JPH03150806A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH03150806A
JPH03150806A JP28874989A JP28874989A JPH03150806A JP H03150806 A JPH03150806 A JP H03150806A JP 28874989 A JP28874989 A JP 28874989A JP 28874989 A JP28874989 A JP 28874989A JP H03150806 A JPH03150806 A JP H03150806A
Authority
JP
Japan
Prior art keywords
superconductor
superconducting
monolithic
superconducting wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28874989A
Other languages
Japanese (ja)
Inventor
Kotaro Hamashima
浜島 高太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28874989A priority Critical patent/JPH03150806A/en
Publication of JPH03150806A publication Critical patent/JPH03150806A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a superconductor with less degradation due to strain, with good superconducting characteristics, and with good cryogenic stability in high flux density by arranging superconducting monolithic wire and stabilizer symmetrically with respect to a neutral axis. CONSTITUTION:Superconducting monolithic wire 1 is composed of thin superconducting conductors of NbTi or Nb3Sn. The monolithic wire and a stabilizer 2 of 99.99% or purer aluminum are set in two-piece copper housing 3 made of oxygen free copper. The conductors are arranged symmetrically with respect to a neutral axis and joined by soldering to form a superconductor. Since the bending strain caused by winding the conductor is substantially equal on both sides of the superconductor 1, a minimized strain is suffered, thereby minimizing the degradation of superconducting characteristics due to the strain. It is possible to provide a superconductor which has good cryogenic stability and good superconducting characteristics.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は大型マグネットや高磁界マグネット等に用いる
超電導4体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to four superconducting bodies used in large magnets, high magnetic field magnets, and the like.

(従来の技術) 超電導線は一般に安定化のためにNbTiフィラメント
の周囲に安定化材を用いている*  Nb3Sn超電導
線の場合も製造方法によって異なるが、線材の構成要素
として安定化材を用いている。安定化材には無酸素鋼を
用いる場合が多いが、低温工学Vo(!、14  No
5 (1979) P231〜235に示されている様
に銅クラッドの高純度アルミニウムを用いる場合もある
。特に高磁界下では99.99%以上の純度をもつ高純
度アルミニウムは無酸素銅と比較して抵抗率が低いため
極低温下での安定性が良いという利点がもつ。
(Prior technology) Superconducting wires generally use a stabilizing material around the NbTi filament for stabilization.*Although it differs depending on the manufacturing method in the case of Nb3Sn superconducting wires, stabilizing materials are used as a component of the wire. There is. Oxygen-free steel is often used as a stabilizing material, but cryogenic engineering Vo (!, 14 No.
5 (1979) P231-235, copper-clad high-purity aluminum may be used. In particular, under a high magnetic field, high-purity aluminum with a purity of 99.99% or more has a lower resistivity than oxygen-free copper, so it has the advantage of good stability under extremely low temperatures.

一方、核融合炉などに用いる大型マグネットでは、コイ
ル保護のために電流8景の大きな導体が要求される。さ
らに、電磁力の大きなマグネットでは、導体に強度が要
求される。従って大型マグネットに使用される導体は、
モノリシックな超電導線、あるいは細い超電導線を多数
本撚り合わせ後成形加工した圧縮成形撚線などを無酸素
銅などのハウジングの中に納めた構成のものが多い、超
電導線はNbTiあるいは高磁界中ではNb、 Snを
用いる。銅ハウジングは半硬化材で機械的強度が高いも
のが良い。
On the other hand, large magnets used in nuclear fusion reactors and the like require conductors with a large current capacity of 8 to protect the coils. Furthermore, magnets with large electromagnetic force require strong conductors. Therefore, the conductor used in large magnets is
Most of the structures consist of a monolithic superconducting wire or a compression-molded stranded wire made by twisting and forming a large number of thin superconducting wires and encasing it in a housing made of oxygen-free copper or the like. Nb and Sn are used. The copper housing should be a semi-hardened material with high mechanical strength.

また、高磁界中で使用する大容景超電導々体では、高純
度アルミニウムを安定化材の一部に使用すると、高純度
アルミニウムの抵抗率が低いため。
In addition, in large-capacity superconductors used in high magnetic fields, high-purity aluminum is used as part of the stabilizing material because high-purity aluminum has low resistivity.

