JPS631085A - Superconducting three-terminal element - Google Patents
Superconducting three-terminal elementInfo
- Publication number
- JPS631085A JPS631085A JP61145377A JP14537786A JPS631085A JP S631085 A JPS631085 A JP S631085A JP 61145377 A JP61145377 A JP 61145377A JP 14537786 A JP14537786 A JP 14537786A JP S631085 A JPS631085 A JP S631085A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- superconducting
- conductor
- energy gap
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 claims abstract description 104
- 230000004888 barrier function Effects 0.000 claims abstract description 23
- 239000004020 conductor Substances 0.000 claims abstract description 13
- 230000005641 tunneling Effects 0.000 abstract description 7
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/10—Junction-based devices
- H10N60/128—Junction-based devices having three or more electrodes, e.g. transistor-like structures
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は超ル導素子に係り、特に2っのトンネル接合か
らなる超゛11導三端子素子の1直取り出し部に関する
。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a superconducting element, and more particularly to a single direct extraction portion of a superconducting three-terminal element consisting of two tunnel junctions.
(従来の技術)
超′工導電玉と2つのトンネル接合からなる超電導三端
子素子は例えばアップライド・フイズイクス・レター誌
32巻6号392頁〜395頁に述べられている。第4
図は従来技術の超電導三端子素子を説明するだめの図で
、超電導体1、トンネル障壁2、超電導体3からなるイ
ンジェクタと超電導体3、トンネル障壁4、超電導体5
からなるアクセプタとからなり、超電導体tは結線6に
より入力端子7に、超電導体3は結線8により接地9に
、超電導体5は結線toVCより出力端子1Lにそれぞ
れ接続されている。通常結線6,8゜10はそれぞれ超
電導体り、3.5と同じ材料。(Prior Art) A superconducting three-terminal device consisting of a superconducting ball and two tunnel junctions is described, for example, in Uploaded Physics Letters, Vol. 32, No. 6, pp. 392-395. Fourth
The figure is a diagram for explaining a conventional superconducting three-terminal device, and shows an injector consisting of a superconductor 1, a tunnel barrier 2, and a superconductor 3, and a superconductor 3, a tunnel barrier 4, and a superconductor 5.
The superconductor t is connected to the input terminal 7 through the connection 6, the superconductor 3 is connected to the ground 9 through the connection 8, and the superconductor 5 is connected to the output terminal 1L through the connection toVC. Normal connections 6, 8° and 10 are each made of superconductor, the same material as 3.5.
例えば鉛、ニオビウム等の超電導体で、また基板上て平
面的に集積化された素子に卦いては、同じ層で構成され
る。For example, devices made of superconductors such as lead or niobium, and devices integrated in a planar manner on a substrate, are constructed of the same layer.
第5図は従来技術の超電導三端子素子の動作を説明する
ためのエネルギー・ダイアグラムを示す。FIG. 5 shows an energy diagram for explaining the operation of a conventional superconducting three-terminal device.
同図(1)には、該超電導三端子素子がスイッチする前
の状態における超電導体り、 3. 5のエネルギー
・バンドが示しである。図中点線はフェルミ面を示し、
超電導体3と5の間に直流電圧vbが印加されている。3. In the figure (1), the superconductor in a state before the superconducting three-terminal element switches; 3. 5 energy bands are shown. The dotted line in the figure indicates the Fermi surface,
A DC voltage vb is applied between superconductors 3 and 5.
また各超″心導体り、 3. 5のエネルギー・ギャ
ップは図で示される如くΔ1゜Δ5.Δ、である。 図
中斜線部で示されるエネルギー状態は各々電子により占
有されている。この状態では超電導体3にいる正常電子
は超電導体5に占有されていないエネルギー状態を見出
せないからトンネルすることができず、1!召這導体3
と5の間にはトンネル電流は流れない。In addition, the energy gap of each superconductor 3.5 is Δ1°Δ5.Δ, as shown in the figure.The energy states shown in the shaded areas in the figure are each occupied by electrons.This state Then, normal electrons in superconductor 3 cannot tunnel because they cannot find an energy state that is not occupied in superconductor 5, and 1!
