JPS5916208A - Connected superconductive wire - Google Patents

Connected superconductive wire

Info

Publication number
JPS5916208A
JPS5916208A JP12657282A JP12657282A JPS5916208A JP S5916208 A JPS5916208 A JP S5916208A JP 12657282 A JP12657282 A JP 12657282A JP 12657282 A JP12657282 A JP 12657282A JP S5916208 A JPS5916208 A JP S5916208A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
resistance
current
solder layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12657282A
Other languages
Japanese (ja)
Inventor
正夫 守田
山田 忠利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12657282A priority Critical patent/JPS5916208A/en
Publication of JPS5916208A publication Critical patent/JPS5916208A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は接続された超電導線、特に、超電導線の接続部
分の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to connected superconducting wires, and particularly to the configuration of a connecting portion of a superconducting wire.

一般に、超電導線は、添付図面第1図A及びBに示すよ
うな構造を有している。すなわち、図において、符号/
は超電導線、コは低抵抗基利であって一般に銅相がよく
用いられている。また、3は超電導体フィラメントであ
る。低抵抗基材λは超電導体フィラメント3を、電気的
、熱的に安定化させるために用いられる。いま、超電導
線/を臨界温度以下に冷却(一般には液体ヘリウムによ
り温度11.コ0K)すると、超電導体フィラメント3
の電気抵抗は零になる。従って、この状態下で超電導線
/に電流を流すと、電流は超電導体フィラメント3の中
を流れる。
Generally, a superconducting wire has a structure as shown in FIGS. 1A and 1B of the accompanying drawings. That is, in the figure, the symbol /
is a superconducting wire, and ko is based on low resistance, and generally a copper phase is often used. Further, 3 is a superconductor filament. The low resistance base material λ is used to electrically and thermally stabilize the superconductor filament 3. Now, when the superconducting wire is cooled below the critical temperature (generally at a temperature of 11.0K with liquid helium), the superconducting filament 3
The electrical resistance of becomes zero. Therefore, when a current is applied to the superconducting wire under this condition, the current flows through the superconducting filament 3.

従来、このような構成を有する超電導#i!/の接続は
、添付図面第一図に示すようにして行なわれていた。す
なわち、図において、符号ダは超電導線lを互いに接続
するためのはんだ層であり、このはんだ層りの材料とし
ては、一般に、鉛とすずの合金がよく用いられる。この
ように構成される超電導線/の従来の接続部の電流の流
れを、接続部の縦断面図により、原理的に示すと添付図
面第5図のとおりである。ただし、ここでは、超電導線
/は超電導状態で使用されているものとする。
Conventionally, superconducting #i! has such a configuration. The / connections were made as shown in Figure 1 of the attached drawings. That is, in the figure, the symbol ``da'' indicates a solder layer for connecting the superconducting wires 1 to each other, and an alloy of lead and tin is generally used as the material for this solder layer. The flow of current in a conventional connection section between superconducting wires constructed in this manner is shown in principle in a vertical sectional view of the connection section as shown in FIG. 5 of the accompanying drawings. However, here, it is assumed that the superconducting wire / is used in a superconducting state.

