JPS60177691A - Superconductive multi-terminal element - Google Patents

Superconductive multi-terminal element

Info

Publication number
JPS60177691A
JPS60177691A JP59034542A JP3454284A JPS60177691A JP S60177691 A JPS60177691 A JP S60177691A JP 59034542 A JP59034542 A JP 59034542A JP 3454284 A JP3454284 A JP 3454284A JP S60177691 A JPS60177691 A JP S60177691A
Authority
JP
Japan
Prior art keywords
layer
current
josephson junction
superconductor
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59034542A
Other languages
Japanese (ja)
Inventor
Shigetoshi Nara
奈良 重俊
Taku Noguchi
卓 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59034542A priority Critical patent/JPS60177691A/en
Publication of JPS60177691A publication Critical patent/JPS60177691A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable an operation which realizes gain, by producing spatial non- uniformity in superconductivity and by controlling electric current passing through a superconductor with a weak current supplied via a Josephson junction. CONSTITUTION:A Josephson junction is constituted with a conductor layer 7 on the supply side of a tunnel of the Josephson junction, an insulation film 6 and a layer 5 provided by diffusing a magnetic impurity in a superconductor layer 4. In the superconductors in this structure, a magnetic impurity is diffused from the face of the layer 7 such that the concentration becomes non-uniform in the direction of thickness, whereby spatial ununiformity in superconductivity is produced artifitially. Accordingly, when a voltage is applied between terminals C and B and electric current is supplied from the layer 7, the layer 5 and a part of the layer 4 become a normal conductor, and thus the part with superconductivity is reduced. This causes a potential difference between terminals A and B to be switched between zero and a value corresponding to that of bias current by supplying weak current from the terminal C. Further, gain is produced in this operation since the control current from the terminal C is smaller than the current between the terminals A and C.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、超伝導におけるブロクシミティ(近接)効
果を利用して利得をもたせ、周波数特性を飛綱的に改良
させ友、′電子回路の能wJ菓子として用いられる超伝
導多端子素子に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention utilizes the broximity (proximity) effect in superconductivity to provide gain, dramatically improve frequency characteristics, and improve the performance of electronic circuits. This invention relates to superconducting multi-terminal devices used in confectionery.

〔従来技術〕[Prior art]

第1図は主に論理前作に用いられる最小単位を構成する
従来のジョセフソン素子の構造を示す斜第2の超伝導体
、XおよびYけそれぞれ第2の超伝導体(3)および第
1の超伝導体+11から引出された端子である。この素
子は2個の超伝導体+11 、 +31の間に極めて薄
い絶縁膜を挾んで、2端子x、YIH!の導通が電子(
まtけクーパ一対としての)トンネル効果で成立するも
のである。
Figure 1 shows the structure of a conventional Josephson element that mainly constitutes the minimum unit used in previous logic works. This is a terminal drawn out from the superconductor +11. This device has two superconductors +11 and +31 with an extremely thin insulating film sandwiched between them, and has two terminals x and YIH! The conduction of electrons (
This is realized by the tunnel effect (as a pair of Coopers).

次に、この素子の動作について説すJする。第2図はこ
のジョセフソン素子の電圧・′1流特性を示す図で、横
軸vx−yは端子X、Y間の電圧、縦軸Ix−yは端子
X、Y間を流れるこの素子の電流である。ICは超伝導
体(11、+31および絶縁膜(2)の物質と絶碌膜(
2)の厚さとで決まる電流値、Vcは(Δ1+△3)/
eに等しい電圧値である。但し、△1および△3Iri
それぞれ超伝導体(1]および(3)の物質の絶対温度
零度(o′K)VCおけるギャップエネルギーeけ電子
の電荷を示す。第2図は勿論、超伝導体fl+および1
3)の超伝導転#温度のうち低い方の転移温度Ttra
n 、より十分低い温度における特性である。
Next, the operation of this element will be explained. Figure 2 is a diagram showing the voltage/current characteristics of this Josephson element, where the horizontal axis vx-y is the voltage between terminals X and Y, and the vertical axis Ix-y is the voltage of this element flowing between terminals X and Y. It is an electric current. IC consists of superconductor (11, +31) and insulating film (2) materials and insulating film (
The current value, Vc, determined by the thickness of 2) is (Δ1+Δ3)/
The voltage value is equal to e. However, △1 and △3Iri
Figure 2 shows the gap energy e and electron charge at absolute zero temperature (o'K) VC for superconductors (1) and (3), respectively.
3) The lower transition temperature Ttra of the superconducting transition temperatures
n is the characteristic at a sufficiently lower temperature.