No tunnel current flows between and 5.
第5図(b)は咳超1導三端子素子カtスイッチしてい
るときのエネルギーダイアグラムを示す。FIG. 5(b) shows an energy diagram when the 1-conductor three-terminal element is switched.
超電導体1と3の間知は入力電圧Vinが印加され、超
電導体1より正常電子が超電導体3に矢印で示される如
く注入され、超電導体3中の正常電子密度が増大し、超
電導体3中のギャップ電圧V。An input voltage Vin is applied between the superconductors 1 and 3, and normal electrons are injected from the superconductor 1 into the superconductor 3 as shown by the arrow, the normal electron density in the superconductor 3 increases, and the superconductor 3 The gap voltage V in
が消滅し、図中点線で示されるエネルギーのIatit
まで正常電子の占有状態が出現する。この拮果、超電導
体3から5へ正常電子によるトンネル電流が流れ、出力
端子11に出力電流が現われる。以上の説明かられかる
ように該超電導素子b;効率良く動作するためには超電
導体lから3への電子のトンネリングによる注入で超電
導体3中の正常電子密度をできるだけ高める必要がある
。このためには超電導体1から3への電子のトンネリン
グ電流を多くする、あるいは超電導体3中から結線8へ
の正常電子の拡散を防ぐ、さらには超電導体3から5へ
の正常電子のトンネリングを小さくする等が考えられる
。上記中、超電体1から3への電子のトンネリング電流
を多くする方法は該超電導三端子素子がスイッチングを
起こすに必要な入力電流が多くなることにつなfJ”−
る。また超電導体3から5への正常電子のトンネリング
電流を小さくする方法にはトンネル障壁4のポテンシャ
ルを高くする、あるいは障壁4の物理的厚みを厚くする
等の方法が考えられるが、これはスイッチングした後、
超電導体3と5の間をトンネリングにより流れる出力電
流が小さ°ぐなることにつながる。これら2点の改良は
共に入出力電流比すなわち該超電導三端子素子の電流利
得を下げることにつながり素子動作上好ましくない。従
って考えられる手段は超電導体3中から結線8への正常
電子の拡散を防ぐことKなる。これは換言すると、正常
電子密度増大により超電導体のギャップ電圧を消滅させ
たいのはトンネル障壁40ついている超電導体3だけで
あり、結線8をなす超電導体のギャップ電圧を消滅さ亡
ても出力電流を生じさせる機購知は何ら寄与しないとい
う点にある。disappears, and the energy Iatit shown by the dotted line in the figure
A state of normal electron occupancy appears until . As a result of this, a tunnel current due to normal electrons flows from the superconductor 3 to the superconductor 5, and an output current appears at the output terminal 11. As can be seen from the above description, in order for the superconducting element b to operate efficiently, it is necessary to increase the normal electron density in the superconductor 3 as much as possible by injecting electrons from the superconductor 1 into the superconductor 3 by tunneling. To achieve this, the tunneling current of electrons from superconductor 1 to 3 can be increased, or the diffusion of normal electrons from superconductor 3 to connection 8 can be prevented, or the tunneling of normal electrons from superconductor 3 to 5 can be prevented. Possible options include making it smaller. Among the above methods, the method of increasing the tunneling current of electrons from superconductor 1 to superconductor 3 leads to an increase in the input current required for the superconducting three-terminal element to cause switching.
Ru. In addition, methods to reduce the tunneling current of normal electrons from the superconductor 3 to the superconductor 5 include increasing the potential of the tunnel barrier 4 or increasing the physical thickness of the barrier 4. rear,
This leads to a decrease in the output current flowing between the superconductors 3 and 5 due to tunneling. Both of these two improvements lead to a reduction in the input/output current ratio, that is, the current gain of the superconducting three-terminal element, which is unfavorable in terms of element operation. Therefore, a possible means is to prevent normal electrons from diffusing from the superconductor 3 to the connection 8. In other words, it is only the superconductor 3 with the tunnel barrier 40 that requires the gap voltage of the superconductor to disappear due to an increase in normal electron density, and even if the gap voltage of the superconductor forming the connection 8 disappears, the output current The point is that the mechanical knowledge that causes this does not contribute in any way.
