JP3310074B2 - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JP3310074B2
JP3310074B2 JP29212193A JP29212193A JP3310074B2 JP 3310074 B2 JP3310074 B2 JP 3310074B2 JP 29212193 A JP29212193 A JP 29212193A JP 29212193 A JP29212193 A JP 29212193A JP 3310074 B2 JP3310074 B2 JP 3310074B2
Authority
JP
Japan
Prior art keywords
current switch
permanent current
superconducting coil
superconducting
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29212193A
Other languages
Japanese (ja)
Other versions
JPH07142238A (en
Inventor
昌身 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29212193A priority Critical patent/JP3310074B2/en
Publication of JPH07142238A publication Critical patent/JPH07142238A/en
Application granted granted Critical
Publication of JP3310074B2 publication Critical patent/JP3310074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超電導磁石装置に係
り、特に永久電流モードで運転される超電導磁石装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device, and more particularly to a superconducting magnet device operated in a permanent current mode.

【0002】[0002]

【従来の技術】理化学分析用のNMRスペクトロメータ
や半導体結晶引上げ装置などでは、磁場供給源として永
久電流モードで運転される超電導磁石装置が使われてい
る。永久電流モードで運転される超電導磁石装置は、通
常、両端間に永久電流スイッチが接続された超電導コイ
ルをクライオスタット内の液体ヘリウム中に浸漬すると
ともに超電導コイルの両端をクライオスタット外の電源
に選択的に接続できるように構成されている。永久電流
スイッチは、超電導線に電気ヒータを添設するとともに
添設箇所を繊維強化プラスチック等の断熱材でモールド
したものとなっている。
2. Description of the Related Art In a NMR spectrometer and a semiconductor crystal pulling apparatus for physicochemical analysis, a superconducting magnet apparatus operated in a permanent current mode is used as a magnetic field supply source. A superconducting magnet device operated in a persistent current mode usually immerses a superconducting coil having a persistent current switch connected between both ends into liquid helium in a cryostat and selectively connects both ends of the superconducting coil to a power supply outside the cryostat. It is configured to be connectable. In the permanent current switch, an electric heater is attached to a superconducting wire, and the attached portion is molded with a heat insulating material such as fiber reinforced plastic.

【0003】実際に永久電流モードに切換えるには、ま
ず永久電流スイッチの電気ヒータに通電して永久電流ス
イッチをオフ状態にしておき、この状態で外部電源から
超電導コイルに所定の増加率で電流を流す。そして、超
電導コイルに流れる電流が目標値に達した時点で電気ヒ
ータへの通電を停止して永久電流スイッチをオン状態に
切換える。その後、電源の出力電流を減少させ、最終的
に電源からの供給路を切り離す。
In order to actually switch to the permanent current mode, first, the electric heater of the permanent current switch is energized to turn off the permanent current switch, and in this state, the current is supplied from the external power supply to the superconducting coil at a predetermined increasing rate. Shed. Then, when the current flowing through the superconducting coil reaches the target value, the power supply to the electric heater is stopped, and the permanent current switch is turned on. Thereafter, the output current of the power supply is reduced, and the supply path from the power supply is finally cut off.

【0004】このようにして運転される超電導磁石装置
にあっては、励・消磁時に永久電流スイッチに電流が流
れ、発熱が生じる。この発熱による液体ヘリウムの消費
を抑えるため、通常、オフ時の抵抗値が20〜200 (Ω)
の永久電流スイッチが使われている。また、この種の超
電導磁石装置では、上述の如く、励磁後は電流供給回路
を完全に切り離す方式を採用している。このため、運転
中に永久電流スイッチがクエンチした場合を想定して、
超電導コイルの両端間に保護抵抗を接続し、この保護抵
抗を液体ヘリウム中に配置するのが一般的である。励・
消磁時に保護抵抗に電流が流れるので、液体ヘリウムの
消費を抑えるには保護抵抗の値は高いほどよい。しか
し、クエンチ時の保護抵抗の両端電圧で絶縁耐圧の低い
ヘリウムガス部分において絶縁破壊が起こるのを防止す
るために、通常、数Ω程度の保護抵抗が使われている。
In the superconducting magnet device operated as described above, a current flows through the permanent current switch at the time of excitation and demagnetization, and heat is generated. In order to suppress the consumption of liquid helium due to this heat generation, the resistance when off is usually 20 to 200 (Ω)
Permanent current switch is used. Further, in this type of superconducting magnet device, as described above, a method of completely disconnecting the current supply circuit after excitation is adopted. Therefore, assuming that the permanent current switch is quenched during operation,
In general, a protection resistor is connected between both ends of the superconducting coil, and the protection resistor is arranged in liquid helium. Encouragement
Since a current flows through the protection resistor at the time of demagnetization, the higher the value of the protection resistor is, the better the consumption of liquid helium is suppressed. However, in order to prevent dielectric breakdown from occurring in a helium gas portion having a low withstand voltage due to a voltage across the protection resistor at the time of quench, a protection resistor of about several Ω is usually used.