導体の安定性がよい、その−例として、特公昭62−6
2001に示される如く、門型の銅ハウジングの中に、
モノリシック超電導線を入れ、銅クラッドアルミニウム
で蓋をし半田で接着した構成のものがある。
The stability of the conductor is good, for example,
As shown in 2001, in a gate-shaped copper housing,
There is a structure in which a monolithic superconducting wire is inserted, the lid is made of copper-clad aluminum, and it is bonded with solder.

(発明が解決しようとするR題) しかし、この様な構成の導体は超電導線、#4、アルミ
ニウム等が巻線時の中立軸に対称に配置されていないた
め、マグネットを製作する際に行なう巻線過程時に1巻
線中立軸が導体断面の中央からずれ、更に、モノリシッ
ク超電導線の上下面は中立軸からの距離が異なるため、
上又は下に大きな曲げ歪が加わることになる。モノリシ
ック超電導線が歪に敏感なNb、 Sn極細多芯線など
で構成されている場合には、特に特性の劣化が大きくな
ることが心配される。
(Problem R to be solved by the invention) However, in a conductor with such a configuration, the superconducting wire, #4, aluminum, etc. are not arranged symmetrically with respect to the neutral axis during winding, so it is difficult to do this when manufacturing the magnet. During the winding process, the neutral axis of one winding deviates from the center of the conductor cross section, and furthermore, the upper and lower surfaces of the monolithic superconducting wire have different distances from the neutral axis.
A large bending strain will be applied above or below. If the monolithic superconducting wire is made of Nb or Sn ultrafine multifilamentary wires that are sensitive to strain, there is a particular concern that the deterioration of the characteristics will be significant.

本発明の目的はモノリシック超電導線と安定化材とをハ
ウジング内に配置する超電導4体において、歪による劣
化の少なく超電導特性が良くまた高磁界での極低温安定
性が良い超電導4体を提供することである。
An object of the present invention is to provide a superconducting four body in which a monolithic superconducting wire and a stabilizing material are arranged in a housing, which has good superconducting properties with little deterioration due to strain, and has good cryogenic stability in high magnetic fields. That's true.

(発明の構成〕 (課題を解決するための手段) 上記目的を達成するために1本発明においては、モノリ
シック超電導線と安定化材とをハウジングの中に半田付
等で接続し、一体止する超電導4体において、モノリシ
ック超電導線および安定化材を超電導4体の曲げの中立
軸に対して対称な位置に配置した超電導4体を提供する
(Structure of the Invention) (Means for Solving the Problems) In order to achieve the above object, in the present invention, a monolithic superconducting wire and a stabilizing material are connected in a housing by soldering or the like and fixed together. A superconducting four body is provided in which a monolithic superconducting wire and a stabilizing material are arranged at symmetrical positions with respect to a neutral axis of bending of the superconducting four body.

(作用) この様に構成することにより1巻線時にモノリシック超
電導線に加わる曲げ歪量は両側でほぼ同じとなり、片側
に過大な曲げ歪が加わらないため曲げ歪が最小で超電導
特性の良い超電導4体が得られる。
(Function) With this configuration, the amount of bending strain applied to the monolithic superconducting wire during one winding is almost the same on both sides, and since excessive bending strain is not applied to one side, the bending strain is minimal and the superconducting wire has good superconducting properties. You get a body.

(実施例1) 以下、本発明の第1の実施例を第1図および第2図を参
照して説明する。 NbTi超電導極細多芯線あるいは
Nb3Sn極細多芯線などから構成されるモノリシック
超電導線のと、安定化材としての99.99%以上の高
純度アルミニウム■とを、無酸素銅などからなる2つ割
の銅ハウジング■内に導体の中立軸に対して対称に配置
して半田付は等で接着して一体化した超電導4体を構成
する6次にこの実施例の作用を説明する。
(Example 1) Hereinafter, a first example of the present invention will be described with reference to FIGS. 1 and 2. A monolithic superconducting wire composed of NbTi superconducting ultrafine multifilamentary wire or Nb3Sn ultrafine multifilamentary wire, etc., and high purity aluminum of 99.99% or more as a stabilizing material, are combined with halved copper made of oxygen-free copper, etc. Four superconducting bodies are constructed by disposing them symmetrically with respect to the neutral axis of the conductor in the housing (1) and bonding them by soldering or the like.6 Next, the operation of this embodiment will be explained.