(発明が解決しようとする問題点)
従来の超電導三端子素子においては超電導体3と接地へ
の結線8とが同じ超電導材料でできており、トンネル障
壁4に度した超電導体3から@線8への正常電子の拡散
が起こり、超電導体3中の正常1子密度が下がり、超電
導体3のギャップ電圧を効率的に消滅させることができ
なかった。(Problems to be Solved by the Invention) In the conventional superconducting three-terminal device, the superconductor 3 and the connection 8 to ground are made of the same superconducting material, and the wire 8 from the superconductor 3 to the tunnel barrier 4 is made of the same superconducting material. Diffusion of normal electrons occurred, the density of normal single electrons in the superconductor 3 decreased, and the gap voltage of the superconductor 3 could not be efficiently extinguished.
本発明の目的は、上述の従来の超電導三端子素子の持つ
欠点を除去し、電流利得が大きい超電導三端子素子を提
供することにある。An object of the present invention is to eliminate the drawbacks of the conventional superconducting three-terminal elements described above and to provide a superconducting three-terminal element with a large current gain.
(問題点を解決するための手段)
本発明によれば、第1の超′電導体または正常導体、第
2の超電導体、前記第1の超電導体または正常導体と前
記第2の超電導体との間にはさまれた第1のトンネル障
壁、第3の超電導体、および前記第2および第3の超電
導体ではさまれた第2のトンネル障壁からなる超電導三
端子素子において、前記第2の超電導体のエネルギー・
ギャップより大きなエネルギーギャップを持つ第4の超
電導体で前記第2の超電導体の結線を講成したことを特
徴とする超電導三端子素子が得られる。(Means for Solving the Problems) According to the present invention, a first superconductor or normal conductor, a second superconductor, the first superconductor or normal conductor, and the second superconductor In a superconducting three-terminal element comprising a first tunnel barrier sandwiched between a first tunnel barrier, a third superconductor, and a second tunnel barrier sandwiched between the second and third superconductors, the second tunnel barrier Superconductor energy
A superconducting three-terminal element is obtained, characterized in that the second superconductor is connected to a fourth superconductor having an energy gap larger than the gap.
(実施例) 以下、本発明を実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on examples.
第1図は本発明の詳細な説明するための構成図である。FIG. 1 is a block diagram for explaining the present invention in detail.
この実施例は、第1の超電導体30、第1のトンネル障
壁31および第2の超電導体32からなるインジェクタ
と、超電導体32、第2のトンネル障壁33および第3
の超電導体34からなるアクセプタと、入力端子35と
、出力端子36と、産地37と、接地37と超電導体3
2とを結ぶ結線の役割をする超′電導体38と、結線3
9.40とから構成されているっ超電導体38は超電導
体32よりも大きなエネルギー・ギャップを持つ@電導
材料からなる。超′、奄導体32,38の接読は超電導
接触であり、超電導電流は自由に流れる。従って超電導
体32,38の間に電圧は発生せず、超電導体32の電
位は零に固定される。This embodiment includes an injector consisting of a first superconductor 30, a first tunnel barrier 31, and a second superconductor 32, and a superconductor 32, a second tunnel barrier 33, and a third superconductor.
an acceptor consisting of a superconductor 34, an input terminal 35, an output terminal 36, a production area 37, a ground 37 and a superconductor 3
2, and the superconductor 38 that serves as a connection between
9.40 The superconductor 38 is made of a conductive material with a larger energy gap than the superconductor 32. The direct reading of the superconductors 32 and 38 is a superconducting contact, and superconducting current flows freely. Therefore, no voltage is generated between the superconductors 32 and 38, and the potential of the superconductor 32 is fixed at zero.