第2図に示されるように、スイッチング素子としては、
電圧値Vc以上の準粒子トンネル状態と、′准圧値Vc
以下の超伝導ターバ一対のトンネル状態との間のすみゃ
がな遷移を利用するものである。
As shown in FIG. 2, the switching elements are:
A quasi-particle tunnel state with a voltage value of Vc or more and a quasi-pressure value of Vc
This method utilizes the following rapid transition between the tunnel state of a pair of superconducting turbines.

ところが、このような従来の2端子ジヨセフンン素子は
上述のように構成されているので、論瑣動作をする素子
として利イ尋を伴った動作かできないという欠点があっ
た。
However, since such a conventional two-terminal device is constructed as described above, it has the disadvantage that it can only operate with limited efficiency as an element that operates in a trivial manner.

〔発明の概要〕[Summary of the invention]

この発(7)は以上のような点に鑑みてなされたもので
、ジョセフソン接合を構成する一方の超伝導体はその一
方の面から磁性不純物を拡散させ本厚さ方向に不純物濃
度を不均一にして、超伝導特性の空間的不均一性を人工
的に作り、それ全上記ジョセフソン接合の他方の導体側
から注入される微弱電流で制御できるようにすることに
よって、利得を伴った動作をする超伝導多端子素子を提
供するものである。
This development (7) was made in view of the above points, and one superconductor constituting the Josephson junction diffuses magnetic impurities from one surface to increase the impurity concentration in the thickness direction. operation with gain by artificially creating spatial non-uniformity in the superconducting properties and making it possible to control it with a weak current injected from the other conductor side of the Josephson junction. The present invention provides a superconducting multi-terminal element that performs the following steps.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発(7)の−実施例の構造全油す断面図で
、(4)は超伝導体層、+51は超伝導体層(4)に磁
性不純物を拡散させた拡散層、t6Hd絶縁膜、(7)
は超伝導体または常伝導金属層、(8)は磁性不純物拡
散界面、A、Bは超伝導体層(4)の両端面からそれぞ
れ引出さf″した端子、Cは超伝導体または常伝導金属
層(7)の上面から引出された端子である。なお、因で
は磁性不純物拡散界面を明瞭にするために平面で示しで
ある。
Figure 3 is a cross-sectional view of the entire structure of Example (7) of this invention, in which (4) is a superconductor layer, +51 is a diffusion layer in which magnetic impurities are diffused in the superconductor layer (4), t6Hd insulating film, (7)
is a superconductor or a normal conductive metal layer, (8) is a magnetic impurity diffusion interface, A and B are terminals f″ drawn out from both end faces of the superconductor layer (4), and C is a superconductor or a normal conductor. This is a terminal drawn out from the upper surface of the metal layer (7).Note that it is shown as a plane to make the magnetic impurity diffusion interface clear.

この実施例では層(7)、絶縁膜(6)および層i51
がジョセフソン接合を形成している。層(51と層:4
)とのそれぞれの厚さは端子A、B間を流れる電流の特
性を決める構造パラメータである。端子A、B間を流れ
る電流に、端子Cから注入される電流によって1lil
制御を受けるので絶縁膜(6)の厚さも重装な構造パラ
メータである。勿論、端子A、BおよびCはそれぞれ適
宜外部回路に接続される。
In this example, layer (7), insulating film (6) and layer i51
form a Josephson junction. Layer (51 and layer: 4
) are structural parameters that determine the characteristics of the current flowing between terminals A and B. The current flowing between terminals A and B is increased by 1 lil due to the current injected from terminal C.
The thickness of the insulating film (6) is also a critical structural parameter because it is controlled. Of course, terminals A, B, and C are each connected to an external circuit as appropriate.

