metal material having a high resistivity that suppresses the flow of current in the cross section of the superconducting conductor as much as possible. The metal 13 having a high resistivity is installed in the cross section of the copper 1 so as to block the current flow in the vertical direction in the figure.

【0028】この実施例にれば、安定化材としてのアル
ミニウム4と超電導素線2間の電気的接続を確保しつ
つ、超電導導体断面内の電流の流れを抑制して安定性を
確保できるという効果がある。
According to this embodiment, it is possible to secure the electrical connection between the aluminum 4 as the stabilizing material and the superconducting element wire 2 while suppressing the current flow in the cross section of the superconducting conductor to ensure the stability. effective.

【0029】実施例6.図6はこの発明に係る請求項第
2項記載の第3実施例を示したものであり、図におい
て、実施例1と同一部分および相当する部分には同一符
号を付し、その説明を省略する。符号14は安定化材と
してのアルミニウム、15はアルミニウム14と超電導
素線2および銅1間の電流の流れを可能な限り抑制する
高抵抗率を有する金属である。
Example 6. FIG. 6 shows a third embodiment according to the second aspect of the present invention. In the drawing, the same parts and corresponding parts as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. To do. Reference numeral 14 is aluminum as a stabilizing material, and 15 is a metal having a high resistivity that suppresses a current flow between the aluminum 14 and the superconducting element wire 2 and the copper 1 as much as possible.

【0030】アルミニウム14は小断面に形成され、複
数個設置されている。また、高抵抗率を有する金属15
は各アルミニウム14の周囲に、アルミニウム14を完
全に取り巻くようにそれぞれ設置されている。この実施
例にれば、アルミニウム14と高抵抗率を有する金属材
15のそれぞれの断面が小さいので、部品の単長が長く
取れ、長尺の超電導導体を製造できるという効果があ
る。
The aluminum 14 is formed in a small cross section and a plurality of aluminum 14 are installed. In addition, the metal 15 having a high resistivity
Are installed around each aluminum 14 so as to completely surround the aluminum 14. According to this embodiment, since the aluminum 14 and the metal material 15 having a high resistivity have small cross sections, the single length of the component can be made long, and a long superconducting conductor can be manufactured.

【0031】[0031]

【発明の効果】この発明に係る請求項第1項記載の超電
導導体は以上のように構成され、安定化材間の境界の一
部を、前記安定化材間の電流の流れを遮る絶縁材または
前記安定化材間の電流の流れを抑制する、高抵抗率を有
する金属で区切られているので、超電導導体が一時的に
常電状態になったとしても、超電導導体の断面内を流れ
る電流は全くないか、あってもきわめて少ないので、抵
抗損失による発熱量がきわめて少なく安定な超電導導体
が得られる効果がある。
The superconducting conductor according to claim 1 of the present invention is constructed as described above, and an insulating material for blocking a part of the boundary between the stabilizing materials from the flow of current between the stabilizing materials. Or, the current flowing in the cross section of the superconducting conductor is suppressed even if the superconducting conductor is temporarily in a normal state because it is separated by a metal having a high resistivity, which suppresses the current flow between the stabilizing materials. Since there is no or very little, there is an effect that a stable superconducting conductor can be obtained with very little heat generation due to resistance loss.

【0032】また、請求項第2項記載の超電導導体によ
れば、安定化材間の境界の全周を、前記安定化材間の電
流の流れを抑制する、高抵抗率を有する金属で区切られ
ているので、前記効果に加え、さらに剛性の高い超電導
導体が得られる効果がある。
According to the superconducting conductor of the second aspect, the entire circumference of the boundary between the stabilizing materials is separated by a metal having a high resistivity, which suppresses the current flow between the stabilizing materials. Therefore, in addition to the above effects, there is an effect that a superconducting conductor having higher rigidity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る請求項第1項記載の超電導導体
の第1実施例を示す断面図である。
FIG. 1 is a sectional view showing a first embodiment of a superconducting conductor according to the first aspect of the present invention.

【図2】この発明に係る請求項第1項記載の超電導導体
の第2実施例を示す断面図である。
FIG. 2 is a sectional view showing a second embodiment of the superconducting conductor according to the first aspect of the present invention.

【図3】この発明に係る請求項第1項記載の超電導導体
の第3実施例を示す断面図である。
FIG. 3 is a sectional view showing a third embodiment of the superconducting conductor according to the first aspect of the present invention.

【図4】この発明に係る請求項第2項記載の超電導導体
の第1実施例を示す断面図である。
FIG. 4 is a sectional view showing a first embodiment of a superconducting conductor according to claim 2 of the present invention.

【図5】この発明に係る請求項第2項記載の超電導導体
の第2実施例を示す断面図である。
FIG. 5 is a sectional view showing a second embodiment of the superconducting conductor according to the second aspect of the present invention.

【図6】この発明に係る請求項第2項記載の超電導導体
の第3実施例を示す断面図である。
FIG. 6 is a sectional view showing a third embodiment of the superconducting conductor according to the second aspect of the present invention.

【図7】従来の超電導導体を示す断面図である。FIG. 7 is a cross-sectional view showing a conventional superconducting conductor.