第2図は超電導体32,38の超電導接触部におけるエ
ネルギバンドを示すエネルギー・ダイアグラムである。FIG. 2 is an energy diagram showing the energy bands at the superconducting contact portion of the superconductors 32, 38.
超゛成導体30よりトンネル障壁31を介して注入され
た正常電子のエネルギーは犬態密度の大きなバンドエッ
ヂ41に近いものの分布が大きく、またバンド・エッヂ
41よりも高いエネルギーで注入された正常電子は超電
導体中の不純物、あるいはフォノンによる散乱を受けて
、図中矢印で表わされるように、たちまちバンド・エッ
ヂ41周辺のエネルギーを持つ電子状態に落ち着く。こ
のようなバンド・エッヂ41周辺のエネルギーを持つ正
常電子は、超電導体38中には対応するエネルギーを持
つ電子のエネルギー状態がなく、従って超電導体38中
に正常電子は拡散できない。従って注入された正常電子
は超電導体32中にとどまり、超電導体32のエネルギ
ーバンドプを消滅させるのく役立つ。The energy of the normal electrons injected from the superconductor 30 through the tunnel barrier 31 has a large distribution near the band edge 41, which has a large dog-like density, and the normal electrons injected with energy higher than the band edge 41 have a large distribution of energy. is scattered by impurities in the superconductor or by phonons, and immediately settles into an electronic state with energy around the band edge 41, as indicated by the arrow in the figure. Normal electrons with energy around the band edge 41 do not have an energy state of electrons with corresponding energy in the superconductor 38, and therefore normal electrons cannot diffuse into the superconductor 38. Therefore, the injected normal electrons remain in the superconductor 32 and serve to eliminate the energy band drop of the superconductor 32.
第3図は第1図実施例を基板50上に集積回路として実
現した場合の層構造を示す断面図である。FIG. 3 is a sectional view showing a layer structure when the embodiment of FIG. 1 is realized as an integrated circuit on a substrate 50.
51は素子を構成する第3の超電導体とその結線部を、
52は第2の超電導体を、53は素子を構成する第1の
超電導体とその結線部をそれぞれ構成する層を示す、5
4は超電導体52の結線をなす。超電導体層を示し、該
超電導体54は超電導体52よりも大きなエネルギー・
ギャップを持つ。51 indicates the third superconductor constituting the element and its connection part,
52 indicates a second superconductor, 53 indicates a layer constituting the first superconductor constituting the element and its connection part, 5
4 constitutes a connection of the superconductor 52. A superconductor layer is shown, and the superconductor 54 has a higher energy level than the superconductor 52.
have a gap.
55.56は絶縁層で、絶縁層55と超電導体層51は
平担化されている。57.58はトンネル障壁を示す。55 and 56 are insulating layers, and the insulating layer 55 and superconductor layer 51 are flattened. 57.58 indicates the tunnel barrier.
本発明の効果を十分上げるには超電導体層52と54と
の超電導コンタクト部59はできうる限り小さい面積に
なるよう設計する必要がある。In order to obtain sufficient effects of the present invention, the superconducting contact portion 59 between the superconducting layers 52 and 54 must be designed to have an area as small as possible.
上記の説明かられかるように、第1図実施例においては
、超電導体30よりトンネル障壁により超電導体32に
注入された電子は接地への結線をなすエネルギー・ギャ
ップの大きな超電導体38へ拡散して逃げることができ
ず、従って注入された正常電子はすべて、その下にトン
ネル障壁33を有す超電導体32のエネルギー・ギャッ
プを縮めるのに有効に働く。そこで、少ない入力電流の
注入により効率良く超電導体32のエネルギー・ギャッ
プを縮めることができ、この結果超電導体32と34の
間にトンネル電流が流れ、出力端子36に出力電流が現
われる。従って本実施例の超電導三端子素子においては
、出力電流の入力電流に対する比、即ち電流利得の大き
な値が得られる。As can be seen from the above description, in the embodiment shown in FIG. 1, electrons injected from the superconductor 30 into the superconductor 32 by the tunnel barrier diffuse into the superconductor 38 with a large energy gap, which is connected to ground. Therefore, all the injected normal electrons serve effectively to narrow the energy gap of the superconductor 32 with the tunnel barrier 33 underneath. Therefore, the energy gap of the superconductor 32 can be efficiently reduced by injecting a small input current, and as a result, a tunnel current flows between the superconductors 32 and 34, and an output current appears at the output terminal 36. Therefore, in the superconducting three-terminal element of this embodiment, a large value of the ratio of the output current to the input current, that is, the current gain, can be obtained.
