JPH10326915A - Connection structure of superconductive wire - Google Patents

Connection structure of superconductive wire

Info

Publication number
JPH10326915A
JPH10326915A JP9134144A JP13414497A JPH10326915A JP H10326915 A JPH10326915 A JP H10326915A JP 9134144 A JP9134144 A JP 9134144A JP 13414497 A JP13414497 A JP 13414497A JP H10326915 A JPH10326915 A JP H10326915A
Authority
JP
Japan
Prior art keywords
superconducting
conductor
current switch
switch
permanent current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9134144A
Other languages
Japanese (ja)
Inventor
Kenji Goto
謙次 後藤
Hiroshi Fuji
広 富士
Shoji Iwasaki
庄治 岩崎
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Hitoshi Honma
仁 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Tohoku Electric Power Co Inc
Original Assignee
Fujikura Ltd
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Tohoku Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP9134144A priority Critical patent/JPH10326915A/en
Publication of JPH10326915A publication Critical patent/JPH10326915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the normal conductive transition of a superconductive coil due to generated heat on the normal conductive transition of a persistent current switch, by providing a superconductive connection conductor with a high critical current at the superconductive wire contact of the superconductive coil and the persistent current switch. SOLUTION: An opening/closing switch 8 is closed when taking out a storage energy externally, and a persistent current switch 7 is shifted to a normal conductive state. At this time, the resistance of the switch 7 increases, thus generating Joule loss heat. The heat is transferred to a permanent current switch conductor 3, thus increasing the temperature of the conductor 3. However, a superconductive connection conductor 1 with a higher critical temperature than the conductors is installed at the connection between the superconductive coil conductor 2 and the conductor 3 while it is in direct contact with both conductors. And, the temperature of the conductors 2 and 3 increases at the connection and current flows through the conductor 1 as far as the conductor 1 does not cause normal conductive transition even if the normal conductive state results. Therefore, current flowing to the side of the switch 7 decreases, thus suppressing amount of heat being generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超電導エネルギー
貯蔵装置などに用いられる超電導コイルの超電導線と永
久電流スイッチの超電導線の接続構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection structure between a superconducting wire of a superconducting coil used for a superconducting energy storage device and the like and a superconducting wire of a permanent current switch.

【0002】[0002]

【従来の技術】超電導エネルギー貯蔵装置とは、超電導
マグネットと永久電流スイッチを組み合わせて、永久電
流回路を実現するもので、一般的には、超電導マグネッ
トと永久電流スイッチを並列接続し、この並列回路を所
望の電源にパワーリードを介して接続する構成になって
いる。
2. Description of the Related Art A superconducting energy storage device realizes a permanent current circuit by combining a superconducting magnet and a permanent current switch. Generally, a superconducting magnet and a permanent current switch are connected in parallel, and this parallel circuit is used. Is connected to a desired power supply via a power lead.

【0003】図3〜図5は、このような構成の超電導エ
ネルギー貯蔵装置の一例を示す模式図であり、図中符号
21は超電導コイル、符号22は永久電流スイッチ、符
号23はパワーリード、符号24は開閉スイッチ、符号
25は交直変換装置である。超電導コイル21と永久電
流スイッチ22を並列接続し、この回路にパワーリード
23と開閉スイッチ24を介して交直変換装置25を接
続し、交直変換装置25に交流電源系統(図示せず)を
接続することで超電導エネルギー貯蔵装置が構成されて
いる。超電導コイル21と永久電流スイッチ22は、い
ずれも極低温において超電導状態に遷移する超電導体か
ら形成され、液体ヘリウムなどの冷媒で冷却されるよう
になっている。
FIGS. 3 to 5 are schematic views showing an example of a superconducting energy storage device having such a configuration. In the drawings, reference numeral 21 denotes a superconducting coil, 22 denotes a permanent current switch, 23 denotes a power lead, and 23 denotes a power lead. Reference numeral 24 denotes an open / close switch, and reference numeral 25 denotes an AC / DC converter. A superconducting coil 21 and a permanent current switch 22 are connected in parallel, an AC / DC converter 25 is connected to this circuit via a power lead 23 and an open / close switch 24, and an AC power supply system (not shown) is connected to the AC / DC converter 25. This constitutes a superconducting energy storage device. Each of the superconducting coil 21 and the permanent current switch 22 is formed of a superconductor that transitions to a superconducting state at an extremely low temperature, and is cooled by a refrigerant such as liquid helium.