図中、矢印は電流の流れを示す。すなわち、一方の超電
導体フィラメントJから、その低抵抗基材コ、はんだ層
グ、他の側の低抵抗基材コ′を通って、他方の超電導線
/′の超電導体フィラメント3′に電流が流れ込む。こ
の場合、低抵抗基材2 、.2’及びはんだ層弘は一般
に電気抵抗を有しているが、この低抵抗基材、2 、.
2’には、一般に鋼材がよく用いられており、その銅の
電気抵抗率は、液体ヘリウム温度においては2X10’
Ωぼ程度である。一方、はんだ層ヶは、低磁界、低電流
密度にあっては超電導状態になるが、超電導コイル中で
は磁界や電流のために、一般には常電導状態となってお
り、従って、その電気抵抗率は液体ヘリウム温度におい
てはy×io’Ωα程度である。従って、超電導線/同
志の接続部においては、電流が一方の超電導体フィラメ
ント3から他方の超電導体フィラメント3′へ移る際に
は、低抵抗基拐コ及びはんだ層グにおいて抵抗損失が発
生する。しかし、はんだ層グの厚さが充分に薄ければ、
はんだ層グにおける抵抗損失は、低抵抗基材2の抵抗損
失に比べて小さな値となる。しかしながら、実際Oはん
だ付は作業においては、超電導線/の表面のひずみや凹
凸等のために、はんだ層りの厚さを充分薄くすることは
不可能である。すなわち、低抵抗基材−に比べて、電気
抵抗率がコθ倍程度高いはんだ層ケの存在は、接続部に
おける抵抗損失に大きな役割を占めることになる。
In the figure, arrows indicate the flow of current. That is, a current flows from one superconducting filament J, through its low resistance base material, the solder layer, and the low resistance base material on the other side, to the superconducting filament 3' of the other superconducting wire /'. Flow into. In this case, the low resistance base materials 2, . 2' and the solder layer generally have electrical resistance, but this low resistance base material, 2, .
Generally, steel is often used for 2', and the electrical resistivity of copper is 2X10' at liquid helium temperature.
It is about Ω. On the other hand, the solder layer becomes superconducting in a low magnetic field and low current density, but in a superconducting coil it is generally in a normal conducting state due to the magnetic field and current, and therefore its electrical resistivity is approximately y×io'Ωα at the liquid helium temperature. Therefore, in the superconducting wire/component connection, when current is transferred from one superconducting filament 3 to the other superconducting filament 3', resistance loss occurs in the low resistance base plate and the solder layer. However, if the thickness of the solder layer is thin enough,
The resistance loss in the solder layer is smaller than the resistance loss in the low resistance base material 2. However, in actual O-soldering operations, it is impossible to reduce the thickness of the solder layer sufficiently due to distortions and irregularities on the surface of the superconducting wire. That is, the presence of the solder layer, which has an electrical resistivity about θ times higher than that of the low-resistance base material, plays a large role in the resistance loss at the connection portion.

今、超電導コイルを永久電流運転することを考えると、
その原理図は第り図に示すとおりであり、図中、符号1
0は超電導線lを巻回した超電導コイル、//は超電導
1%!/の接続部、/2は超電導コイル10と励磁電源
17を接続部/6を介して結合するリード、/3は永久
電流スイッチ、/4tはヒータ、/左は熱絶縁物、7g
はヒータ電源、/q及び20はスイッチである。ただし
、コイルIOや永久電流スイッチ等の主回路は液体ヘリ
ウムによって冷却されているものとする。この″よ5な
状態において、スイッチコθを閉にして、ヒータ/4’
により永久電流スイッチ/3を加熱すると、熱絶縁物1
5の存在のために、永久電流スイッチ/3の温度は超電
導線/の臨界温度以上になる。
Now, considering the persistent current operation of a superconducting coil,
The principle diagram is as shown in Fig.
0 is a superconducting coil wound with superconducting wire l, // is superconducting 1%! Connection part /2 is a lead that connects the superconducting coil 10 and excitation power source 17 via connection part /6, /3 is a persistent current switch, /4t is a heater, /left is a thermal insulator, 7g
is a heater power supply, /q and 20 are switches. However, it is assumed that the main circuits such as the coil IO and the persistent current switch are cooled by liquid helium. In this condition, switch θ is closed and heater/4'
When persistent current switch/3 is heated by
Due to the presence of 5, the temperature of persistent current switch /3 becomes above the critical temperature of superconducting wire /.

従って、永久電流スイッチ13は超電導状態でなくなり
、電気抵抗を有するようになる。この状態で、スイッチ
/9を閉にすると、超電導コイル/θは励磁電源/7に
より励磁される。この状態を等価回路によって表現する
と、添付図面第5図のとおりである。ここで、符号、2
/は永久電流スイッチ/3の常電導抵抗と接続部//の
抵抗の合計を表わしている。ここで、超電導コイル10
を一定電流工。まで励磁した後、スイッチ、20を開に
してヒータ/4’の加熱を止めて、永久゛電流スイッチ
/3を冷却し、その温度を超電導線/の臨界温度以下に
する。このようにすれば、超電導コイル10の端子は電
気抵抗が零の超電導線で短絡されたことになる。この状
態でスイッチ/9を開にすれば、超電導コイル10の電
流は永久電流スイッチJを通って循環する。すなわち、
超電導コイルlOkま永久電流運転されることになる。
Therefore, the persistent current switch 13 is no longer superconducting and has electrical resistance. In this state, when the switch /9 is closed, the superconducting coil /θ is excited by the excitation power supply /7. This state is expressed by an equivalent circuit as shown in FIG. 5 of the accompanying drawings. Here, the sign, 2
/ represents the sum of the normal conduction resistance of the persistent current switch /3 and the resistance of the connecting portion //. Here, superconducting coil 10
A constant current engineer. After the superconducting wire is energized, the switch 20 is opened to stop heating the heater 4', and the permanent current switch 3 is cooled down to a temperature below the critical temperature of the superconducting wire. In this way, the terminals of the superconducting coil 10 are short-circuited by a superconducting wire with zero electrical resistance. If switch /9 is opened in this state, the current in superconducting coil 10 will circulate through persistent current switch J. That is,
The superconducting coil will be operated with persistent current.