【0005】しかしながら、上記のように構成された超
電導磁石装置にあっては、抵抗値の小さい保護抵抗を用
いる必要があるので、装置の大型化・大重量化を招くば
かりか、励・消磁時における保護抵抗での発熱量が大き
く、効率の良い装置を構成できない問題があった。
However, in the superconducting magnet device configured as described above, it is necessary to use a protection resistor having a small resistance value, which not only leads to an increase in size and weight of the device, but also causes an increase in excitation and demagnetization. However, there is a problem that a large amount of heat is generated by the protection resistor in the above, and an efficient device cannot be configured.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、永久
電流スイッチに保護抵抗の役目を兼ねさせることがで
き、もって小型・軽量で効率の良い超電導磁石装置を提
供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a small, lightweight, and efficient superconducting magnet device in which a permanent current switch can also serve as a protective resistor.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る超電導磁石装置では、真空雰囲気中に
配置され、固体熱伝導路を介して臨界温度以下に冷却さ
れる超電導コイルと、この超電導コイルの両端に電気的
に接続されるとともに前記固体熱伝導路を介して常時は
臨界温度以下に冷却され、自身がクエンチしたときには
上記固体熱伝導路を介して伝えた熱で上記超電導コイル
もクエンチさせ、上記超電導コイルがクエンチしたとき
には上記固体熱伝導路を介して伝わる熱で自身もクエン
チする永久電流スイッチとを備えている。
In order to achieve the above object, a superconducting magnet device according to the present invention comprises a superconducting coil disposed in a vacuum atmosphere and cooled below a critical temperature through a solid heat conduction path. It is electrically connected to both ends of the superconducting coil and is always cooled to a critical temperature or lower through the solid heat conduction path. When the coil quenches itself, the heat transmitted through the solid heat conduction path causes the superconductivity to decrease. A permanent current switch is also provided that quench the coil and quench itself with the heat transmitted through the solid heat conduction path when the superconducting coil quenches.

【0008】[0008]

【作用】超電導コイルおよび永久電流スイッチのいずれ
か一方がクエンチすると、自動的に他方もクエンチ状態
となる。したがって、クエンチ時には蓄えられていたエ
ネルギを超電導コイルの熱容量と永久電流スイッチの熱
容量とで消費することになり、線材の重量配分等で適切
な消費分担が得られるように予め設定しておけば、焼損
などを起こさずにエネルギを消費させることができる。
すなわち、永久電流スイッチに保護抵抗を兼ねさせるこ
とができるので、従来装置のような保護抵抗を省略する
ことができる。したがって、装置の小型・軽量化が可能
となる。また、永久電流スイッチがクエンチした瞬間に
は、永久電流スイッチの両端に、電流と抵抗値との積に
相当する電圧が発生するが、全ての要素が絶縁耐力の高
い真空雰囲気中に設けられているので、上記両端電圧
が、たとえば600V以上になっても絶縁破壊を起こすよう
なことはない。このことは永久電流スイッチのオフ時に
おける抵抗値を高く設定できることになる。したがっ
て、励・消磁時に永久電流スイッチで起こる発熱を抑え
ることができ、効率を向上させることが可能となる。
When one of the superconducting coil and the permanent current switch is quenched, the other is automatically quenched. Therefore, at the time of quenching, the energy stored is consumed by the heat capacity of the superconducting coil and the heat capacity of the permanent current switch, and if it is set in advance so that appropriate consumption sharing can be obtained by weight distribution of the wire, etc. Energy can be consumed without burning or the like.
That is, since the permanent current switch can also serve as the protection resistor, the protection resistor as in the conventional device can be omitted. Therefore, the size and weight of the device can be reduced. At the moment when the permanent current switch is quenched, a voltage corresponding to the product of the current and the resistance value is generated at both ends of the permanent current switch, but all elements are provided in a vacuum atmosphere having a high dielectric strength. Therefore, even if the voltage between both ends becomes, for example, 600 V or more, the dielectric breakdown does not occur. This means that the resistance value when the permanent current switch is off can be set high. Therefore, heat generated by the permanent current switch at the time of excitation / demagnetization can be suppressed, and efficiency can be improved.