いま、層(4)の材料における超伝導のオーダーパラメ
ータ(秩序変数:クーパ一対の数田度とその位相を畏わ
す変数)が十分発達する程度の低温としておくと、層(
51は層(4)より転移温度が低いので、オーダーパラ
メータはまだ十分に成長していないか、またはまた超伝
萼転#をおこさず、常伝辱相にとどまっていると考えら
れる。しかしながら、グロキシミテイ効果(近接効果)
と呼ばれる現象によって仮想的に示した拡散界面(8)
はオーダーパラメータの不連続面ではあり得す、層(4
)のクーパ一対は層(51に、層(51の準粒子は層(
4)にそれぞれ°。
Now, if we keep the temperature low enough to sufficiently develop the order parameter of superconductivity (order parameter: variable that affects the number of degrees of the Cooper pair and its phase) in the material of layer (4), the layer (
Since layer 51 has a lower transition temperature than layer (4), it is thought that the order parameter has not yet grown sufficiently or that it does not undergo supertransition and remains in the conventional phase. However, the gloximity effect (proximity effect)
Diffusion interface virtually illustrated by a phenomenon called
can be a discontinuous surface of order parameters, the layer (4
) is in the layer (51), and the quasiparticle in the layer (51 is in the layer (
4) respectively.

しみ出しI+ヲ行っており、これによって、オーダーパ
ラメータ何層+41から層(5)に向って空間的に変化
しており超伝導特性が空間的に不均一に分布している状
況が出現している。層(5)の絶縁膜(61寄りの部分
では、この実施例では上述の状況を考えると、オーダー
パラメータは小さくなっていて、外部からの微弱な刺戟
によって容易に常伝導性をとり戻し、超伝導性をより層
(4)側へ押し返してしまう。従って、端子0.B間に
゛電圧を印加して、層(7)から電流を(クーパ一対ま
たは準粒子のいずれの形でもよい)注入してやると、そ
の影響によって、層(51と層:4)の一部とは常伝導
体となり、超伝導の部分が圧縮される。これは、端子A
、B間を流れる電流に対して超伝導→常伝導転移の臨界
電流を減少させる。
As a result, the order parameter changes spatially from layer number + 41 toward layer (5), and a situation appears in which the superconducting properties are spatially non-uniformly distributed. There is. In this example, considering the above-mentioned situation, the insulating film of layer (5) (the part near 61) has a small order parameter, easily regains normal conductivity by a weak stimulus from the outside, and becomes super conductive. This pushes the conductivity back towards the layer (4).Therefore, by applying a voltage between terminals 0 and B, a current (in the form of a Cooper pair or a quasiparticle) is injected from the layer (7). As a result, part of the layer (51 and layer 4) becomes a normal conductor, and the superconducting part is compressed.
, B reduces the critical current for superconducting to normal conduction transition with respect to the current flowing between B.

巣4図はこの実施例の上記端子Cからの供綺′電流をパ
ラメータとした端子A、B間の電圧・電流特性を示す図
である。端子Cからの電流注入のないときけ、臨界電流
は工C1を示し、図示(イ)の特性を示しているが、端
子Cから電流を注入すると、前述の理由によって臨界電
流はIC2となり、図示(ロ)の特性になる。そこで、
最初、図に(ハ)で示す電流よりにバイアスしておいた
とすると、端子Cからの微弱電流の注入によって図示に
)点に動作点は移り、端子A、B間にVi亀位差VBが
生じる。このことは、端子Cからの微弱電流の注入によ
って端子A、B間にけ電位差零(2値関数での1°O゛
)と′電位差VB (2値関数での°“1パ)との間に
スイッチングをおこさせることt[わしでいる。しかも
、この動作は端子A−B間の一流に比して、端子Cから
の制御電流が小さいことによって利得ケ伴っている。
Figure 4 is a diagram showing the voltage/current characteristics between terminals A and B using the supplied current from terminal C as a parameter in this embodiment. When no current is injected from terminal C, the critical current shows IC1, showing the characteristics shown in the diagram (a).However, when current is injected from terminal C, the critical current becomes IC2 for the reason described above, and the critical current shows IC2, as shown in the diagram. (b) becomes the characteristic. Therefore,
Assuming that the current is initially biased toward the current shown in (c) in the figure, the operating point shifts to the point shown in the figure by injecting a weak current from terminal C, and the Vi potential difference between terminals A and B is VB. occurs. This means that by injecting a weak current from terminal C, the potential difference between terminals A and B is zero (1°O゛ in the binary function) and the potential difference VB (°“1pa in the binary function). Moreover, this operation is accompanied by a gain because the control current from terminal C is smaller than the current flowing between terminals A and B.