この状態を等価回路で示したものが添付図面第6図であ
る。図中、矢印は電流を表わし、符号λλは接続部//
の抵抗を表わす。
This state is shown in an equivalent circuit in FIG. 6 of the accompanying drawings. In the figure, the arrow represents the current, and the symbol λλ represents the connection point //
represents the resistance of

いま、このようにして永久電流運転をする場合の超電流
コイルの電流工の時間を豹変化を示すと、次式のように
なる。すなわち、 ただし、I、−初期電流値 り−超電導コイルのインダクタンス Ro+ Rs−接続部の抵抗 Ro−低抵抗基材λの抵抗 R8=はんだ層弘の抵抗 ここで、代表的数値例として低抵抗基材コの電流が流れ
る部分の厚さが、はんだ層グの厚さの弘倍であると仮定
し、はんだ層弘の抵抗Rsを10 ’とすると、低抵抗
基拐コの抵抗R8は2×/θ−7Ωとなる。また、超電
導コイルのインダクタンスLを/Hとすれば、コイル電
流Iが初期電流値工。のq、t%に減衰するための期間
は、上式から50日と計算される。これは、超電導線の
接続部の電気抵抗の存在のために、超電導コイルの蓄積
エネルギーが抵抗損失として消費されたからである。こ
のような超電導コイルが、例えば、磁気浮上列車用の超
電導コイルとして用いられる場合等には、一定の起磁力
、一定の磁場が要求されるが、このような超電導コイル
においては、上述のような電流減衰は少ない方が好まし
い。
Now, if we express the current change of the supercurrent coil in the case of persistent current operation in this way, the following equation is obtained. In other words, I, - initial current value - inductance Ro + Rs of the superconducting coil - resistance Ro of the connection part - resistance R8 of the low resistance base material λ = resistance of the solder layer Hiroshi Here, as a typical numerical example, the low resistance base Assuming that the thickness of the part of the material through which the current flows is twice the thickness of the solder layer, and the resistance Rs of the solder layer is 10', the resistance R8 of the low resistance base layer is 2× /θ−7Ω. Also, if the inductance L of the superconducting coil is /H, the coil current I is the initial current value. The period for decay to q,t% of is calculated as 50 days from the above formula. This is because the energy stored in the superconducting coil was consumed as resistance loss due to the presence of electrical resistance at the connections of the superconducting wire. For example, when such a superconducting coil is used as a superconducting coil for a magnetic levitation train, a certain magnetomotive force and a certain magnetic field are required. The smaller the current attenuation, the better.

以上のように、従来の超電導線の接続部には、低抵抗基
拐の抵抗とはんだ層の抵抗とが存在しており、かつ、は
んだ層の抵抗が、低抵抗基材の抵抗に比べて大ぎく、従
って超電導コイルを永久電流運転した場合には、超電導
コイルの電流の減衰が、はんだ層による抵抗のために、
太きいという欠点があった。
As described above, in the connections of conventional superconducting wires, there is a resistance of the low-resistance base material and a resistance of the solder layer, and the resistance of the solder layer is higher than the resistance of the low-resistance base material. Therefore, when the superconducting coil is operated with persistent current, the attenuation of the current in the superconducting coil is due to the resistance caused by the solder layer.
It had the drawback of being thick.

本発明は上記のような従来の接続された超電導線におけ
る欠点を除去し、接続された超電導線の接続部の電気抵
抗を低減し得る接続された超電導線を提供することをそ
の目的とするものである。
An object of the present invention is to provide a connected superconducting wire capable of eliminating the above-mentioned drawbacks of the conventional connected superconducting wire and reducing the electrical resistance of the connecting portion of the connected superconducting wire. It is.

