JPH03127410A - Structure of superconductor - Google Patents
Structure of superconductorInfo
- Publication number
- JPH03127410A JPH03127410A JP1263095A JP26309589A JPH03127410A JP H03127410 A JPH03127410 A JP H03127410A JP 1263095 A JP1263095 A JP 1263095A JP 26309589 A JP26309589 A JP 26309589A JP H03127410 A JPH03127410 A JP H03127410A
- Authority
- JP
- Japan
- Prior art keywords
- stabilizing material
- current
- stabilizing
- diffusing
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title abstract description 3
- 239000000463 material Substances 0.000 claims abstract description 47
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 33
- 239000004020 conductor Substances 0.000 claims abstract description 9
- 238000009792 diffusion process Methods 0.000 abstract description 6
- 239000007769 metal material Substances 0.000 abstract description 2
- 238000005192 partition Methods 0.000 abstract 2
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910003336 CuNi Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は核融合装置用超伝導コイル、大型加速器用超伝
導フィルなどの超伝導電力貯蔵装置に大電流を通電する
超伝導システム用超伝導コイルに適用される超伝導導体
構造に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to superconducting coils for nuclear fusion devices, superconducting coils for use in superconducting systems for supplying large currents to superconducting power storage devices such as superconducting films for large accelerators, etc. It relates to superconducting conductor structures applied to coils.
従来考えられている超伝導電力貯蔵装置用大電流超伝導
導体構造は、電流を安定に通電するために超伝導線材の
横に電気抵抗の小さい安定化材を大量に配置して安定化
を図っている。The conventional high-current superconducting conductor structure for superconducting power storage devices involves placing a large amount of stabilizing material with low electrical resistance next to the superconducting wire to stabilize the current flow. ing.
(完全安定化)
〔発明が解決しようとする課題〕
安定化材は何らかの外乱により、超伝導線が常伝導に転
移した場合に、それまで超伝導線材を流れていた電流が
バイパスして安定化材中を流れるようにするためのもの
である。この時安定化材中でのジュール発熱をおさえる
ために、安定化材の断面積を大きくとるとともに比抵抗
の小さい純CLI、純A1等が一般的に用いられている
。(Complete stabilization) [Problem to be solved by the invention] When the superconducting wire transitions to normal conductivity due to some disturbance, the stabilizing material bypasses the current flowing through the superconducting wire and stabilizes it. This is to allow it to flow through the material. At this time, in order to suppress Joule heat generation in the stabilizing material, pure CLI, pure A1, etc., which have a large cross-sectional area of the stabilizing material and have a small specific resistance, are generally used.
大電流用導体の場合、この安定化材の寸法は大きくとる
必要があるが、安定化材の寸法が大きくなると、安定化
胴中を流れるバイパス電流が一様になるのに時間を要し
、この−様になるまでの期間、局所的に電流密度の高い
部分が懲戒され全体としても一様に電流が流れた場合と
比べてジュール発熱量が大きくなるといった欠点がある
。In the case of a conductor for large currents, the size of this stabilizing material must be large, but when the size of the stabilizing material becomes large, it takes time for the bypass current flowing through the stabilizing shell to become uniform. During the period until this happens, there is a disadvantage that the portions where the current density is locally high are punished and the amount of Joule heat generated is larger than when the current flows uniformly throughout the entire device.
上記、技術水準ではバイパス電流が一様になるまでの期
間中に発生する高いジュール発熱量は安定性を低下させ
る方向に働くため、本発明はバイパス電流が一様になる
までの時間を短縮させうる超伝導導体構造を提供しよう
とするものである。According to the above-mentioned state of the art, the high joule heat generated during the period until the bypass current becomes uniform works in the direction of reducing stability. Therefore, the present invention shortens the time until the bypass current becomes uniform. The purpose of this study is to provide a superconducting conductor structure that is transparent.
本発明は超伝導線の周囲に配置する安定化材を、該安定
化材より電気伝導度の低い材料で電流が流れる方向に細
分割してなることを特徴とする超伝導導体構造である。The present invention is a superconducting conductor structure characterized in that a stabilizing material disposed around a superconducting wire is finely divided in the direction of current flow using a material having lower electrical conductivity than the stabilizing material.