なお本実施例においてはインジェクタとして超電導体3
0を用いたb’−1前記文献アクブライド・フイジイク
ス・レター誌に記述される如く、これを正常導体で置き
換えても同様の動作が期待できる。Note that in this example, the superconductor 3 is used as an injector.
b'-1 using 0 As described in the above-mentioned document Ackbride Physics Letters, the same operation can be expected even if this is replaced with a normal conductor.
(発明の効果)
以上に詳しく説明したように、本発明によれば、電流利
得が大きい超電導三端子素子を提供できる。(Effects of the Invention) As explained in detail above, according to the present invention, a superconducting three-terminal element with a large current gain can be provided.
第1図は本発明による超電導三端子素子の実施例の模式
図、第2図は第1図実施例における第2の超電導体とそ
の結線部との超電導接触部のエネルギーバンドを示すエ
ネルギー・ダイアグラム、第3図は該実施例を集積回路
として実現した場合の回路断面図、第4図は超電導三端
子素子の従来例を表わす模式図、第5図は該超電導三端
子素子の動作を説明するためのエネルギー・ダイアグラ
ムで、同図(a)は入力電圧Vinの入力されないとき
の状態を示す図、同図(b)は入力電圧Vin の印加
されたときの状態を示す図である。
1.30・・・第1の超電導体、2,31・・・第1の
トンネル障壁、3,32・・・第2の超電導体、4゜3
3・・・第2のトンネル障壁、5,34・・・第3の超
電導体、6,8,10,38,39.40・・・結線、
7.35・・・入力端子、11.36・・・出力端子、
41・・・バンド・エッヂ。
代理人 弁理士 本 庄 伸 介
7tノ〉数置し
第2図
第5図(a)FIG. 1 is a schematic diagram of an embodiment of the superconducting three-terminal element according to the present invention, and FIG. 2 is an energy diagram showing the energy band of the superconducting contact portion between the second superconductor and its connection in the embodiment of FIG. 1. , FIG. 3 is a cross-sectional view of the circuit when this embodiment is realized as an integrated circuit, FIG. 4 is a schematic diagram showing a conventional example of a superconducting three-terminal element, and FIG. 5 explains the operation of the superconducting three-terminal element. FIG. 5A is a diagram showing the state when the input voltage Vin is not input, and FIG. 2B is a diagram showing the state when the input voltage Vin is applied. 1.30...First superconductor, 2,31...First tunnel barrier, 3,32...Second superconductor, 4゜3
3... Second tunnel barrier, 5, 34... Third superconductor, 6, 8, 10, 38, 39.40... Connection,
7.35...Input terminal, 11.36...Output terminal,
41...Band Edge. Agent Patent Attorney Shinsuke Honjo 7t〉Figure 2 Figure 5 (a)
Claims (1)
記第1の超電導体または正常導体と前記第2の超電導体
との間にはさまれた第1のトンネル障壁、第3の超電導
体、および前記第2および第3の超電導体ではさまれた
第2のトンネル障壁からなる超電導三端子素子において
、前記第2の超電導体のエネルギー・ギヤップよりも大
きなエネルギー・ギャップを持つ第4の超電導体で前記
第2の超電導体の結線を構成したことを特徴とする超電
導三端子素子。a first superconductor or normal conductor, a second superconductor, a first tunnel barrier sandwiched between the first superconductor or normal conductor and the second superconductor, a third superconductor , and a fourth superconductor having an energy gap larger than that of the second superconductor in a superconducting three-terminal element comprising a second tunnel barrier sandwiched between the second and third superconductors. A superconducting three-terminal element, characterized in that a connection of the second superconductor is formed by the body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61145377A JPS631085A (en) | 1986-06-20 | 1986-06-20 | Superconducting three-terminal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61145377A JPS631085A (en) | 1986-06-20 | 1986-06-20 | Superconducting three-terminal element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS631085A true JPS631085A (en) | 1988-01-06 |
Family