本発明は、この目的を達成するために、接続された超電
導線の接続部が、接続すべき超電導、線の接続部分を相
互に重ねると共にその接続部分を接続用チューブ内に収
め且つ各接続部分を接続用チューブと共に圧着して各接
続すべき超電導線相互及びこれと接続チューブとを導通
良好に構成されていることを特徴とするものである。
In order to achieve this object, the present invention provides a method in which the connecting portions of the connected superconducting wires overlap each other, the connecting portions are housed in a connecting tube, and each connecting portion is The superconducting wires are crimped together with the connecting tube to ensure good conduction between the superconducting wires to be connected and the connecting tube.

以下、本発明をその一実施例を示す添付図面第7図に基
づいて説明する。図において、矢印は電流、符号/、/
′は接続すべき超電導線、λ、2′はその低抵抗基材、
3は超電導体フィラメントで従来装置におけるものと同
等のものであり、また、符号3/は各超電導線/、/′
の接続部分をその内部に収めた接続用チューブである。
Hereinafter, the present invention will be explained based on FIG. 7 of the accompanying drawings showing one embodiment thereof. In the figure, arrows indicate current, sign /, /
' is the superconducting wire to be connected, λ, 2' is its low resistance base material,
3 is a superconducting filament that is equivalent to that in the conventional device, and the symbol 3/ is each superconducting wire /, /'
This is a connection tube that houses the connection part of the inside.

すなわち、例えば、コ本の超電導線/、/′の接続部分
である端部を相互に重ね、その重ねた部分を接続用チュ
ーブ3/内に収め、接続用チューブ3/の外側から押圧
することによって圧着し、はんだ層グによることなしに
、超電導1fiJ/、/’を電気的に接続している。こ
のように、低抵抗基材2 、.2’に比べて電気抵抗率
の高いはんだ層グを介することなく、超電導線l、/′
を接続することができたので、接続部の接続抵抗が低く
押えられ、従って、超電導コーイルを永久電流運転した
場合においても、超電導コイルの電流の減衰ははんだ層
を有する接続の場合に比べて、非常に少なくなる。いま
、前記の代表的数値を前式に代入すると、上記本発明に
よる接続された超電導線の場合にあっては、電流が初期
電流値のqr%になるのに要する時間は、実に3θO日
と計算される。
That is, for example, the ends of two superconducting wires /, /', which are the connection parts, are stacked on top of each other, the overlapped parts are placed inside the connection tube 3/, and the connection tube 3/ is pressed from the outside. The superconductors 1fiJ/,/' are electrically connected without using a solder layer. In this way, the low resistance base materials 2, . superconducting wire l,/' without passing through a solder layer with higher electrical resistivity than 2'
As a result, the connection resistance of the connection part can be kept low, and therefore, even when the superconducting coil is operated with persistent current, the attenuation of the current in the superconducting coil is lower than in the case of a connection with a solder layer. There will be very few. Now, by substituting the above-mentioned representative values into the above equation, in the case of the connected superconducting wire according to the present invention, the time required for the current to reach qr% of the initial current value is actually 3θO days. Calculated.

更に、接続用チューブJ/が導電性を有するものであれ
ば、電流の減衰はより少なくなる。以上の実施例は、接
続すべき超電導線がコ本の場合について述べたが、これ
に限るものではなく、例えば、添付図面第ざ図に示すよ
うに、3本以上の超電導線の接続の場合であっても、同
様の構成によって接続を行なうことができ、また、同様
の効果を奏することができる。
Furthermore, if the connecting tube J/ has conductivity, the attenuation of the current will be smaller. Although the above embodiments have been described in the case where the number of superconducting wires to be connected is small, the invention is not limited to this. For example, as shown in the attached drawings, three or more superconducting wires are connected. Even if it is, the connection can be made with the same configuration and the same effect can be achieved.

