JPS6155275B2 - - Google Patents

Info

Publication number
JPS6155275B2
JPS6155275B2 JP51101243A JP10124376A JPS6155275B2 JP S6155275 B2 JPS6155275 B2 JP S6155275B2 JP 51101243 A JP51101243 A JP 51101243A JP 10124376 A JP10124376 A JP 10124376A JP S6155275 B2 JPS6155275 B2 JP S6155275B2
Authority
JP
Japan
Prior art keywords
heater
superconducting
persistent current
wire
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51101243A
Other languages
Japanese (ja)
Other versions
JPS5326694A (en
Inventor
Itaru Inoe
Takeru Ikeda
Jun Tanii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10124376A priority Critical patent/JPS5326694A/en
Publication of JPS5326694A publication Critical patent/JPS5326694A/en
Publication of JPS6155275B2 publication Critical patent/JPS6155275B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 本発明は超電導マグネツトを永久電流モードで
用いる時の永久電流スイツチに関するもので、そ
の目的とするところは永久電流スイツチの機能を
損なう事なくまた従来の永久電流スイツチに見ら
れるヒーター電流と超電導遷移の非可逆性を排除
し、永久電流スイツチを安定に動作させんとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a persistent current switch when a superconducting magnet is used in persistent current mode, and its purpose is to provide a permanent current switch that does not impair the function of the persistent current switch and that is different from conventional persistent current switches. The aim is to eliminate the irreversibility of the heater current and the superconducting transition, and to ensure stable operation of the persistent current switch.

一般に超電導マグネツトは直流電源によつて励
磁するものであるが超電導マグネツトの用途によ
つては電源を切り離して永久電流モードで用いる
方が有効な場合がある。例として磁気浮上高速列
車用超電導マグネツト、核磁気共鳴用超電導マグ
ネツト等があるが、前者は永久電流モードで用い
ることにより電源を列車に積み込む必要をなく
し、後者は電源を切り離すことにより電源からの
リツプルなどの雑音の混入を避ける事ができる。
特に核磁気共鳴用超電導マグネツトのように高い
均一度を要求されるものには永久電流モードによ
る超電導マグネツトの運転が有効である。その他
にも電力費が少なくすむ事等で永久電流モードに
よる超電導マグネツトの運転は種々利用される。
Generally, superconducting magnets are excited by a DC power source, but depending on the application of the superconducting magnet, it may be more effective to disconnect the power source and use it in persistent current mode. Examples include superconducting magnets for magnetic levitation high-speed trains and superconducting magnets for nuclear magnetic resonance.The former eliminates the need to load a power source onto the train by using it in persistent current mode, while the latter eliminates ripples from the power source by disconnecting the power source. It is possible to avoid the mixing of noise such as
In particular, operation of superconducting magnets in persistent current mode is effective for those that require high uniformity, such as superconducting magnets for nuclear magnetic resonance. In addition, the operation of superconducting magnets in persistent current mode is used for various purposes, such as because it reduces electric power costs.

永久電流モードにするためには永久電流スイツ
チが必要とされ、初めは該永久電流スイツチを
OFF状態にしておいて直流電源より励磁し、所
望の状態にした後該永久電流スイツチをON状態
にして永久電流回路を作るものである。
A persistent current switch is required to enter persistent current mode, and initially the persistent current switch is
The permanent current switch is turned OFF and then excited by a DC power source to achieve the desired state, and then the persistent current switch is turned ON to create a persistent current circuit.