なお、以上実施例では磁性不純物の拡散界面を平面とし
たが、この界面の形状も平面以外のものを用いてもよく
、lff1f41.層(51の厚さを変えることによっ
て市IJ御性をコントロールすることができる。
In the above embodiments, the diffusion interface of the magnetic impurity was made flat, but the shape of this interface may also be other than a flat surface, such as lff1f41. The IJ control can be controlled by changing the thickness of the layer (51).

また、層(6:から端子全引出し、この喘子と端子Aと
の間の電圧、覗流特性にも同様な効果が期待できる。
In addition, similar effects can be expected for the terminal fully drawn out from the layer (6:), the voltage between this pane and the terminal A, and the sneak current characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明では、ジョセフソン接合
を落成する一方の超伝導体を、その一方の主面から磁性
不純物を拡散させ厚さ方向に不純物濃度の不均一な構造
とし、超伝導特性の空間的不均一性を形成し、これを上
記ジョセフソン接合を経て供給される微細1流で制御す
ることによって、利得を伴つt動作をする超伝導多端子
素子を得之ので、論理前作のm1作マージンが大きく、
晶速妨作をも実現することができる。
As explained above, in this invention, magnetic impurities are diffused from one main surface of one of the superconductors forming the Josephson junction to create a structure in which the impurity concentration is non-uniform in the thickness direction. By forming the spatial non-uniformity of m1 production margin is large,
Crystal speed disturbance can also be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のジョセフソン素子の構造を示す斜視図、
第2図は七〇′亀圧・電流特性を示す図、第3図はこの
発明の一夾施例の構造を示す断面図、第4図はこの実施
例の動作を説明するための゛電圧・電流特性図である。 図において、j41ij超伝導体層、(51け磁性不純
物拡散層、(61は絶縁膜、(7)は超伝導体または常
伝導金属からなりジョセフソン接合のトンネル注入側の
導体層、+81 Vi拡散界面、A、B、OVi端子で
ある。 代理人 大岩増雄 第1図 第2図 VCVX−Y 第3図 第4図 vc2 VB VcIS−B
Figure 1 is a perspective view showing the structure of a conventional Josephson element.
Fig. 2 is a diagram showing the 70' voltage/current characteristics, Fig. 3 is a sectional view showing the structure of one embodiment of this invention, and Fig. 4 is a diagram showing the voltage and voltage characteristics for explaining the operation of this embodiment.・This is a current characteristic diagram. In the figure, a j41ij superconductor layer, (51 magnetic impurity diffusion layer, (61 an insulating film, (7) a conductor layer on the tunnel injection side of the Josephson junction made of superconductor or normal metal, +81 Vi diffusion Interface, A, B, OVi terminals. Agent Masuo Oiwa Figure 1 Figure 2 VCVX-Y Figure 3 Figure 4 vc2 VB VcIS-B

Claims (3)