本発明において使用する安定化材は一般的に用いられて
いるものが用いられるが、例えば安定化材として純Cu
を使用する場合には電気伝導度の低い′材料として、C
uNi合金、S[IS材、安定化材として純へlを使用
する場合は電気伝導度の低い材料として^1合金、Cu
Ni合金、SuS材、安定化材としてCuNi合金を使
用する場合には電気伝導度の低い材料としてSUS材が
使用されつる。The stabilizing material used in the present invention is one that is commonly used, but for example, pure Cu is used as the stabilizing material.
When using carbon, as a material with low electrical conductivity,
uNi alloy, S[IS material, when using pure helium as a stabilizing material, use^1 alloy, Cu as a material with low electrical conductivity.
When using a CuNi alloy as a Ni alloy, a SuS material, or a stabilizing material, a SUS material is used as a material with low electrical conductivity.
また、安定化材の分割に用いた電気伝導度の低い材料を
超伝導体に働く電磁力をサポートする支持構造として使
用することも可能である。It is also possible to use the material with low electrical conductivity used to divide the stabilizing material as a support structure to support the electromagnetic force acting on the superconductor.
本発明の超伝導導体構造を前述のようにすることにより
、超伝導線が外乱により常伝導に転移した時に、安定化
材中に流れるバイパス電流は分割された安定化材に流れ
ることになる。この時の安定化材中への電流の拡散時間
は個々の安定化材の寸法が小さくなっているため短くな
り、従来技術におけるようなジュール発熱が高くなる期
間が短縮され安定性が向上する。By making the superconducting conductor structure of the present invention as described above, when the superconducting wire transitions to normal conduction due to a disturbance, the bypass current flowing through the stabilizing material will flow through the divided stabilizing material. At this time, the time for the current to diffuse into the stabilizing material is shortened because the dimensions of the individual stabilizing materials are small, and the period during which Joule heat generation is high as in the prior art is shortened and stability is improved.
また、安定化材の分割に用いた材料は通常安定化材に用
いる材質に比して強度が高く、超伝導線に加わる電磁力
をサポートする役割にも使用可能となり、構造の簡略化
、製造コストの低減の効果がある。In addition, the material used to divide the stabilizer has higher strength than the material normally used for the stabilizer, and can be used to support the electromagnetic force applied to the superconducting wire, simplifying the structure and manufacturing. This has the effect of reducing costs.
本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described with reference to FIG.
超伝導線lの周囲に安定化材2を配置しているのは従来
例と同様であるが、安定化材2を電気抵抗の高い、すな
わち電気伝導度の低い、金属材料で構成した分割板3で
分割細分化している。The arrangement of the stabilizing material 2 around the superconducting wire l is the same as in the conventional example, but the stabilizing material 2 is a divided plate made of a metal material with high electrical resistance, that is, low electrical conductivity. It is subdivided into 3 parts.
このように分割することにより、超伝導が常伝導に転移
した場合に安定化材2への拡散電流4が流るとともに分
割板3の表面を高速で移動し、他の面からも安定化材2
中へ拡散電流5が侵入する。この拡散により、拡散時間
の短縮即ち安定性の向上を招く。By dividing in this way, when superconductivity transitions to normal conduction, a diffusion current 4 flows to the stabilizing material 2 and moves at high speed on the surface of the dividing plate 3, and the stabilizing material is also spread from other surfaces. 2
A diffusion current 5 enters inside. This diffusion shortens the diffusion time, ie improves stability.
なおミ上記安定化材の分割は、発熱を押える意味では分
割数が多い方がよいが、これは構成、加工性、工数等積
々の条件によって決められるものであって、要は安定化
材を分割細分化したことに本発明のポイントがある。Furthermore, it is better to divide the above-mentioned stabilizing material into many parts in order to suppress heat generation, but this is determined by various conditions such as composition, workability, man-hours, etc., and the key is to divide the stabilizing material into The key point of the present invention lies in dividing and subdividing.