従来の永久電流スイツチを有する超電導永久電
流回路を第1図に示す。1は超電導マグネツトで
直流電源2によつて励磁される。また超電導マグ
ネツト1と並列に超電導線3があり普通CuNi合
金等電気抵抗の高い母材に埋め込まれた複合超電
導線が用いられる。またこの回路において接続点
7及び8より超電導マグネツト1側はすべて超電
導線で構成されている。超電導線3にはヒーター
4が巻き付けられ、ヒーターの材料としてはマン
ガニン線、ニクロム線等高抵抗の金属が用いられ
ている。ヒーター4は電源6に接続されスイツチ
5で開閉がなされている。超電導線3とヒーター
4によつて永久電流スイツチ10が構成され、該
永久電流スイツチ10と超電導マグネツト1は液
体ヘリウム等の極低温冷媒に浸漬されている。
(点線の内側) 次に永久電流モードにする過程を示す。
A superconducting persistent current circuit with a conventional persistent current switch is shown in FIG. A superconducting magnet 1 is excited by a DC power source 2. Further, there is a superconducting wire 3 in parallel with the superconducting magnet 1, and a composite superconducting wire embedded in a base material having high electrical resistance such as a CuNi alloy is usually used. Further, in this circuit, the area closer to the superconducting magnet 1 than the connection points 7 and 8 is entirely composed of superconducting wires. A heater 4 is wound around the superconducting wire 3, and the material of the heater is a high resistance metal such as manganin wire or nichrome wire. The heater 4 is connected to a power source 6 and is opened and closed by a switch 5. A persistent current switch 10 is constituted by the superconducting wire 3 and the heater 4, and the persistent current switch 10 and the superconducting magnet 1 are immersed in a cryogenic coolant such as liquid helium.
(Inside the dotted line) Next, the process of changing to persistent current mode is shown.

まずスイツチ5を閉じて電源6よりヒーター4
に電流を流す。超電導線3にはヒーター4が巻か
れており、ヒーター4による熱発生が温度上昇を
もたらし、その温度が超電導線3の臨界温度以上
であると超電導線3は常電導状態に遷移し、超電
導線3の母材が高抵抗であるため超電導線3は超
電導マグネツト1よりはるかに高い電気抵抗をも
つことになる。この状態が永久電流スイツチ10
のOFF状態である。永久電流スイツチ10の
OFF状態において直流電源2より電流を流すと
ほとんどの電流は超電導マグネツト1に流れ込み
超電導線3には電流は流れない。直流電源2によ
つて超電導マグネツト1を所望の状態にした後、
スイツチ5を開いてヒーター4の電流を零にしヒ
ーター4の熱発生を少なくすると超電導線3は常
電導状態から超電導状態に復帰する。これが永久
電流スイツチのON状態である。永久電流スイツ
チをON状態にして直流電源2を切ると電流は1
−8−3−7のループで永久電流を流し続け、永
久電流モードとなる。
First, close the switch 5 and connect the power supply 6 to the heater 4.
A current is passed through. A heater 4 is wound around the superconducting wire 3. Heat generation by the heater 4 causes a temperature rise, and when the temperature rises above the critical temperature of the superconducting wire 3, the superconducting wire 3 transitions to a normal conductive state, and the superconducting wire Since the base material of superconducting wire 3 has a high resistance, superconducting wire 3 has a much higher electrical resistance than superconducting magnet 1. This state is the persistent current switch 10.
is in the OFF state. Persistent current switch 10
When current is applied from the DC power source 2 in the OFF state, most of the current flows into the superconducting magnet 1 and no current flows into the superconducting wire 3. After bringing the superconducting magnet 1 into the desired state using the DC power supply 2,
When the switch 5 is opened to reduce the current of the heater 4 to zero and the generation of heat from the heater 4 is reduced, the superconducting wire 3 returns from the normal conducting state to the superconducting state. This is the ON state of the persistent current switch. When the persistent current switch is turned ON and DC power supply 2 is turned off, the current becomes 1.
Persistent current continues to flow in the loop of -8-3-7, resulting in persistent current mode.

ところで前述したようにヒーター4の材料とし
て従来はマンガニン、ニクロム線等が使われてい
た。しかし、これらの材料は電気抵抗は高いが熱
伝導率が小さいためヒーター4の電流を小さくし
て超電導線3を常電導状態から超電導状態に復帰
させようとする際、ヒーター4によつて発生した
熱の逃げが悪くヒーター電流と超電導状態の復帰
が可逆的でなくなる。
By the way, as mentioned above, manganin, nichrome wire, etc. have been conventionally used as materials for the heater 4. However, these materials have high electrical resistance but low thermal conductivity. Heat escape is poor, and the heater current and return to the superconducting state are not reversible.