【0004】図3〜図5に示す超電導エネルギー貯蔵装
置を、以下のような手順に従って作動させることで、電
力の貯蔵を行うことができる。図3に示すように、開閉
スイッチ24を閉じた状態で永久電流スイッチ22をオ
フの状態とし、電流を超電導コイル21に流すことで、
超電導コイル21に磁気エネルギーとして電力を貯蔵す
る。次に、永久電流スイッチ22を超電導状態とするこ
とでオンの状態とし、外部からの電流を減らしてゆき永
久電流スイッチ22に電流を流し込む。外部からの電流
がゼロになると、超電導コイル21に流れる電流と同等
の電流が永久電流スイッチ22に流れ、永久電流モード
となる。この状態で開閉スイッチ24を開くと、超電導
コイル21も永久電流スイッチ22も共に電気抵抗がゼ
ロであるから、図4に示すように電流は永久電流となっ
て減衰することなくこの閉回路中を流れ続け、超電導コ
イル21に蓄積されたエネルギーが無損失で貯蔵された
ことになる。
Power can be stored by operating the superconducting energy storage device shown in FIGS. 3 to 5 according to the following procedure. As shown in FIG. 3, the permanent current switch 22 is turned off in a state where the open / close switch 24 is closed, and a current is caused to flow through the superconducting coil 21.
Electric power is stored in the superconducting coil 21 as magnetic energy. Next, the permanent current switch 22 is turned on by setting it to a superconducting state, and the current from the outside is reduced, and the current flows into the permanent current switch 22. When the current from the outside becomes zero, a current equivalent to the current flowing through the superconducting coil 21 flows through the permanent current switch 22, and a permanent current mode is set. When the open / close switch 24 is opened in this state, since the electric resistance of both the superconducting coil 21 and the permanent current switch 22 is zero, the current becomes a permanent current and does not attenuate in this closed circuit as shown in FIG. It continues to flow, and the energy stored in the superconducting coil 21 is stored without loss.

【0005】この貯蔵されているエネルギーを取り出す
には、図5に示すように開閉スイッチ24を閉じた後
に、永久電流スイッチ22を常電導状態とすることでオ
フの状態とする。すると、超電導コイル21と永久電流
スイッチ22からなる閉回路に貯蔵されていたエネルギ
ーを電力としてパワーリード23を通して取り出すこと
ができる。
In order to extract the stored energy, the permanent current switch 22 is turned off by closing the open / close switch 24 and then bringing the permanent current switch 22 into the normal conduction state as shown in FIG. Then, the energy stored in the closed circuit including the superconducting coil 21 and the permanent current switch 22 can be taken out through the power lead 23 as electric power.

【0006】図3〜図5に示すような超電導エネルギー
貯蔵装置では、超電導コイル21と永久電流スイッチ2
2から形成される閉回路の抵抗値を、超電導状態におい
ては限りなくゼロに近づけることが必要である。この時
問題となるのが、超電導コイル21と永久電流スイッチ
22の接続部分である。これまでの超電導エネルギー貯
蔵装置では、電気抵抗を極力減少させる目的で、図6に
示すような方式を採用することが多かった。
In a superconducting energy storage device as shown in FIGS. 3 to 5, a superconducting coil 21 and a permanent current switch 2
In the superconducting state, it is necessary to make the resistance of the closed circuit formed from 2 as close to zero as possible. The problem at this time is the connection between the superconducting coil 21 and the permanent current switch 22. Conventional superconducting energy storage devices often employ a method as shown in FIG. 6 in order to reduce electric resistance as much as possible.