また、添付図面第9図に示すものは、他の実施例であっ
て、電気的安定性を増すために、超電導線/、/′及び
接続用チューブ3/に渡って、他の超電導線か又は低抵
抗導体から成る接続安定用部材J2をはんだ付けによる
はんだ層33を設けて接続したものである。更に、添付
図面第1θ図に示すものは、接続すべき超電導線/、/
′の向きが異なっているものであり、その効果も第7図
及び第g図と同様であり、また、第9図に準じて接続部
材を設けてもよい。
In addition, what is shown in FIG. 9 of the accompanying drawings is another embodiment in which other superconducting wires are connected across the superconducting wires /, /' and the connecting tube 3/ to increase electrical stability. Alternatively, a connection stabilizing member J2 made of a low resistance conductor is connected by providing a solder layer 33 by soldering. Furthermore, what is shown in Figure 1θ of the attached drawings is the superconducting wire to be connected /, /
The direction of ' is different, and the effect is the same as that of FIGS. 7 and g. Furthermore, a connecting member may be provided according to FIG. 9.

本発明は、以上のように構成され作用するので、その接
続部に電気抵抗率の高いはんだ層を特に必要とぜす、従
って、電気抵抗の非常に低い接続部を有する超電導線を
得ることができるとい5効果を奏することができた。
Since the present invention is constructed and operates as described above, it is particularly necessary to use a solder layer with high electrical resistivity at the connection portion thereof. Therefore, it is possible to obtain a superconducting wire having a connection portion with extremely low electrical resistance. We were able to achieve five effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な超電導線の外観斜視図(勾とその横断
面図(B)、第2図は従来の接続構造を有する超電導線
の外観斜視図、第3図は従来の接続構造を有する超電導
線の縦断面図、第9図は永久電流スイッチ付き超電導コ
イルの励磁回路図、第5図は超電導コイル励磁中の等価
回路図、第6図は永久電流運転状態の超電導コイルの等
価回路図、第7図は本発明の実施例の7つを示す外観斜
視図、第g図〜第1O図は本発明の他の実施例の外観図
である。/、l′・・超電導線、コ1.L′・・低抵抗
基材、3.3′・・超電導体フィラメント、り、33・
・はんだ層、31・・接続用チューブ、32・・接続安
定性部材。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人  葛  野  信  −
Figure 1 is an external perspective view of a general superconducting wire (cross-sectional view (B)), Figure 2 is an external perspective view of a superconducting wire with a conventional connection structure, and Figure 3 is an external perspective view of a conventional connection structure. Fig. 9 is an excitation circuit diagram of a superconducting coil with a persistent current switch, Fig. 5 is an equivalent circuit diagram during excitation of a superconducting coil, and Fig. 6 is an equivalent circuit of a superconducting coil in a persistent current operating state. Fig. 7 is an external perspective view showing seven embodiments of the present invention, and Figs. g to 1O are external views of other embodiments of the present invention. 1.L'...Low resistance base material, 3.3'...Superconductor filament, 33.
- Solder layer, 31... Connection tube, 32... Connection stability member. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 (1)接続された超電導線の接続部が、接続すべき超電
導線の接続部分を相互に重ねると共にその接続部分を接
続用チューブ内に収め且つ各接続部分を接続用チューブ
と共に圧着して各接続すべき超電導線相互及びこれと接
続用チューブとを導通良好に構成されていることを特徴
とする接続された超電導線。 (,2)接続用チューブが導電体材料で構成されている
特許請求の範囲第1項記載の接続された超電導線。 (3)接続すべき超電導線と接続用チューブとの導通な
良好にする構成が、接続すべき各超電導線と接続用チュ
ーブとに渡って、他の超電導線及び低抵抗導体のいずれ
かから成る接続安定用部材を電気的に接合して構成され
ている特許請求の範囲第1項又は第2項記載の接続され
た超電導線。
[Claims] (1) The connecting portions of the connected superconducting wires are such that the connecting portions of the superconducting wires to be connected overlap each other, the connecting portions are housed in the connecting tube, and each connecting portion is placed in the connecting tube. 1. A connected superconducting wire characterized in that the superconducting wires are crimped together to provide good electrical conductivity between each superconducting wire and a connecting tube. (,2) The connected superconducting wire according to claim 1, wherein the connecting tube is made of a conductive material. (3) A structure that ensures good conduction between the superconducting wires to be connected and the connecting tube consists of either another superconducting wire or a low-resistance conductor across each superconducting wire to be connected and the connecting tube. The connected superconducting wire according to claim 1 or 2, which is constructed by electrically joining members for connection stabilization.
JP12657282A 1982-07-16 1982-07-16 Connected superconductive wire Pending JPS5916208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12657282A JPS5916208A (en) 1982-07-16 1982-07-16 Connected superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12657282A JPS5916208A (en) 1982-07-16 1982-07-16 Connected superconductive wire