【符号の説明】[Explanation of symbols]

1 銅(安定化材) 4 アルミニウム(安定化材) 5 銅(安定化材) 8 絶縁材 9 アルミニウム(安定化材) 10 絶縁材 11 高抵抗率を有する金属 12 高抵抗率を有する金属 13 高抵抗率を有する金属 14 アルミニウム(安定化材) 15 高抵抗率を有する金属 1 Copper (Stabilizing Material) 4 Aluminum (Stabilizing Material) 5 Copper (Stabilizing Material) 8 Insulating Material 9 Aluminum (Stabilizing Material) 10 Insulating Material 11 Metal with High Resistivity 12 Metal with High Resistivity 13 High Metal with resistivity 14 Aluminum (stabilizer) 15 Metal with high resistivity

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数種類の安定化材を備えて構成される
超電導導体において、前記安定化材間の境界の一部を、
前記安定化材間の電流の流れを遮る絶縁材または前記安
定化材間の電流の流れを抑制する、高抵抗率を有する金
属で区切ったことを特徴とする超電導導体。
1. In a superconducting conductor including a plurality of types of stabilizing materials, a part of the boundary between the stabilizing materials is
A superconducting conductor characterized by being separated by an insulating material that blocks a current flow between the stabilizing materials or a metal having a high resistivity that suppresses a current flow between the stabilizing materials.
【請求項2】 複数種類の安定化材を備えて構成される
超電導導体において、前記安定化材間の境界の全周を、
前記安定化材間の電流の流れを抑制する、高抵抗率を有
する金属で区切ったことを特徴とする超電導導体。
2. In a superconducting conductor including a plurality of types of stabilizing materials, the entire circumference of the boundary between the stabilizing materials is
A superconducting conductor characterized by being separated by a metal having a high resistivity, which suppresses a current flow between the stabilizing materials.
JP4192296A 1992-07-20 1992-07-20 Superconductor Pending JPH0636625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4192296A JPH0636625A (en) 1992-07-20 1992-07-20 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4192296A JPH0636625A (en) 1992-07-20 1992-07-20 Superconductor

Publications (1)

Publication Number Publication Date
JPH0636625A true JPH0636625A (en) 1994-02-10

Family

ID=16288919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4192296A Pending JPH0636625A (en) 1992-07-20 1992-07-20 Superconductor

Country Status (1)

Country Link
JP (1) JPH0636625A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852396A (en) * 1971-11-01 1973-07-23
JPS52135291A (en) * 1976-05-06 1977-11-12 Hitachi Cable Ltd Compound based superconductive wire material
JPS599809A (en) * 1982-07-09 1984-01-19 株式会社日立製作所 Superconductive conductor
JPH03150806A (en) * 1989-11-08 1991-06-27 Toshiba Corp Superconductor
JPH03192611A (en) * 1989-12-20 1991-08-22 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Aluminum stabilizing superconducting wire
JPH05182536A (en) * 1991-10-30 1993-07-23 Hitachi Cable Ltd Superconductor and stabilizing member used therein

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852396A (en) * 1971-11-01 1973-07-23
JPS52135291A (en) * 1976-05-06 1977-11-12 Hitachi Cable Ltd Compound based superconductive wire material
JPS599809A (en) * 1982-07-09 1984-01-19 株式会社日立製作所 Superconductive conductor
JPH03150806A (en) * 1989-11-08 1991-06-27 Toshiba Corp Superconductor
JPH03192611A (en) * 1989-12-20 1991-08-22 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Aluminum stabilizing superconducting wire
JPH05182536A (en) * 1991-10-30 1993-07-23 Hitachi Cable Ltd Superconductor and stabilizing member used therein

Similar Documents

Publication Publication Date Title
EP0139189B2 (en) A persistent current switch for high energy superconductive solenoids
JP2007158292A (en) Resistive superconducting fault current limiter
US3332047A (en) Composite superconductor
US5038127A (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
US4409425A (en) Cryogenically stabilized superconductor in cable form for large currents and alternating field stresses
US3427391A (en) Composite superconductive conductor
KR100742499B1 (en) Core of magentic shield type superconducting cable and superconducting cable having the same
US4395584A (en) Cable shaped cryogenically cooled stabilized superconductor
Verhaege et al. A new class of AC superconducting conductors
JPH0636625A (en) Superconductor
US11527885B2 (en) Superconducting fault current limiter
JP3174577B2 (en) Current distribution between each strand of superconducting winding
JP2533119B2 (en) Superconducting device for short circuit suppression
JP3286036B2 (en) Forced cooling type superconducting conductor
US3504314A (en) Composite superconductive conductor
EP0067330B2 (en) Coil for a superconducting magnet device
JPS603545Y2 (en) superconducting winding
JP3147577B2 (en) Superconducting magnet
JP3363164B2 (en) Superconducting conductor
JPH05109323A (en) Superconductive assembled conductor
JPS5923406B2 (en) superconducting wire
JPS5948487B2 (en) Composite superconducting wire
KR100722367B1 (en) Superconducting power cable and a manufacturing method thereof
JPH06224037A (en) Superconducting coil
JPH0714441A (en) Superconducting cable