この事を実験で示してみると、永久電流スイツ
チ用超電導線としてCuNi合金に80芯のNbTi合金
を埋め込んだものを用い、ヒーターには4.5Ωの
マンガニン線を用いた。その時の永久電流スイツ
チの構成を第2図に示す。aはヒーター4と超電
導線3をテフロン製巻枠9に積層させて巻いたも
の、bは超電導線3にヒーター4をら旋状に巻付
けたものをテフロン製巻き枠9に巻いたものであ
る。これを液体ヘリウムの中に漬けて超電導線3
に1Aの電流を流し、ヒーター4の電流を変化さ
せて超電導線3の超電導→常電導、及び常電導→
超電導の遷移の様子を超電導線3の両端電圧を測
定する事によつて調べたのが第3図である。図で
a,bはそれぞれ第2図のa,bの場合に対応す
る。また矢印はヒーター電流の増減によるループ
の方向を示している。bの場合超電導状態からヒ
ーター電流を増加させてゆくと、A点より抵抗が
表われC点で完全に常電導状態となる。逆にヒー
ター電流を減少させてゆくとD点より超電導状態
が表われ始めE点で完全に超電導状態となり大き
な一種のヒステリシスを描く。これはヒーター4
に使われているマンガニンの熱伝導が小さいため
ヒーターによつて発生した熱の逃げが悪い為と考
えられる。また超電導状態から常電導状態に遷移
する途中の点G点からヒーターの電流を減じても
同様に大きなヒステリシスを描きE点に戻る。ま
たaの場合はB点より急に常電導状態へ遷移し、
ヒーター電流を減じていつて零にしても超電導状
態に復帰しない。これは第2図から見てもわかる
ようにbの場合と比較して熱がこもるような構造
になつているからと考えられる。
This was demonstrated in experiments using a CuNi alloy with 80 cores of NbTi alloy embedded in the superconducting wire for the persistent current switch, and a 4.5Ω manganin wire for the heater. The configuration of the persistent current switch at that time is shown in FIG. A shows a heater 4 and a superconducting wire 3 stacked on a Teflon winding frame 9 and winds them, and a shows a superconducting wire 3 with a heater 4 spirally wound around a Teflon winding frame 9. be. Superconducting wire 3 is immersed in liquid helium.
A current of 1A is applied to the heater 4, and the current of the heater 4 is changed to change the superconducting wire 3 from superconductivity to normal conduction, and from normal conduction to normal conduction.
FIG. 3 shows the state of superconductivity transition investigated by measuring the voltage across the superconducting wire 3. In the figure, a and b correspond to cases a and b in FIG. 2, respectively. Further, the arrows indicate the direction of the loop due to increase/decrease in heater current. In case b, when the heater current is increased from the superconducting state, resistance appears from point A, and the state becomes completely normal conducting at point C. Conversely, as the heater current is decreased, a superconducting state begins to appear from point D and becomes completely superconducting at point E, creating a kind of large hysteresis. This is heater 4
This is thought to be because the heat generated by the heater does not escape easily due to the low thermal conductivity of the manganin used in the heater. Furthermore, even if the heater current is reduced from point G, which is halfway through the transition from the superconducting state to the normal conducting state, a similarly large hysteresis will occur and the state will return to point E. In the case of a, there is a sudden transition to the normal conduction state from point B,
Even if the heater current is reduced to zero, it will not return to the superconducting state. This is thought to be because, as can be seen from Figure 2, the structure allows more heat to be trapped compared to case b.