高純度アルミニウムは磁界が高くなるに従って極低温で
は銅より抵抗が低いため、高磁束での極低温安定性が良
くなる。また、導体を巻回する際に生じる曲げ歪はモノ
リシック超電導線の両側でほぼ等しくなるため、モノリ
シック超電導線は最小の曲げ歪を受けることになり、超
電導特性の歪による劣化が少ない。
High-purity aluminum has lower resistance than copper at cryogenic temperatures as the magnetic field increases, resulting in better cryogenic stability at high magnetic fluxes. Furthermore, since the bending strain that occurs when winding the conductor is approximately equal on both sides of the monolithic superconducting wire, the monolithic superconducting wire is subjected to the minimum bending strain, and the superconducting properties are less likely to deteriorate due to strain.

以上に述べた様に、この実施例によれば超電導4体の超
電導特性が良く、かつ、高磁界での極低温安定性の良い
超電導4体が得られる。
As described above, according to this embodiment, four superconducting bodies having good superconducting properties and good cryogenic stability in a high magnetic field can be obtained.

(実施例2) 本発明の第2の実施例を第3図および第4図に示す、高
純度アルミニウム■は銅ハウジング内にモノリシック超
電導線とは別に導体の中立軸に対して対称の位置に加工
された溝の中に半田等で接着される。
(Embodiment 2) A second embodiment of the present invention is shown in FIGS. 3 and 4, in which high-purity aluminum is placed in a copper housing separately from the monolithic superconducting wire at a symmetrical position with respect to the neutral axis of the conductor. It is bonded with solder etc. into the processed groove.

この様に構成すると、電磁力がモノリシック超電導線に
発生するが、その電磁力が直接高純度アルミニウムに作
用しないため、高純度アルミニウムは圧縮や変形等を受
けることがなくなる。従ってその圧縮や変形による高純
度アルミニウムの抵抗率の増加がなくなるため、高磁界
下での極低温安定性が一層良くなると同時に実施例1と
同様な作用効果が得られる。
With this configuration, electromagnetic force is generated in the monolithic superconducting wire, but since the electromagnetic force does not directly act on the high-purity aluminum, the high-purity aluminum is not subjected to compression or deformation. Therefore, since there is no increase in the resistivity of high-purity aluminum due to compression or deformation, cryogenic stability under a high magnetic field is further improved, and at the same time, the same effects as in Example 1 can be obtained.

(実施例3) 本発明の第3の実施例と第5図に示す。高純度アルミニ
ウムの芯(21)は銅または銅ニツケル合金の被m(2
2)でクラッドされる。
(Embodiment 3) A third embodiment of the present invention is shown in FIG. The high-purity aluminum core (21) is coated with copper or copper-nickel alloy (21).
2) is clad.

この様に構成しても実施例1と同様な作用効果が得られ
る。
Even with this configuration, the same effects as in the first embodiment can be obtained.

(実施例4) 本発明の第2の実施例を第6図に示す、超電導素線(1
1)を多数本撚り合わせ成形圧縮してモノリシック超電
導線■を構成する。
(Example 4) A second example of the present invention is shown in FIG.
A large number of strands of 1) are twisted together, molded and compressed to form a monolithic superconducting wire (■).

この様に構成しても、実施例1と同様な作用効果が得ら
れる。
Even with this configuration, the same effects as in the first embodiment can be obtained.

(実施例5) 本発明の第5の実施例を第7図に示す、モノリシック超
電導線■と高純度アルミニウム■の他に、ステンレス、
タングステン等の補強材に)も導体の曲げの中立軸に対
して対称な位置に配置する。
(Example 5) The fifth example of the present invention is shown in FIG. 7. In addition to monolithic superconducting wire ■ and high purity aluminum ■, stainless steel
Reinforcing materials such as tungsten) are also placed symmetrically with respect to the neutral axis of bending of the conductor.