【0007】図6は、従来の超電導コイル21と永久電
流スイッチ22の接続方式の一例を示す模式図であり、
図中符号31は銅線、符号32は超電導コイル導線、符
号33は永久電流スイッチ導線、符号34はハンダ層で
ある。図6に示すように、銅線31の周面に超電導コイ
ル導線32および永久電流スイッチ導線33を、お互い
が密着するように巻き付け、さらに接続部分全体をハン
ダ層34で被覆している。この超電導コイル導線32と
永久電流スイッチ導線33の接続部分を20〜30cm
以上と長くすることで、接続部分の抵抗を10 -8Ωオー
ダーまで減少させることができる。
FIG. 6 shows a conventional superconducting coil 21 and a permanent electric coil.
It is a schematic diagram showing an example of a connection method of the flow switch 22,
In the figure, reference numeral 31 is a copper wire, reference numeral 32 is a superconducting coil conductor,
Reference numeral 33 denotes a permanent current switch lead, and reference numeral 34 denotes a solder layer.
is there. As shown in FIG. 6, a superconducting coil
Lead 32 and permanent current switch lead 33
Wrap so that they are in close contact with each other.
Cover layer 34. This superconducting coil conductor 32 and
The connection part of the permanent current switch conductor 33 is 20 to 30 cm.
By increasing the length as described above, the resistance of the connection portion can be reduced to 10 -8Ohm
Can be reduced.

【0008】上記のような超電導エネルギー貯蔵装置に
おいては、永久電流スイッチ22に求められる特性とし
て、常電導状態、すなわちスイッチをオフの状態とした
時に高い抵抗値を示すこと、超電導状態、すなわちスイ
ッチをオンの状態とした時に大容量の電流を流せること
が挙げられる。このため、図5において、永久電流スイ
ッチ22を超電導状態から常電導状態に移行させたと
き、永久電流スイッチ22には、ジュール損失に伴う熱
が発生する。この熱が超電導線を通じて、超電導コイル
21に伝わることで、超電導コイル21の温度を上昇さ
せてしまう。発熱量が大きい場合には、超電導コイル2
1の臨界温度を越えてしまい、超電導コイル21の常電
導遷移(クエンチ)を引き起こす恐れがあった。
In the above-described superconducting energy storage device, the characteristics required for the permanent current switch 22 include a normal conduction state, that is, a high resistance value when the switch is turned off, and a superconducting state, that is, a state in which the switch is turned off. One example is that a large amount of current can flow when turned on. For this reason, in FIG. 5, when the permanent current switch 22 is shifted from the superconducting state to the normal conducting state, the permanent current switch 22 generates heat due to Joule loss. This heat is transmitted to the superconducting coil 21 through the superconducting wire, thereby increasing the temperature of the superconducting coil 21. If the calorific value is large, the superconducting coil 2
The critical temperature of the superconducting coil 21 may exceed the critical temperature of 1 and cause a normal conduction transition (quenching) of the superconducting coil 21.

【0009】[0009]

【発明が解決しようとする課題】上記の点に鑑み、本発
明は、超電導エネルギー貯蔵装置において、永久電流ス
イッチを常電導遷移させたときに発生する熱により、超
電導コイルが常電導遷移を起こすことを防止することを
目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention relates to a superconducting energy storage device in which a superconducting coil causes a normal conduction transition due to heat generated when a permanent current switch causes a normal conduction transition. The purpose is to prevent.

【0010】[0010]

【課題を解決するための手段】上記の課題は、超電導コ
イルの超電導線と永久電流スイッチの超電導線が直接接
触している部分に、上記のいずれの超電導線よりも臨界
温度の高い超電導接続導体を、互いに直接接触した状態
になるように設置することによって解決することができ
る。
An object of the present invention is to provide a superconducting connecting conductor having a higher critical temperature than any of the above superconducting wires at a portion where the superconducting wire of the superconducting coil and the superconducting wire of the permanent current switch are in direct contact. Can be solved by setting them so that they are in direct contact with each other.

【0011】[0011]

【発明の実施の形態】以下、図面により本発明につい
て、詳細に説明する。図1は、本発明の実施形態の一例
を示す模式図であり、図中符号1は超電導接続導体、符
号2は超電導コイル導線、符号3は永久電流スイッチ導
線、符号4は銅線、符号5はハンダ層である。図1に示
すように、超電導コイル導線2と永久電流スイッチ導線
3を接続し、その接続部分に超電導接続導体1を、超電
導コイル導線2および永久電流スイッチ導線3に直接接
触するように設置し、これらに銅線4を接触させた状態
で、接続部分全体をハンダ層5で被覆し、固定する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing an example of an embodiment of the present invention. In the figure, reference numeral 1 denotes a superconducting connection conductor, reference numeral 2 denotes a superconducting coil conductor, reference numeral 3 denotes a permanent current switch conductor, reference numeral 4 denotes a copper wire, and reference numeral 5 denotes a conductor. Is a solder layer. As shown in FIG. 1, the superconducting coil conductor 2 and the permanent current switch conductor 3 are connected, and the superconducting connection conductor 1 is installed at the connection portion so as to directly contact the superconducting coil conductor 2 and the permanent current switch conductor 3. With the copper wires 4 in contact with these, the entire connection portion is covered with a solder layer 5 and fixed.