【0009】[0009]

【実施例】以下、図面を参照しながら実施例を説明す
る。
Embodiments will be described below with reference to the drawings.

【0010】図1には本発明の一実施例に係る超電導磁
石装置の模式的構成図が示されている。
FIG. 1 is a schematic structural view of a superconducting magnet device according to one embodiment of the present invention.

【0011】同図において、1は内部が真空引きされた
真空容器を示している。この真空容器1内には、閉じら
れた真空空間2を形成するように、輻射による熱侵入を
防ぐための熱シールド板3が配置されている。
In FIG. 1, reference numeral 1 denotes a vacuum container whose inside is evacuated. In the vacuum vessel 1, a heat shield plate 3 for preventing heat from entering by radiation is arranged so as to form a closed vacuum space 2.

【0012】熱シールド板3で囲まれた真空空間2に
は、超電導コイル4が配置されている。この超電導コイ
ル4は、臨界温度が10K 以上のNbTiなどの合金系超
電導線あるいはNb3 Snなどの化合物系超電導線を巻
線し、それに樹脂を含浸して形成されている。
A superconducting coil 4 is arranged in a vacuum space 2 surrounded by a heat shield plate 3. The superconducting coils 4, the critical temperature is winding a compound superconducting wire of an alloy-based superconducting wire or Nb 3 Sn, such as more than NbTi 10K, it is formed by impregnating a resin.

【0013】超電導コイル4の両線端には、永久電流ス
イッチ5が接続されている。この永久電流スイッチ5
は、たとえばCu−Niをマトリックスとした超電導線
で形成され、具体的には後述する重量関係に形成されて
いる。
A permanent current switch 5 is connected to both ends of the superconducting coil 4. This permanent current switch 5
Is formed of, for example, a superconducting wire using Cu-Ni as a matrix, and is specifically formed in a weight relationship described later.

【0014】超電導コイル4の両端は、臨界温度が100K
以上の酸化物系超電導リード6a,6b,銅リード7
a,7bを介して真空容器1の壁に取り付けられた接続
端子8a,8bに接続されている。この接続端子8a,
8bは、着脱自在なリード線を介して真空容器1外に設
けられた電流源9に接続される.一方、超電導コイル4
および永久電流スイッチ5は、電気絶縁を保った状態で
固体熱伝導路、この例では銅材で形成された熱伝導部材
10に熱的に接続されている。そして、この熱伝導部材
10は、冷凍機11の冷却ステージに熱的に接続されて
いる。
Both ends of the superconducting coil 4 have a critical temperature of 100K.
The above oxide-based superconducting leads 6a, 6b and copper lead 7
The connection terminals are connected to connection terminals 8a and 8b attached to the wall of the vacuum vessel 1 via a and 7b. This connection terminal 8a,
8b is connected to a current source 9 provided outside the vacuum vessel 1 via a detachable lead wire. On the other hand, the superconducting coil 4
The permanent current switch 5 is thermally connected to a solid heat conduction path, in this example, a heat conduction member 10 formed of a copper material while maintaining electrical insulation. The heat conduction member 10 is thermally connected to a cooling stage of the refrigerator 11.