この様に配置することにより、電磁力の大きな場合にも
有効となる他に、実施例1と同様な作用効果が得られる
By arranging it in this manner, it is effective even when the electromagnetic force is large, and the same effects as in the first embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、モノリシック超
電導線と安定化材をハウジング内に。
As explained above, according to the present invention, a monolithic superconducting wire and a stabilizing material are placed in a housing.

巻線の曲げ中立軸に対して対称に配置するので、極低温
安定性が良く、かつ、超電導特性の良い超電導4体を提
供することができる。
Since they are arranged symmetrically with respect to the bending neutral axis of the winding, it is possible to provide four superconducting bodies with good cryogenic stability and good superconducting properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図および第4図はそれぞれ本発明
の実施例の超電導導体の横断面図、第5図は上記実施例
に用いる高純度アルミニウム線の断面図、第6図はモノ
リシック超電導線の他の実施例を示す断面図、第7図は
さらに他の実施例の超電導導体の断面図である。 1・・・モノリシック超電導線 2・・・高純度アルミニウム 3・・・銅ハウジング    4・・・補強材11・・
・超電導索線
1, 2, 3, and 4 are cross-sectional views of superconducting conductors according to embodiments of the present invention, FIG. 5 is a sectional view of high-purity aluminum wires used in the above-mentioned embodiments, and FIG. 7 is a sectional view showing another embodiment of a monolithic superconducting wire, and FIG. 7 is a sectional view of a superconducting conductor of still another embodiment. 1... Monolithic superconducting wire 2... High purity aluminum 3... Copper housing 4... Reinforcement material 11...
・Superconducting cables

Claims (7)

【特許請求の範囲】[Claims] (1) モノリシック超電導線および安定化材をハウジ
ングの中に半田付等で接着して一体化する構成の超電導
々体において、上記超電導線および上記安定化材を導体
の曲げの中立軸に対して対称な位置に配置したことを特
徴とする超電導々体。
(1) In a superconductor configured by bonding and integrating a monolithic superconducting wire and a stabilizing material into a housing by soldering or the like, the superconducting wire and the stabilizing material are aligned with respect to the neutral axis of bending of the conductor. A superconductor characterized by being arranged in symmetrical positions.
(2) 安定化材は高純度アルミニウムからなり、ハウ
ジングは銅よりなることを特徴とする請求項(1)記載
の超電導々体。
(2) The superconductor according to claim 1, wherein the stabilizing material is made of high-purity aluminum and the housing is made of copper.
(3) 高純度アルミニウムは銅ハウジング内にモノリ
シック超電導線用の溝とは別の溝に半田等で接着したこ
とを特徴とする請求項2記載の超電導々体。
(3) The superconductor according to claim 2, wherein the high-purity aluminum is bonded by solder or the like to a groove other than the groove for the monolithic superconducting wire in the copper housing.
(4) 高純度アルミニウムはその表面が銅クラッド、
またはCuNiクラッドされていることを特徴とする請
求項(2)記載の超電導々体。
(4) High-purity aluminum has a copper-clad surface.
The superconductor according to claim 2, wherein the superconductor is clad with CuNi or CuNi.
(5) モノリシック超電導線はNbTiあるいはNb
_3Sn等の金属間化合物の極細多芯線あるいは酸化物
系超電導線で構成されていることを特徴とする請求項(
2)記載の超電導々体。
(5) Monolithic superconducting wire is NbTi or Nb
A claim characterized in that it is composed of an ultrafine multifilamentary wire or an oxide superconducting wire made of an intermetallic compound such as _3Sn (
2) The superconducting conductor described above.
(6) モノリシック超電導線はNbTiあるいはNb
_3Sn等の金属間化合物の極細多芯線を素線として、
その素線を多数本撚り合せた圧縮成形撚線で構成されて
いることを特徴とする請求項2記載の超電導々体。
(6) Monolithic superconducting wire is NbTi or Nb
_3Using an ultra-fine multifilamentary wire of an intermetallic compound such as Sn as a strand,
3. The superconductor according to claim 2, wherein the superconductor is composed of a compression-molded stranded wire obtained by twisting a large number of the strands together.
(7) ステンレス、タングステンなどからなる補強材
も導体の曲げの中立軸に対して対称に配置したことを特
徴とする請求項(1)記載の超電導々体。
(7) The superconductor according to claim (1), wherein the reinforcing material made of stainless steel, tungsten, etc. is also arranged symmetrically with respect to the neutral axis of bending of the conductor.
JP28874989A 1989-11-08 1989-11-08 Superconductor Pending JPH03150806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28874989A JPH03150806A (en) 1989-11-08 1989-11-08 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28874989A JPH03150806A (en) 1989-11-08 1989-11-08 Superconductor