【0012】図2は、図1にて示した本発明の実施形態
の一例を接続部分に用いて作成した超電導エネルギー貯
蔵装置の一例を示す概略構成図であり、図中符号6は超
電導コイル、符号7は永久電流スイッチ、符号8は開閉
スイッチ、符号9は交直変換装置である。エネルギーが
貯蔵されているとき、すなわち超電導コイル6および永
久電流スイッチ7により閉回路が形成され、超電導コイ
ル6および永久電流スイッチ7が超電導状態にある場合
は、超電導コイル導体2および永久電流スイッチ導体3
も超電導状態にあり、電流は超電導コイル6および永久
電流スイッチ7で形成された閉回路中を流れ続ける。
FIG. 2 is a schematic configuration diagram showing an example of a superconducting energy storage device made by using an example of the embodiment of the present invention shown in FIG. 1 for a connection portion. Reference numeral 7 denotes a permanent current switch, reference numeral 8 denotes an open / close switch, and reference numeral 9 denotes an AC / DC converter. When energy is stored, that is, when a closed circuit is formed by superconducting coil 6 and persistent current switch 7 and superconducting coil 6 and persistent current switch 7 are in a superconducting state, superconducting coil conductor 2 and persistent current switch conductor 3
Is also in the superconducting state, and the current continues to flow in the closed circuit formed by the superconducting coil 6 and the permanent current switch 7.

【0013】貯蔵されたエネルギーを外部に取り出す際
には、開閉スイッチ8を閉じ、永久電流スイッチ7を常
電導状態に遷移させるが、この時永久電流スイッチ7の
抵抗値は高くなり、ジュール損失に伴う熱が発生する。
この熱が、永久電流スイッチ導線3を伝わってゆき、永
久電流スイッチ導線3の温度を上昇させていく。ところ
が、超電導コイル導線2と永久電流スイッチ導線3の接
続部分には、これらの導線より臨界温度の高い超電導接
続導体1が、どちらの導線にも直接接触した状態に設置
されており、この接続部分においては、超電導コイル導
線2や永久電流スイッチ導線3の温度が上昇し、常電導
状態に遷移したとしても、超電導接続導体1が常電導遷
移を起こさない限り、電流は超電導接続導体1を介して
流れることができる。このため、永久電流スイッチ7が
常電導遷移した場合に、超電導コイル導線2と永久電流
スイッチ導線3の接続部分の温度が上昇していき、これ
らの導線が常電導遷移したとしても、電流は、まだ常電
導遷移していない超電導接続導体1を通って超電導コイ
ル6側へ優先的に流れることができるので、超電導接続
導体1を並設していない場合と比較して、永久電流スイ
ッチ7側に流れ込む電流が減少し、その結果発生する熱
量を抑えることができる。これにより、永久電流スイッ
チ7および開閉スイッチ8の切り替えを安定して行うこ
とができる。
When the stored energy is taken out to the outside, the open / close switch 8 is closed and the permanent current switch 7 is shifted to the normal conduction state. At this time, the resistance value of the permanent current switch 7 becomes high, and Joule loss occurs. The accompanying heat is generated.
This heat propagates through the permanent current switch lead 3 and raises the temperature of the permanent current switch lead 3. However, a superconducting connection conductor 1 having a higher critical temperature than those of the superconducting coil conductor 2 and the permanent current switch conductor 3 is installed at a connection portion between the superconducting coil conductor 2 and the permanent current switch conductor 3 so as to be in direct contact with both conductors. In, even if the temperature of the superconducting coil conductor 2 or the permanent current switch conductor 3 rises and transitions to the normal conduction state, as long as the superconducting connection conductor 1 does not cause a normal conduction transition, current flows through the superconducting connection conductor 1. Can flow. For this reason, when the permanent current switch 7 makes a transition to normal conduction, the temperature of the connection portion between the superconducting coil conductor 2 and the permanent current switch conductor 3 rises, and even if these conductors make transition to normal conduction, the current is Since it is possible to preferentially flow to the superconducting coil 6 through the superconducting connection conductor 1 that has not yet transitioned to the normal conduction state, the permanent current switch 7 is closer to the side of the permanent current switch 7 than when the superconducting connection conductor 1 is not juxtaposed. The flowing current is reduced, and the amount of heat generated as a result can be suppressed. Thereby, switching of the permanent current switch 7 and the open / close switch 8 can be performed stably.