【0015】冷凍機11は、この例の場合ギホード・マ
クマホン型冷凍機(以後、GM冷凍機と略称する。)で
構成されている。GM冷凍機11は、70K 程度に冷却さ
れる第1段冷却ステージ12と、4Kレベル(たとえば冷
凍能力が1W)に冷却される第2段冷却ステージ13と
を備えており、各冷却ステージが真空容器1内に位置す
るように真空容器1の上壁に設けられた図示しない装着
孔を使って取り付けられている。そして、第2段冷却ス
テージ13が熱伝導部材10に熱的および機械的に接続
されている。また、第1段冷却ステージ12が熱シール
ド板3に熱的および機械的に接続されている。
In this example, the refrigerator 11 is constituted by a Gilead McMahon refrigerator (hereinafter abbreviated as a GM refrigerator). The GM refrigerator 11 includes a first cooling stage 12 cooled to about 70K and a second cooling stage 13 cooled to a 4K level (for example, the refrigerating capacity is 1 W). It is mounted using a mounting hole (not shown) provided on the upper wall of the vacuum container 1 so as to be located in the container 1. Then, the second cooling stage 13 is thermally and mechanically connected to the heat conducting member 10. Further, the first cooling stage 12 is thermally and mechanically connected to the heat shield plate 3.

【0016】ここで、熱伝導部材10,超電導コイル
4,永久電流スイッチ5の3要素の関係についてさらに
詳しく説明する。すなわち、熱伝導部材10上におい
て、超電導コイル4が熱的に接続されている部分と永久
電流スイッチ5が接続されている部分との間の距離は小
さい値に設定されており、さらに超電導コイル4の電流
密度は100A/mm 2 以上に設定されている。具体的には、
永久電流スイッチ5が接続されている位置を基準にする
と、永久電流スイッチ5自身がクエンチしたときには熱
伝導部材10を介して伝えた熱で超電導コイル4もクエ
ンチさせ、超電導コイル4がクエンチしたときには熱伝
導部材10を介して伝わる熱で永久電流スイッチ5もク
エンチする熱伝導関係が得られるように設けられてい
る。また、永久電流スイッチ5は、クエンチの際に超電
導コイル4に蓄えられているエネルギの1/3 を吸収して
4Kから200Kまで温度上昇するように線材の重量等が設定
されている。さらに、永久電流スイッチ5は、超電導コ
イル4の通電電流が、たとえば130Aの場合には、6
(Ω)のオフ抵抗が得られるように設定されている。
Here, the relationship among the three elements of the heat conducting member 10, the superconducting coil 4, and the permanent current switch 5 will be described in further detail. That is, the distance between the portion where the superconducting coil 4 is thermally connected and the portion where the persistent current switch 5 is connected is set to a small value on the heat conducting member 10. Is set to 100 A / mm 2 or more. In particular,
With reference to the position where the persistent current switch 5 is connected, when the persistent current switch 5 itself is quenched, the superconducting coil 4 is also quenched by the heat transmitted through the heat conducting member 10, and when the superconducting coil 4 is quenched, The permanent current switch 5 is also provided so as to obtain a heat conduction relationship in which the heat is transmitted through the conductive member 10 to quench the permanent current switch 5. The permanent current switch 5 absorbs 1/3 of the energy stored in the superconducting coil 4 at the time of quenching.
The weight of the wire is set so that the temperature rises from 4K to 200K. Further, when the current flowing through superconducting coil 4 is, for example, 130 A, permanent current switch 5
(Ω) is set so as to obtain an off-resistance.

【0017】このような構成であると、永久電流モード
に切換えるには、まず永久電流スイッチ5の電気ヒータ
に通電して永久電流スイッチ5をオフ状態にしておき、
この状態で電流源9から超電導コイル4に所定の増加率
で電流を流す。このとき、永久電流スイッチ5での発熱
を0.5 W以下に抑えるように励磁電圧を設定する。そし
て、超電導コイル4に流れる電流が目標値に達した時点
で電気ヒータへの通電を停止して永久電流スイッチ5を
オン状態に切換えればよい。
With such a configuration, in order to switch to the permanent current mode, first, the electric heater of the permanent current switch 5 is energized so that the permanent current switch 5 is turned off.
In this state, a current flows from the current source 9 to the superconducting coil 4 at a predetermined increase rate. At this time, the excitation voltage is set so that the heat generated by the permanent current switch 5 is suppressed to 0.5 W or less. Then, when the current flowing through the superconducting coil 4 reaches the target value, the power supply to the electric heater is stopped and the permanent current switch 5 may be switched on.