このように従来の永久電流スイツチは、再現性
がなく、信頼性も薄く不安定性を招くおそれもあ
る。特に第2図のaの構造のものは第3図のデー
タより明らかなように永久電流スイツチとしては
ほとんど使用に耐えないものである。このような
現象が起るのは、永久電流スイツチのヒーターに
マンガニン線、ニクロム線のような電気抵抗率の
高いものを用いているからと考えられる。即ち、
電気抵抗率の高い金属、合金は一般に熱伝導率が
小さいために、上記のようなヒステリシス現象が
表われると考えられるのである。
As described above, conventional persistent current switches lack reproducibility, are not reliable, and may lead to instability. In particular, the structure a in FIG. 2 is hardly usable as a persistent current switch, as is clear from the data in FIG. This phenomenon is thought to be due to the use of materials with high electrical resistivity, such as manganin wire or nichrome wire, for the heater of the persistent current switch. That is,
Since metals and alloys with high electrical resistivity generally have low thermal conductivity, it is thought that the above-mentioned hysteresis phenomenon appears.

このような検討結果に基づき本発明者等は永久
電流スイツチのヒーターの材料として熱伝導率の
高い金属である銅、アルミニウム、銀又はこれら
の金属を主体とする合金を用いたところ、従来の
永久電流スイツチの上記したような欠点をなくす
ことに成功したものである。
Based on these study results, the present inventors used copper, aluminum, silver, or alloys mainly composed of these metals, which are metals with high thermal conductivity, as materials for the heater of a permanent current switch. This device succeeded in eliminating the above-mentioned drawbacks of current switches.

即ち、本発明は、超電導線にヒーターを巻き付
けた永久電流スイツチにおいて、前記ヒーターと
して銅、アルミニウム、銀又はこれらの金属を主
体とした合金を用いたことを特徴とするものであ
る。
That is, the present invention is a persistent current switch in which a heater is wound around a superconducting wire, and is characterized in that the heater is made of copper, aluminum, silver, or an alloy mainly composed of these metals.

これらの金属又は合金は液体ヘリウム温度
(4.2K)中で熱伝導率はマンガニン等と比較して
3ケタ程大きく、ヒーターによつて生じた熱はヒ
ーター電流を減ずるとただちに除去され、従来の
永久電流スイツチがもつようなヒステリスはなく
なる。
Thermal conductivity of these metals or alloys at liquid helium temperature (4.2K) is about 3 orders of magnitude higher than that of manganin, etc., and the heat generated by the heater is immediately removed when the heater current is reduced, making it difficult to maintain the thermal conductivity of conventional permanent heat. The hysteresis that current switches have is eliminated.

〔実施例〕〔Example〕

本発明による永久電流スイツチを用いた例を示
す。構造は第2図に示したのと同じでa,b両方
を用いた。ヒーター4としてホルマール被覆の
0.10mmφ銅線6mを用いた抵抗値は液体ヘリウム
中で0.12Ωであつた。第3図の場合と同様にして
特性を調べた結果を第4図に示す。bの場合A点
より超電導状態から常電導状態への遷移が始まり
C点で完全に常電導状態になり逆にヒーター電流
を減じてゆくとわずかにヒステリシスを描くが
ほゞ増加ラインに沿つて超電導状態に復帰してい
る。aの場合も同じようにB点より常電導状態に
遷移しヒーター電流を下げてもほゞ同じラインを
たどる。
An example using a persistent current switch according to the present invention will be shown. The structure was the same as shown in Figure 2, and both a and b were used. Formal coating as heater 4
The resistance value using 6m of 0.10mmφ copper wire was 0.12Ω in liquid helium. FIG. 4 shows the results of examining the characteristics in the same manner as in the case of FIG. 3. In the case of b, the transition from the superconducting state to the normal conducting state begins at point A, and the state becomes completely normal conducting at point C. Conversely, as the heater current is reduced, there is a slight hysteresis, but the superconducting state roughly follows the increasing line. The condition has returned to normal. In the case of a, it similarly transitions to the normal conduction state from point B and follows almost the same line even if the heater current is lowered.