【0014】超電導接続導体1は、超電導コイル導線2
および永久電流スイッチ導線3が常電導遷移を起こす温
度においても超電導状態を保つことができればよいの
で、その臨界温度が超電導コイル導線2および永久電流
スイッチ導線3の臨界温度より高い材料を適宜使用する
ことができる。また、超電導接続導体1と、超電導コイ
ル導線2および永久電流スイッチ導線3の臨界温度の差
が大きくなるほど安全域が広くなることになり、より好
ましい。超電導接続導体1として好適に使用できるもの
は、化合物系超電導体としてはNb3Sn線材、Nb3
l線材、V3Ga線材など、酸化物系超電導体としては
イットリウム系超電導体、ビスマス系超電導体など、高
安定化超電導線材としてはAl比1.0以上のAl安定
化線材、Cu比1.0以上のCu安定化線材などを例示
することができる。
The superconducting connection conductor 1 comprises a superconducting coil conductor 2
It is sufficient that the superconducting state can be maintained even at a temperature at which the permanent current switch conductor 3 undergoes a normal conduction transition. Therefore, a material whose critical temperature is higher than the critical temperatures of the superconducting coil conductor 2 and the permanent current switch conductor 3 is appropriately used. Can be. Also, the larger the difference between the critical temperatures of the superconducting connection conductor 1, the superconducting coil conductor 2 and the permanent current switch conductor 3, the wider the safety range becomes, which is more preferable. The superconducting connection conductors 1 that can be suitably used include compound superconductors such as Nb 3 Sn wire and Nb 3 A
1-wire material, V 3 Ga wire, etc., oxide-based superconductors such as yttrium-based superconductors and bismuth-based superconductors, and highly stabilized superconducting wires such as Al-stabilized wires having an Al ratio of 1.0 or more, and Cu ratios of 1. Zero or more Cu-stabilized wires can be exemplified.

【0015】超電導接続導体1、超電導コイル導線2お
よび永久電流スイッチ導線3の接続部分は、それぞれの
超電導体が密着して接続されていれば、どのような構造
となっていても差し支えない。例えば、これらの超電導
体がいずれもより線で構成されている場合は、それぞれ
の超電導体の接続部分においてより線をほぐし、他の超
電導体と絡み合わせるように接続することで、直接接触
する面積を増大させることができる。また、超電導接続
導体1は、その全長をできるだけ長くしておく方が、電
流の流路を確保し、接続部分の抵抗を低く抑えることが
できるので好ましい。少なくても超電導接続導体1の全
長は、超電導コイル導線2と永久電流スイッチ導線3の
接続部分の全長より長くしておくことが好ましい。上述
の超電導接続導体1、超電導コイル導線2および永久電
流スイッチ導線3の接続部分は、従来の接続構造と違っ
て磁界の影響を受けにくいので、磁場中に設けられる構
成となっていても差し支えない。
The connecting portion of the superconducting connection conductor 1, the superconducting coil conductor 2 and the permanent current switch conductor 3 may have any structure as long as the respective superconductors are closely connected. For example, if each of these superconductors is composed of a stranded wire, the stranded wire is loosened at the connection portion of each superconductor, and connected so as to be entangled with other superconductors, so that the area in direct contact Can be increased. In addition, it is preferable that the entire length of the superconducting connection conductor 1 be as long as possible, because a current flow path can be secured and the resistance of the connection portion can be suppressed low. It is preferable that at least the total length of the superconducting connection conductor 1 be longer than the total length of the connection portion between the superconducting coil conductor 2 and the permanent current switch conductor 3. The connecting portion of the above-described superconducting connecting conductor 1, superconducting coil conducting wire 2 and permanent current switch conducting wire 3 is unlikely to be affected by a magnetic field unlike a conventional connection structure, and therefore may be provided in a magnetic field. .