Publications (1)

Publication Number Publication Date
JPH03150806A true JPH03150806A (en) 1991-06-27

Family

ID=17734206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28874989A Pending JPH03150806A (en) 1989-11-08 1989-11-08 Superconductor

Country Status (1)

Country Link
JP (1) JPH03150806A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0487353A2 (en) * 1990-11-22 1992-05-27 Kabushiki Kaisha Toshiba Superconductor wire and method of manufacturing the same
JPH0636625A (en) * 1992-07-20 1994-02-10 Mitsubishi Electric Corp Superconductor
EP0695026A2 (en) * 1991-06-28 1996-01-31 Hitachi, Ltd. Composite superconductor body and magnetic levitation system
CN102244457A (en) * 2010-05-14 2011-11-16 丰田自动车株式会社 Superconducting motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105211A (en) * 1982-12-07 1984-06-18 日立電線株式会社 Forcibly cooling superconductive conductor
JPS6229014A (en) * 1985-07-31 1987-02-07 株式会社東芝 Superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105211A (en) * 1982-12-07 1984-06-18 日立電線株式会社 Forcibly cooling superconductive conductor
JPS6229014A (en) * 1985-07-31 1987-02-07 株式会社東芝 Superconductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0487353A2 (en) * 1990-11-22 1992-05-27 Kabushiki Kaisha Toshiba Superconductor wire and method of manufacturing the same
US5442137A (en) * 1990-11-22 1995-08-15 Kabushiki Kaisha Toshiba Superconductor wire and method of manufacturing the same
EP0695026A2 (en) * 1991-06-28 1996-01-31 Hitachi, Ltd. Composite superconductor body and magnetic levitation system
EP0695026A3 (en) * 1991-06-28 1997-03-26 Hitachi Ltd Composite superconductor body and magnetic levitation system
JPH0636625A (en) * 1992-07-20 1994-02-10 Mitsubishi Electric Corp Superconductor
CN102244457A (en) * 2010-05-14 2011-11-16 丰田自动车株式会社 Superconducting motor

Similar Documents

Publication Publication Date Title
JPH0261764B2 (en)
JP4391403B2 (en) Magnesium diboride superconducting wire connection structure and connection method thereof
EP0067591A1 (en) Al-stabilized superconductor, and method of producing the same
EP0380115A2 (en) Oxide superconducting wire
JP2004528712A (en) Superconducting device
JPH0319675B2 (en)
JPH03150806A (en) Superconductor
US4586012A (en) Soldered superconductive coils for a pulse magnet
US4564564A (en) Superconducting magnet wire
JP3354171B2 (en) Composite superconductor and superconducting coil
JP3356459B2 (en) Superconducting coil
JP3783518B2 (en) Superconducting wire connection structure
Iwasa Recent developments in multifilament V 3 Ga & Nb 3 Sn wires in Japan
JPH0146963B2 (en)
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
JP7438533B2 (en) Ultra-low resistance connection method between high-temperature oxide superconducting wire and metallic superconducting wire
EP0487353B1 (en) Superconductor wire and method of manufacturing the same
JP2768844B2 (en) Superconductor and superconducting coil
JPS6025841B2 (en) compound superconductor
Steeves et al. Lap joint resistance of Nb 3 Sn cable terminations for the ICCS-HFTF 12 tesla coil program
JP3363164B2 (en) Superconducting conductor
JPH01186712A (en) Superconductor
JP2001283653A (en) Aluminum composite superconducting cable
EP1434280A1 (en) superconducting joint between multifilamentary superconducting wires
JPH0936445A (en) Terminal and connection method for superconducting wire