この他、ヒーターとしてアルミニウム線、銀
線、銅合金線、アルミニウム合金線、銀合金線を
用いた場合についても実験をしたが、同様に良好
な結果が得られている。
In addition, experiments were also conducted using aluminum wire, silver wire, copper alloy wire, aluminum alloy wire, and silver alloy wire as heaters, and similarly good results were obtained.

以上の説明から明らかなように、本発明によれ
ば、従来の永久電流スイツチにみられるヒステリ
シス特性を排除し永久電流スイツチの動作を安定
にすることができるという実用上きわめて重要な
効果が得られる。
As is clear from the above explanation, according to the present invention, the hysteresis characteristic seen in conventional persistent current switches can be eliminated and the operation of persistent current switches can be stabilized, which is an extremely important effect in practice. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は永久電流スイツチを有する超電導永久
電流回路の概略図、第2図a,bはそれぞれ別の
永久電流スイツチの構造を示す断面図及び斜視
図、第3図は従来の永久電流スイツチの特性図、
第4図は本発明の永久電流スイツチの特性図であ
る。 3……超電導線、4……ヒーター、10……永
久電流スイツチ。
Figure 1 is a schematic diagram of a superconducting persistent current circuit having a persistent current switch, Figures 2a and b are sectional and perspective views showing the structure of different persistent current switches, and Figure 3 is a diagram of a conventional persistent current switch. Characteristic diagram,
FIG. 4 is a characteristic diagram of the persistent current switch of the present invention. 3...Superconducting wire, 4...Heater, 10...Persistent current switch.

Claims (1)

【特許請求の範囲】[Claims] 1 超電導線にヒーターを巻きつけた永久電流ス
イツチにおいて、前記ヒーターは銅、アルミニウ
ム、銀又はこれらの金属を主体とした合金からな
ることを特徴とする永久電流スイツチ。
1. A persistent current switch in which a heater is wound around a superconducting wire, wherein the heater is made of copper, aluminum, silver, or an alloy mainly composed of these metals.
JP10124376A 1976-08-25 1976-08-25 Permanent current switch Granted JPS5326694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10124376A JPS5326694A (en) 1976-08-25 1976-08-25 Permanent current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10124376A JPS5326694A (en) 1976-08-25 1976-08-25 Permanent current switch

Publications (2)

Publication Number Publication Date
JPS5326694A JPS5326694A (en) 1978-03-11
JPS6155275B2 true JPS6155275B2 (en) 1986-11-27

Family

ID=14295453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10124376A Granted JPS5326694A (en) 1976-08-25 1976-08-25 Permanent current switch

Country Status (1)

Country Link
JP (1) JPS5326694A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157369U (en) * 1984-09-19 1986-04-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157369U (en) * 1984-09-19 1986-04-17

Also Published As

Publication number Publication date
JPS5326694A (en) 1978-03-11

Similar Documents

Publication Publication Date Title
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
WO2014034295A1 (en) Conduction cooling permanent current switch, mri device, nmr device
US3479569A (en) Method and apparatus for releasing electric energy
JPS6155275B2 (en)
JP4477859B2 (en) Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP2003069093A (en) Perpetual current switch and superconducting magnet using it
JPH10144545A (en) Current limiting device
JPH05234749A (en) Superconducting device for magnetic levitation train
JP2897542B2 (en) Superconducting switch
JPS5916208A (en) Connected superconductive wire
JP2983323B2 (en) Superconducting magnet device and operating method thereof
JPS60130179A (en) Superconductive switch
JPS61265881A (en) Thermal type superconductive switch
JPH1066255A (en) Oxide superconducting current-limiting element
JPH04137571A (en) Permanent current switch
JP3230830B2 (en) Thermal permanent current switch
JP3127705B2 (en) Current lead using oxide superconductor
JPS6230509B2 (en)
JPS6195502A (en) Superconducting magnet
JPH10326915A (en) Connection structure of superconductive wire
US3339165A (en) Magnetic switching device
JPS5988882A (en) Thermal type superconductive switch
JPH09298320A (en) Perpetual current switch for oxide superconductive coil and switching device using it as well as switching method