【0016】[0016]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例のみに限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

【0017】(実施例1)図7に示すような超電導エネ
ルギー貯蔵装置を作成した。すなわち、超電導接続導体
41としてイットリウム系超電導体を、永久電流スイッ
チ42として熱式永久電流スイッチを用いた。超電導コ
イル43を液体ヘリウムで冷却して超電導状態とし、導
線44を通じて電流を超電導コイル43に流した。永久
電流スイッチ42を冷却して超電導状態とすることでオ
ンの状態とし、外部からの電流を減らしていき永久電流
スイッチ42に電流を流していくことで、永久電流スイ
ッチ42と超電導コイル43で構成される閉回路にエネ
ルギーを貯蔵した。次に、ヒーター45を加熱すること
で、永久電流スイッチ42を常電導状態に遷移させたと
ころ、発生した熱により導体も加熱され、この熱が導体
を伝わることで、永久電流スイッチ42に近い方の導線
から順に常電導遷移を起こした。常電導遷移は、導線と
超電導接続導体41の接続部まで達したが、超電導コイ
ル43は超電導状態を保持し、外部にエネルギーを放出
することが可能であった。尚、導線の常電導遷移は、導
線の任意の位置に2個のタップをたて、このタップ間の
電位差を計測することで判断した。すなわち、超電導状
態であれば電位差はほぼ零であり、常電導遷移すること
で電位差が発生する。
Example 1 A superconducting energy storage device as shown in FIG. 7 was prepared. That is, an yttrium-based superconductor was used as the superconducting connection conductor 41, and a thermal permanent current switch was used as the permanent current switch 42. The superconducting coil 43 was cooled with liquid helium to be in a superconducting state, and a current was passed through the superconducting coil 43 through the conducting wire 44. The permanent current switch 42 is cooled and brought into a superconducting state to be turned on, and the current from the outside is reduced and the current is caused to flow to the permanent current switch 42, thereby comprising the permanent current switch 42 and the superconducting coil 43. Stored energy in a closed circuit. Next, when the heater 45 is heated to cause the permanent current switch 42 to transition to the normal conduction state, the conductor is also heated by the generated heat, and this heat is transmitted through the conductor, so that the conductor closer to the permanent current switch 42 The normal conduction transition occurred in the order from the lead wire. The normal conduction transition reached the connection between the conducting wire and the superconducting connection conductor 41, but the superconducting coil 43 was able to maintain the superconducting state and release energy to the outside. The normal conduction transition of the conductor was determined by placing two taps at an arbitrary position on the conductor and measuring the potential difference between the taps. That is, in the superconducting state, the potential difference is almost zero, and a transition to normal conduction causes a potential difference.

【0018】(実施例2)図8に示すような超電導エネ
ルギー貯蔵装置を作成した。すなわち、超電導接続導体
51として高安定化Nb3Sn導体を、永久電流スイッ
チ52として磁界式永久電流スイッチを用いた。超電導
コイル53を液体ヘリウムで冷却して超電導状態とし、
導線54を通じて電流を超電導コイル53に流した。制
御用マグネット55を停止することで永久電流スイッチ
52を超電導状態に遷移させ、外部からの電流を減らし
ていき永久電流スイッチ52に電流を流していくこと
で、永久電流スイッチ52と超電導コイル53で構成さ
れる閉回路にエネルギーを貯蔵した。次に、制御用マグ
ネット55を作動させることで、永久電流スイッチ52
を常電導状態に遷移させたが、超電導コイル53は超電
導状態を保持し、外部にエネルギーを放出することが可
能であった。
Embodiment 2 A superconducting energy storage device as shown in FIG. 8 was prepared. That is, a highly stabilized Nb 3 Sn conductor was used as the superconducting connection conductor 51, and a magnetic field type permanent current switch was used as the permanent current switch 52. The superconducting coil 53 is cooled with liquid helium to be in a superconducting state,
A current was supplied to the superconducting coil 53 through the conducting wire 54. By stopping the control magnet 55, the permanent current switch 52 is transited to the superconducting state, the current from the outside is reduced, and the current is supplied to the permanent current switch 52, so that the permanent current switch 52 and the superconducting coil 53 Energy was stored in a closed circuit constructed. Next, the permanent magnet switch 52 is operated by operating the control magnet 55.
Was changed to the normal conducting state, but the superconducting coil 53 was able to maintain the superconducting state and release energy to the outside.