【0018】この例の場合、永久電流モードで運転して
いるとき、超電導コイル4および永久電流スイッチ5の
いずれか一方がクエンチすると、自動的に他方もクエン
チ状態となる。したがって、クエンチ時には、蓄えられ
ていたエネルギを超電導コイル4の熱容量と永久電流ス
イッチ5の熱容量とで消費することになり、線材の重量
配分等で適切な消費分担が得られるように予め設定して
おけば、焼損などを起こさずにエネルギを消費させるこ
とができる。このように、永久電流スイッチ5に保護抵
抗を兼ねさせることができるので、装置の小型・軽量化
が可能となる。また、永久電流スイッチ5がクエンチし
た瞬間には、永久電流スイッチ5の両端に、電流と抵抗
値との積に相当する電圧が発生するが、全ての要素が絶
縁耐力の高い真空雰囲気中に設けられているので、上記
両端電圧が、たとえば600V以上になっても絶縁破壊を起
こすようなことはない。したがって、永久電流スイッチ
5のオフ時における抵抗値を高く設定できるので、励・
消磁時に永久電流スイッチ5で起こる発熱を抑えること
ができ、効率を向上させることができる。
In the case of this example, when one of the superconducting coil 4 and the permanent current switch 5 is quenched during the operation in the permanent current mode, the other automatically becomes the quench state. Therefore, at the time of quenching, the stored energy is consumed by the heat capacity of the superconducting coil 4 and the heat capacity of the permanent current switch 5, and it is set in advance so that appropriate consumption sharing can be obtained by weight distribution of the wire and the like. With this arrangement, energy can be consumed without causing burnout or the like. As described above, since the permanent current switch 5 can also serve as a protective resistor, the size and weight of the device can be reduced. At the moment when the persistent current switch 5 is quenched, a voltage corresponding to the product of the current and the resistance is generated at both ends of the permanent current switch 5, but all elements are provided in a vacuum atmosphere having a high dielectric strength. Therefore, even if the voltage between both ends becomes, for example, 600 V or more, the dielectric breakdown does not occur. Therefore, the resistance value of the permanent current switch 5 when the permanent current switch 5 is off can be set high.
Heat generated in the permanent current switch 5 during demagnetization can be suppressed, and efficiency can be improved.

【0019】図2には本発明の別の実施例に係る超電導
磁石装置の模式的構成図が示されている。なお、この図
では図1と同一部分が同一符号で示されている。したが
って、重複する部分の詳しい説明は省略する。
FIG. 2 is a schematic configuration diagram of a superconducting magnet device according to another embodiment of the present invention. In this figure, the same parts as those in FIG. 1 are indicated by the same reference numerals. Therefore, a detailed description of the overlapping part will be omitted.

【0020】この実施例では、超電導コイル4の両端間
に図示極性に保護用のダイオード14を接続し、このダ
イオード14を熱伝導部材10の延長部10′を使って
4Kレベルに冷却するようにしている。
In this embodiment, a protection diode 14 is connected between both ends of the superconducting coil 4 with the polarity shown in the figure, and this diode 14 is connected to the superconducting coil 4 by using an extension 10 ′ of the heat conducting member 10.
Cooling down to 4K level.

【0021】10K 以下に冷却されたダイオード14の順
方向の阻止電圧は20V 程度である。このため、励磁時は
勿論、消磁時においてもダイオード14には電流が流れ
ず、発熱は全くない。超電導コイル4または永久電流ス
イッチ5がクエンチすると、ダイオード14が導通して
保護素子としての機能を発揮する。この場合、永久電流
スイッチ5は、ダイオード14によって保護されるの
で、可能な限り小さくてよいことになる。すなわち、こ
の場合には超電導コイル4の熱容量で蓄積エネルギが消
費されることになる。
The forward blocking voltage of the diode 14 cooled below 10K is about 20V. Therefore, no current flows through the diode 14 during demagnetization as well as during excitation, and there is no heat generation at all. When the superconducting coil 4 or the permanent current switch 5 is quenched, the diode 14 conducts and functions as a protection element. In this case, the permanent current switch 5 is protected by the diode 14, so that it can be as small as possible. That is, in this case, the stored energy is consumed by the heat capacity of the superconducting coil 4.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、全体の
小型・軽量化を実現できるとともに励・消磁時における
効率を向上させることができる。
As described above, according to the present invention, the overall size and weight can be reduced, and the efficiency during excitation and demagnetization can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る超電導磁石装置の模式
的構成図
FIG. 1 is a schematic configuration diagram of a superconducting magnet device according to one embodiment of the present invention.