ID=15383825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61145377A Pending JPS631085A (en) | 1986-06-20 | 1986-06-20 | Superconducting three-terminal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS631085A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63224374A (en) * | 1987-03-13 | 1988-09-19 | Semiconductor Energy Lab Co Ltd | Superconducting element |
JPS63228769A (en) * | 1987-03-18 | 1988-09-22 | Semiconductor Energy Lab Co Ltd | Superconducting element |
US5024993A (en) * | 1990-05-02 | 1991-06-18 | Microelectronics & Computer Technology Corporation | Superconducting-semiconducting circuits, devices and systems |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712575A (en) * | 1980-06-06 | 1982-01-22 | Ibm | Superconductive device |
JPS5776890A (en) * | 1980-10-30 | 1982-05-14 | Agency Of Ind Science & Technol | Quase particle injection control type superdoductor loose coupling element |
-
1986
- 1986-06-20 JP JP61145377A patent/JPS631085A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712575A (en) * | 1980-06-06 | 1982-01-22 | Ibm | Superconductive device |
JPS5776890A (en) * | 1980-10-30 | 1982-05-14 | Agency Of Ind Science & Technol | Quase particle injection control type superdoductor loose coupling element |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63224374A (en) * | 1987-03-13 | 1988-09-19 | Semiconductor Energy Lab Co Ltd | Superconducting element |
JPS63228769A (en) * | 1987-03-18 | 1988-09-22 | Semiconductor Energy Lab Co Ltd | Superconducting element |
US5024993A (en) * | 1990-05-02 | 1991-06-18 | Microelectronics & Computer Technology Corporation | Superconducting-semiconducting circuits, devices and systems |
WO1991017569A1 (en) * | 1990-05-02 | 1991-11-14 | Microelectronics And Computer Technology Corporation | Superconducting-semiconducting circuits, devices and systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4157555A (en) | Superconducting transistor | |
JPS60160675A (en) | Quasi-particle injection type superconducting element | |
JPS631085A (en) | Superconducting three-terminal element | |
JP3231742B2 (en) | Single-electron tunnel transistor using stacked structure | |
JPH0834320B2 (en) | Superconducting element | |
KR910003836B1 (en) | Super conductive device | |
US3040196A (en) | Semiconductor pulse translating system | |
JPH06112538A (en) | Superconducting element | |
US20050092981A1 (en) | Superconducting integrated circuit and methods of forming same | |
JP3107325B2 (en) | Semiconductor coupled superconducting element | |
JP2940503B2 (en) | Superconducting integrated circuits | |
JP2955407B2 (en) | Superconducting element | |
JPS62222683A (en) | Superconductive-semiconductor three terminal element | |
JP3669891B2 (en) | Superconducting single flux quantum circuit | |
Mimura | Voltage-controlled DNR in unijunction transistor structure | |
JP2931725B2 (en) | Superconducting element | |
JPS6132486A (en) | Superconductive multiterminal element | |
JPH0394485A (en) | Tunnel type josephson device and superconducting transistor | |
JPS592388B2 (en) | Quasi-particle injection controlled superconducting device | |
JPS60177691A (en) | Superconductive multi-terminal element | |
JP3232642B2 (en) | Current modulator | |
KR790001059B1 (en) | Semiconductor device | |
JPS63224374A (en) | Superconducting element | |
JPS6043885A (en) | Superconducting element | |
JPH0577350B2 (en) |