【0019】[0019]

【発明の効果】上述のごとく、本発明の超電導線の接続
構造は、超電導コイルの超電導線と永久電流スイッチの
超電導線が直接接触している部分に、上記のいずれの超
電導線よりも臨界温度の高い超電導接続導体を、互いに
直接接触した状態になるように設置するものであって、
超電導線の接続部分において、超電導線が永久電流スイ
ッチの常電導遷移に伴う温度上昇を起こしても、超電導
接続導体は超電導状態を保ち、超電導線における熱の伝
搬を抑制することができる。超電導接続導体の全長を、
上記超電導線の接続部分の全長より長くしておくこと
で、接続部分の抵抗を低く抑え、電流流路を確保するこ
とができる。この超電導接続導体には、化合物系超電導
体、酸化物系超電導体、高安定化超電導線材のいずれの
超電導体も好適に使用することができる。また、超電導
接続導体1、超電導コイル導線2および永久電流スイッ
チ導線3の接続部分は、従来の接続構造と違って磁界の
影響を受けにくいので、磁場中に設けられる構成となっ
ていても差し支えない。
As described above, the superconducting wire connection structure of the present invention has a critical temperature higher than that of any of the above superconducting wires at a portion where the superconducting wire of the superconducting coil and the superconducting wire of the permanent current switch are in direct contact. High superconducting connection conductors, so that they are in direct contact with each other,
In the connection portion of the superconducting wire, even if the temperature of the superconducting wire rises due to the normal conduction transition of the permanent current switch, the superconducting connection conductor keeps the superconducting state and can suppress the propagation of heat in the superconducting wire. The total length of the superconducting connection conductor
By making the length of the connection portion of the superconducting wire longer than the entire length, the resistance of the connection portion can be suppressed low and a current flow path can be secured. As the superconducting connection conductor, any of compound superconductors, oxide superconductors, and highly stabilized superconducting wires can be suitably used. Also, the connection portion of the superconducting connection conductor 1, the superconducting coil conductor 2 and the permanent current switch conductor 3 is unlikely to be affected by a magnetic field, unlike the conventional connection structure, and therefore may be provided in a magnetic field. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態の一例を示す模式図。FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention.

【図2】 本発明の実施形態の一例を接続部分に用いて
作成した超電導エネルギー貯蔵装置の一例を示す概略構
成図。
FIG. 2 is a schematic configuration diagram showing an example of a superconducting energy storage device created by using an example of an embodiment of the present invention for a connection portion.

【図3】 超電導エネルギー貯蔵装置の一例を示す模式
図。
FIG. 3 is a schematic view showing an example of a superconducting energy storage device.

【図4】 超電導エネルギー貯蔵装置の一例を示す模式
図。
FIG. 4 is a schematic view showing an example of a superconducting energy storage device.

【図5】 超電導エネルギー貯蔵装置の一例を示す模式
図。
FIG. 5 is a schematic view showing an example of a superconducting energy storage device.

【図6】 従来の超電導コイルと永久電流スイッチの接
続方式の一例を示す模式図。
FIG. 6 is a schematic diagram showing an example of a conventional connection method between a superconducting coil and a permanent current switch.

【図7】 実施例1の超電導エネルギー貯蔵装置を示す
模式図。
FIG. 7 is a schematic view showing a superconducting energy storage device according to the first embodiment.

【図8】 実施例2の超電導エネルギー貯蔵装置を示す
模式図。
FIG. 8 is a schematic diagram illustrating a superconducting energy storage device according to a second embodiment.