【図2】本発明の別の実施例に係る超電導磁石装置の模
式的構成図
FIG. 2 is a schematic configuration diagram of a superconducting magnet device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…真空容器 3…熱シールド
板 4…超電導コイル 5…永久電流ス
イッチ 10…熱伝導部材 11…冷凍機 12…第1段冷却ステージ 13…第2段冷
却ステージ 14…ダイオード
DESCRIPTION OF SYMBOLS 1 ... Vacuum container 3 ... Heat shield plate 4 ... Superconducting coil 5 ... Permanent current switch 10 ... Heat conduction member 11 ... Refrigerator 12 ... 1st stage cooling stage 13 ... 2nd stage cooling stage 14 ... Diode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空雰囲気中に配置され、固体熱伝導路を
介して臨界温度以下に冷却される超電導コイルと、この
超電導コイルの両端に電気的に接続されるとともに前記
固体熱伝導路を介して常時は臨界温度以下に冷却され、
自身がクエンチしたときには上記固体熱伝導路を介して
伝えた熱で上記超電導コイルもクエンチさせ、上記超電
導コイルがクエンチしたときには上記固体熱伝導路を介
して伝わる熱で自身もクエンチする永久電流スイッチと
を具備してなることを特徴とする超電導磁石装置。
A superconducting coil disposed in a vacuum atmosphere and cooled to a critical temperature or lower through a solid heat conducting path, and electrically connected to both ends of the superconducting coil and connected through the solid heat conducting path. Is always cooled below the critical temperature,
A permanent current switch that quench the superconducting coil with heat transmitted through the solid heat conduction path when quenched itself, and quench itself with heat transmitted through the solid heat conduction path when the superconducting coil quench. A superconducting magnet device comprising:
JP29212193A 1993-11-22 1993-11-22 Superconducting magnet device Expired - Lifetime JP3310074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29212193A JP3310074B2 (en) 1993-11-22 1993-11-22 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29212193A JP3310074B2 (en) 1993-11-22 1993-11-22 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JPH07142238A JPH07142238A (en) 1995-06-02
JP3310074B2 true JP3310074B2 (en) 2002-07-29

Family

ID=17777819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29212193A Expired - Lifetime JP3310074B2 (en) 1993-11-22 1993-11-22 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP3310074B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110035B2 (en) * 2018-08-29 2022-08-01 株式会社東芝 Superconducting magnet device

Also Published As

Publication number Publication date
JPH07142238A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
US5650903A (en) Superconducting-magnet electrical circuit having voltage and quench protection
US20070062203A1 (en) Superconducting device having a cryogenic system and a superconducting switch
US5361055A (en) Persistent protective switch for superconductive magnets
EP0561552A2 (en) A magnetic field generator, a persistent current switch assembly for such a magnetic field generator, and the method of controlling such a magnetic field generator
US5668515A (en) Superconductive magnet apparatus
JPH07142237A (en) Superconducting magnet device
JP3153243B2 (en) Thermal interface for superconducting switch of cryogen-free superconducting magnet
JP2002217019A (en) Magnetic flux pump equipped with high-temperature superconductor and superconducting electromagnet driven thereby
Tosaka et al. Persistent current HTS magnet cooled by cryocooler (4)-persistent current switch characteristics
US4635015A (en) Switching device for shorting at least one superconducting magnet winding
JP4261097B2 (en) Superconducting magnet
JP3310074B2 (en) Superconducting magnet device
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JP2020035842A (en) Superconducting magnet device
JP3358958B2 (en) Thermal control type permanent current switch
JP3377350B2 (en) Thermoelectric cooling type power lead
JP3117173B2 (en) Superconducting magnet device with refrigerator
JPH06350148A (en) Perpetual current superconducting device
JPS62279608A (en) Split superconducting magnet
JPH10247753A (en) Superconducting device and control method thereof
JP3382794B2 (en) Permanent current switch
JPS62244110A (en) Superconducting coil device
JPH10247532A (en) Current lead for superconductive device
JP2003051625A (en) Thermoelectric cooling power lead

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

EXPY Cancellation because of completion of term