安定化材を電気伝導度の低い材料の分割板にて細分化す
ることにより、電流の拡散時間が短くなり、安定性を向
上させる。さらに分割板を構造材料として使用すること
により、構造の簡略化、製造コスト低減の効果も期待で
きる。By subdividing the stabilizing material with dividing plates made of material with low electrical conductivity, the current diffusion time is shortened and stability is improved. Furthermore, by using the dividing plate as a structural material, the effect of simplifying the structure and reducing manufacturing costs can be expected.
第1図は本発明の超伝導導体構造の一実施例の説明図で
ある。
第1図FIG. 1 is an explanatory diagram of an embodiment of the superconducting conductor structure of the present invention. Figure 1
Claims (1)
電気伝導度の低い材料で電流が流れる方向に細分割して
なることを特徴とする超伝導導体構造。A superconducting conductor structure characterized in that a stabilizing material disposed around a superconducting wire is subdivided in the direction of current flow using a material having lower electrical conductivity than the stabilizing material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1263095A JPH03127410A (en) | 1989-10-11 | 1989-10-11 | Structure of superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1263095A JPH03127410A (en) | 1989-10-11 | 1989-10-11 | Structure of superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03127410A true JPH03127410A (en) | 1991-05-30 |
Family
ID=17384760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1263095A Pending JPH03127410A (en) | 1989-10-11 | 1989-10-11 | Structure of superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03127410A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50116967A (en) * | 1974-02-28 | 1975-09-12 | ||
JPS52135291A (en) * | 1976-05-06 | 1977-11-12 | Hitachi Cable Ltd | Compound based superconductive wire material |
JPS5429993A (en) * | 1977-08-10 | 1979-03-06 | Hitachi Ltd | Superconductor |
JPS5991610A (en) * | 1982-11-16 | 1984-05-26 | 古河電気工業株式会社 | Method of producing stabilizer for superconductive conductor |
-
1989
- 1989-10-11 JP JP1263095A patent/JPH03127410A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50116967A (en) * | 1974-02-28 | 1975-09-12 | ||
JPS52135291A (en) * | 1976-05-06 | 1977-11-12 | Hitachi Cable Ltd | Compound based superconductive wire material |
JPS5429993A (en) * | 1977-08-10 | 1979-03-06 | Hitachi Ltd | Superconductor |
JPS5991610A (en) * | 1982-11-16 | 1984-05-26 | 古河電気工業株式会社 | Method of producing stabilizer for superconductive conductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4242536A (en) | Aluminum-stabilized multifilamentary superconductor | |
US3370347A (en) | Method of making superconductor wires | |
US3619479A (en) | Electrical conductor of electrically normal conducting metal and superconducting material | |
Ašner | High field superconducting magnets | |
JPS6152964B2 (en) | ||
Marčelja | Superconducting order parameter in the transition region | |
JPH0371518A (en) | Superconductor | |
JPH03127410A (en) | Structure of superconductor | |
US3593110A (en) | Direct-current generator for superconducting circuits | |
US3193734A (en) | Superconducting flux concentrator | |
Suenaga et al. | Superconducting critical current density of bronze processed pure and alloyed Nb3Sn at very high magnetic fields (up to 24 T) | |
Zeitlin et al. | An overview of the IGC internal tin Nb 3 Sn conductor | |
US3486146A (en) | Superconductor magnet and method | |
US3187229A (en) | Superconducting magnet utilizing superconductive shielding at lead junctions | |
Fihey et al. | High-temperature-gradient casting of in situ multifilamentary superconductors | |
Maddock | Superconductive composites | |
Komarek | Superconductivity in technology | |
JPH0448603A (en) | Superconducting coil device | |
JPH01157226A (en) | Superconducting current-limiting device | |
JPS60105283A (en) | Power lead for superconduction | |
JPH04236125A (en) | Current limiting device | |
WO1992018992A1 (en) | Magnetic field replicator and method | |
JPS60177691A (en) | Superconductive multi-terminal element | |
JPS6155275B2 (en) | ||
Dew-Hughes | Superconductivity: scientific phenomenon to engineering reality |