【符号の説明】[Explanation of symbols]

1…超電導接続導体、2…超電導コイル導線、3…永久
電流スイッチ導線、4…銅線、5…ハンダ層
DESCRIPTION OF SYMBOLS 1 ... Superconducting connection conductor, 2 ... Superconducting coil conductor, 3 ... Permanent current switch conductor, 4 ... Copper wire, 5 ... Solder layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 庄治 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 定方 伸行 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 斉藤 隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 本間 仁 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社研究開発センター内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Shoji Iwasaki, Inventor 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Nobuyuki 1-15-1, Kiba, Koto-ku, Tokyo Stock Inside Fujikura (72) Inventor Takashi Saito 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura (72) Inventor Jin Homma 7-2-1, Nakayama, Aoba-ku, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Company Stock Inside the company R & D center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超電導コイルの超電導線と永久電流スイ
ッチの超電導線が直接接触している部分に、上記のいず
れの超電導線よりも臨界温度の高い超電導接続導体を、
互いに直接接触した状態になるように設置することを特
徴とする超電導線の接続構造。
A superconducting connection conductor having a higher critical temperature than any of the above superconducting wires is provided at a portion where the superconducting wire of the superconducting coil is in direct contact with the superconducting wire of the persistent current switch.
A superconducting wire connection structure which is installed so as to be in direct contact with each other.
【請求項2】 上記超電導接続導体の全長が、上記超電
導線の直接接触部分の全長より長いことを特徴とする請
求項1記載の超電導線の接続構造。
2. The superconducting wire connection structure according to claim 1, wherein the total length of the superconducting connection conductor is longer than the total length of the direct contact portion of the superconducting wire.
【請求項3】 上記超電導接続導体が、化合物系超電導
体、酸化物系超電導体、高安定化超電導線材のいずれか
からなることを特徴とする請求項1または2に記載の超
電導線の接続構造。
3. The superconducting wire connection structure according to claim 1, wherein the superconducting connection conductor is made of one of a compound superconductor, an oxide superconductor, and a highly stabilized superconducting wire. .
JP9134144A 1997-05-23 1997-05-23 Connection structure of superconductive wire Pending JPH10326915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9134144A JPH10326915A (en) 1997-05-23 1997-05-23 Connection structure of superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9134144A JPH10326915A (en) 1997-05-23 1997-05-23 Connection structure of superconductive wire

Publications (1)

Publication Number Publication Date
JPH10326915A true JPH10326915A (en) 1998-12-08

Family

ID=15121505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9134144A Pending JPH10326915A (en) 1997-05-23 1997-05-23 Connection structure of superconductive wire

Country Status (1)

Country Link
JP (1) JPH10326915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273415A (en) * 2002-01-15 2003-09-26 Siemens Ag Superconducting switching device
JP2010283186A (en) * 2009-06-05 2010-12-16 Hitachi Ltd Refrigerator-cooled superconducting magnet
WO2011050567A1 (en) * 2009-10-30 2011-05-05 中国科学院电工研究所 Superconducting switch with temperature closed-loop control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273415A (en) * 2002-01-15 2003-09-26 Siemens Ag Superconducting switching device
JP4612991B2 (en) * 2002-01-15 2011-01-12 シーメンス アクチエンゲゼルシヤフト Superconducting switch device
JP2010283186A (en) * 2009-06-05 2010-12-16 Hitachi Ltd Refrigerator-cooled superconducting magnet
WO2011050567A1 (en) * 2009-10-30 2011-05-05 中国科学院电工研究所 Superconducting switch with temperature closed-loop control

Similar Documents

Publication Publication Date Title
US4602231A (en) Spaced stabilizing means for a superconducting switch
JPH06216418A (en) Contact maker breaker
WO2014058871A1 (en) Fast superconducting switch for superconducting power devices
US4635015A (en) Switching device for shorting at least one superconducting magnet winding
JPH02174523A (en) Fault current limiter
JPH10326915A (en) Connection structure of superconductive wire
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JP2003069093A (en) Perpetual current switch and superconducting magnet using it
JP4638983B2 (en) Superconductor and manufacturing method thereof
US3453449A (en) Electrical power transmission with superconducting power cables
JP4081911B2 (en) Current limiter
JP2871260B2 (en) Permanent current coil
JP3310074B2 (en) Superconducting magnet device
JPH0677542A (en) Superconducting switch
JP4284253B2 (en) Cryogenic container
JPS62244110A (en) Superconducting coil device
JPH08130112A (en) Superconducting magnet device
JPH11297524A (en) Current lead for superconducting device
JPS59113605A (en) Superconductive magnet device
JPH09148122A (en) Superconductive switch for conduction cooling superconductive magnet
JPH05198434A (en) Superconductive current lead
JPS63318724A (en) Inductance variable coil
JPS61127106A (en) Superconductive electromagnet device
JPH04137571A (en) Permanent current switch