Publications (1)

Publication Number Publication Date
JPS5916208A true JPS5916208A (en) 1984-01-27

Family

ID=14938480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12657282A Pending JPS5916208A (en) 1982-07-16 1982-07-16 Connected superconductive wire

Country Status (1)

Country Link
JP (1) JPS5916208A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033580A1 (en) * 1999-11-04 2001-05-10 Sumitomo Electric Industries, Ltd. Method of manufacturing oxide superconducting wire, oxide superconducting wire, superconducting coil and superconducting apparatus
US7833105B2 (en) 2005-01-07 2010-11-16 Honda Motor Co., Ltd. Bearing device for drive wheel
US8794842B2 (en) 2006-12-27 2014-08-05 Ntn Corporation Wheel bearing apparatus for a vehicle
WO2018211699A1 (en) * 2017-05-19 2018-11-22 住友電気工業株式会社 Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
WO2018211700A1 (en) * 2017-05-19 2018-11-22 住友電気工業株式会社 Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231871B2 (en) * 1972-05-22 1977-08-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231871B2 (en) * 1972-05-22 1977-08-17

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033580A1 (en) * 1999-11-04 2001-05-10 Sumitomo Electric Industries, Ltd. Method of manufacturing oxide superconducting wire, oxide superconducting wire, superconducting coil and superconducting apparatus
US6844064B1 (en) 1999-11-04 2005-01-18 Sumitomo Electric Industries, Ltd. Method of manufacturing oxide superconducting wire, oxide superconducting wire, superconducting coil and superconducting apparatus
US7132162B2 (en) 1999-11-04 2006-11-07 Sumitomo Electric Industries, Ltd. Superconducting coil and superconducting apparatus
US7468207B2 (en) 1999-11-04 2008-12-23 Sumitomo Electric Industries, Ltd. Superconducting coil and superconducting apparatus
JP4696436B2 (en) * 1999-11-04 2011-06-08 住友電気工業株式会社 Oxide superconducting wire manufacturing method, oxide superconducting wire, superconducting coil, and superconducting equipment
US7833105B2 (en) 2005-01-07 2010-11-16 Honda Motor Co., Ltd. Bearing device for drive wheel
US8794842B2 (en) 2006-12-27 2014-08-05 Ntn Corporation Wheel bearing apparatus for a vehicle
WO2018211699A1 (en) * 2017-05-19 2018-11-22 住友電気工業株式会社 Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
WO2018211700A1 (en) * 2017-05-19 2018-11-22 住友電気工業株式会社 Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
CN110582815A (en) * 2017-05-19 2019-12-17 住友电气工业株式会社 Superconducting wire, superconducting coil, superconducting magnet, and superconducting device
CN110582815B (en) * 2017-05-19 2021-01-01 住友电气工业株式会社 Superconducting wire, superconducting coil, superconducting magnet, and superconducting device

Similar Documents

Publication Publication Date Title
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
JP2005197539A (en) Superconductivity current limiting element
DE3866409D1 (en) QUENCH SPREADING DEVICE FOR A SUPRAL-CONDUCTING MAGNET.
JPS5916208A (en) Connected superconductive wire
JPS60165775A (en) Shorting switch unit of superconductive magnet coil
JPH0793460B2 (en) Superconducting switch
JPS6140070A (en) Switch
US3359394A (en) Persistent current switch
EP0395940B1 (en) Apparatus for Propagating a quench in a superconducting magnet
JP4477859B2 (en) Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
KR100275091B1 (en) Electric lead
JP2003069093A (en) Perpetual current switch and superconducting magnet using it
JPS5916207A (en) Connected superconductive wire
JP2897542B2 (en) Superconducting switch
JPH10326915A (en) Connection structure of superconductive wire
JPS5861608A (en) Superconducting device
JPH06132571A (en) Current limiting element and current limiting device
JPS6195502A (en) Superconducting magnet
JPS5941879A (en) Permanent current switch
JPS6193684A (en) Thermal type permanent current switch
WO2023182963A1 (en) A superconductor protection unit
JPH08130112A (en) Superconducting magnet device
JPH0222999Y2 (en)
JP2002112454A (en) Current limiter
JPS5929306A (en) Superconductive wire