【特許請求の範囲】[Claims] (1) ジョセフソン接合を構成する一方の超伝導て 体をその一方の主面から磁性不純物を拡散させ不厚さ方
向に不純物酸度の不均一な構造とし、これによって超伝
導特性に空間的不均一性を有せしめ、上記超伝導体を流
れる電流が上記ジョセフソン接合を構成する他方の導体
の側から当該ジョセフソン接合を通してトンネル効果に
よって注入されるトンネル電流によって制御されるよう
にしtこと全特徴とする超伝導多端子素子。
(1) Diffusion of magnetic impurities from one main surface of one of the superconducting bodies constituting the Josephson junction creates a structure in which the impurity acidity is non-uniform in the thickness direction, thereby causing spatial inconsistencies in the superconducting properties. uniformity, and the current flowing through the superconductor is controlled by a tunnel current injected by tunneling effect through the Josephson junction from the other conductor side forming the Josephson junction. A superconducting multi-terminal device.
(2) ジョセフソン髪合のトンネル眠流注入側の導体
に常伝導金属を用い之ことを特徴とする特許請求の範囲
第1項記載の超伝導多端子素子。
(2) The superconducting multi-terminal element according to claim 1, characterized in that a normal conductive metal is used for the conductor on the tunnel sleep flow injection side of the Josephson hair clip.
(3) ジョセフソン接合のトンネル゛電流注入側の導
体に、被注入側の超伝導体と超伝導転移温度の異なる超
伝導体を用いたことを特徴とする特許請求の範囲第1項
記載の超伝導多端子素子。
(3) The method according to claim 1, characterized in that the conductor on the tunneling current injection side of the Josephson junction uses a superconductor having a different superconducting transition temperature from the superconductor on the injection target side. Superconducting multi-terminal device.
JP59034542A 1984-02-23 1984-02-23 Superconductive multi-terminal element Pending JPS60177691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59034542A JPS60177691A (en) 1984-02-23 1984-02-23 Superconductive multi-terminal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59034542A JPS60177691A (en) 1984-02-23 1984-02-23 Superconductive multi-terminal element

Publications (1)

Publication Number Publication Date
JPS60177691A true JPS60177691A (en) 1985-09-11

Family

ID=12417182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59034542A Pending JPS60177691A (en) 1984-02-23 1984-02-23 Superconductive multi-terminal element

Country Status (1)

Country Link
JP (1) JPS60177691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018423A1 (en) * 1990-05-11 1991-11-28 Hitachi, Ltd. Superconducting element using oxide superconductor
US5247189A (en) * 1989-11-15 1993-09-21 Sumitomo Electric Industries, Ltd. Superconducting device composed of oxide superconductor material
US5401714A (en) * 1988-01-15 1995-03-28 International Business Machines Corporation Field-effect device with a superconducting channel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401714A (en) * 1988-01-15 1995-03-28 International Business Machines Corporation Field-effect device with a superconducting channel
US5247189A (en) * 1989-11-15 1993-09-21 Sumitomo Electric Industries, Ltd. Superconducting device composed of oxide superconductor material
WO1991018423A1 (en) * 1990-05-11 1991-11-28 Hitachi, Ltd. Superconducting element using oxide superconductor

Similar Documents

Publication Publication Date Title
US4334158A (en) Superconducting switch and amplifier device
JPS60160675A (en) Quasi-particle injection type superconducting element
JPS60177691A (en) Superconductive multi-terminal element
US3370210A (en) Magnetic field responsive superconducting tunneling devices
US3564351A (en) Supercurrent devices
US3803459A (en) Gain in a josephson junction
US3816845A (en) Single crystal tunnel devices
JP3231742B2 (en) Single-electron tunnel transistor using stacked structure
US3521133A (en) Superconductive tunneling gate
US3848259A (en) Multicontrol logic gate design
US3204115A (en) Four-terminal solid state superconductive device with control current flowing transverse to controlled output current
EP0081007B1 (en) Superconducting tunnel junction device
JPS60177690A (en) Superconductive multi-terminal element
JP2955407B2 (en) Superconducting element
JP2583922B2 (en) Superconducting switching element
JPS6043885A (en) Superconducting element
Pritchard et al. Superconductive tunneling device characteristics for array application
US3204116A (en) Solid state superconductor switching device wherein extraction of normal carriers controls superconductivity of said device
JP2583923B2 (en) Superconducting switching element
US3233199A (en) Cryotron gate structure
JPS631085A (en) Superconducting three-terminal element
JPS6218776A (en) Superconductive device
JP2583924B2 (en) Superconducting switching element
JP2641978B2 (en) Superconducting element and fabrication method
JPS63224374A (en) Superconducting element