JP4284253B2 - Cryogenic container - Google Patents

Cryogenic container Download PDF

Info

Publication number
JP4284253B2
JP4284253B2 JP2004258580A JP2004258580A JP4284253B2 JP 4284253 B2 JP4284253 B2 JP 4284253B2 JP 2004258580 A JP2004258580 A JP 2004258580A JP 2004258580 A JP2004258580 A JP 2004258580A JP 4284253 B2 JP4284253 B2 JP 4284253B2
Authority
JP
Japan
Prior art keywords
current lead
temperature side
side current
low temperature
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004258580A
Other languages
Japanese (ja)
Other versions
JP2006073944A (en
Inventor
宏 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004258580A priority Critical patent/JP4284253B2/en
Publication of JP2006073944A publication Critical patent/JP2006073944A/en
Application granted granted Critical
Publication of JP4284253B2 publication Critical patent/JP4284253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超電導体を用いた電力用機器を構成する際の低温容器に関する。   The present invention relates to a cryogenic container used when configuring a power device using a superconductor.

これまで、電力供給の大部分は、大規模な発電所から超高圧送電線などを介して消費地へ運ばれてきた。しかしながら、今後多くの分散電源が電力消費地の近傍に設置され、これらの電源が電力系統に連系されることが予想されている。このように考えられる理由としては、分散電源の導入が需要者側のエネルギーコスト削減や瞬時電圧低下防止に有効なため、工場などの大口電力需要家が大きな関心を寄せていることが挙げられる。また、天然ガスを使用するタイプのコジェネレーションシステムなどは、CO2やNOxの削減といった環境問題にも有効なため、国レベルでの積極的な導入が求められていることも理由の一つである。一方、このような分散電源の導入にも問題がないわけではない。その一つに事故電流の増大がある。一般にこのような分散電源の導入は、電力系統で発生した地絡や短絡事故の際に流れる事故電流の増加を引き起こし、このままでは電力系統に設置してある遮断器による電力事故の除去が困難となる。そのため、早急に何らかの対応策を講じなければならなくなっている。 Until now, most of the power supply has been transported from large-scale power plants to consumption areas via ultra-high voltage transmission lines. However, it is expected that many distributed power sources will be installed in the vicinity of the power consumption area in the future and these power sources will be connected to the power system. The possible reason is that large-capacity power consumers such as factories are attracting great interest because the introduction of distributed power sources is effective in reducing energy costs and preventing instantaneous voltage drops on the consumer side. One of the reasons is that active use at the national level is required because cogeneration systems using natural gas are also effective for environmental problems such as CO 2 and NO x reduction. It is. On the other hand, the introduction of such distributed power sources is not without problems. One of them is an increase in accident current. In general, the introduction of such a distributed power source causes an increase in the fault current that flows in the event of a ground fault or a short-circuit accident that has occurred in the power system. Become. Therefore, some countermeasures must be taken as soon as possible.

このような事故電流の増大を防止するための対応策のひとつに限流器の実用化がある。限流器とは、通常通電時にほとんど損失を発生させずに電流を通過させ、大きな電流が流れると瞬時にインピーダンスを発生して電流を抑制する機器のことである。現在の電力システムでは、まだこのような機器を本格的に利用した例はほとんどないが、その導入が強く望まれている。限流器に関しては、アーク放電を用いるもの、半導体を利用するもの、超電導体を用いるものなど、多くの研究が行われている。なかでも、超電導体をコイル形状に巻くことによりインダクタンス成分を発生させ、半導体ブリッジと組みあわせて機器を構成するタイプの限流器や超電導体が大電流により常伝導転移する現象を利用した方式の限流器などは、事故発生から限流動作を開始するまでの速度が速く、コンパクトな設計が可能という優れた特徴をもつため、その実用化が期待されている。   One of the countermeasures for preventing such an increase in fault current is the practical use of a current limiter. A current limiter is a device that passes current with little loss during normal energization and instantaneously generates impedance when a large current flows to suppress the current. There are few examples of full-scale use of such devices in current power systems, but their introduction is strongly desired. Many studies have been conducted on current limiters, including those using arc discharge, those using semiconductors, and those using superconductors. Among them, the type of current limiter that creates an inductance component by winding a superconductor into a coil shape and forms a device in combination with a semiconductor bridge, or a phenomenon that utilizes the phenomenon of superconducting transition of a superconductor due to a large current is used. Current limiters and the like are expected to be put to practical use because of their excellent features that the speed from the occurrence of an accident to the start of the current limiting operation is high and a compact design is possible.

しかしながら、超電導体を用いた限流器の場合、これを超電導状態とするために超電導体を冷却する必要がある。一例をあげれば、超電導体としてYBCO薄膜を用いた場合、超電導薄膜は液体窒素(1気圧の沸点:77K)中で浸漬冷却することにより使用するのが一般的である。そのため、超電導体を用いた限流器では、超電導体自体の発生する損失はほとんどないものの、これを冷却するための損失が発生する。この冷却に費やされるエネルギーの大きさは、冷却方法や低温部の温度などに大きく依存するが、液体窒素温度での冷却の場合には、一般に取り去る熱量に対して20〜30倍程度のエネルギーが必要であることが知られている。したがって、低温領域への熱侵入が大きすぎると大きな冷却装置を用いなければならなくなるため、電力機器としての効率を低下させ、超電導体を用いた限流器が本来持っている、高速性やコンパクト性などの長所を生かすことができなくなる。   However, in the case of a current limiter using a superconductor, it is necessary to cool the superconductor in order to bring it into a superconducting state. For example, when a YBCO thin film is used as a superconductor, the superconducting thin film is generally used by immersion cooling in liquid nitrogen (boiling point of 1 atm: 77K). For this reason, in a current limiter using a superconductor, there is almost no loss generated by the superconductor itself, but a loss for cooling this occurs. The amount of energy consumed for this cooling largely depends on the cooling method, the temperature of the low temperature part, etc., but in the case of cooling at the temperature of liquid nitrogen, generally about 20 to 30 times the amount of heat removed is about 20-30 times. It is known to be necessary. Therefore, if the heat penetration into the low temperature region is too large, it is necessary to use a large cooling device, which reduces the efficiency as a power device, and the high speed and compactness inherent in current limiting devices using superconductors. It becomes impossible to make use of the advantages such as sex.

そのため、超電導体の冷却などに現在使用されている低温容器は、低温領域への熱侵入を下げる工夫がされており、冷却容器全体での侵入熱は低減されてきている。しかしながら、電流リードからの熱侵入の低減は難しく、電流容量の大きな電流リードを設けた低温容器では、このリードからの侵入熱が全侵入熱の大きな部分を占めている。その原因は、電流リードは電流を通電するために通常電気の良導体から作製されるが、一方で電気の良導体は一般に熱の良導体となっていることにある。このため、電流リードからの熱侵入の低減は容易ではない。例えば、低温容器外部からの熱侵入を低減するには、電流リードの断面積を小さくし、全体長を長くすればよい(すなわち、電流リード内の温度勾配を小さくすることで熱侵入を低減できる)。しかしながら、このことは、同時に電流リードの電気抵抗を増大させることから、通電時には電流リード中で発生するジュール発熱を増大させる。そして、この熱量が外部から侵入する熱量に重畳されるため、電流リードの抵抗が大きすぎると、結果的に低温部への侵入熱は増大することになる。そこで、通常用いられている電流リードは、通電容量を決め、その通電下において熱侵入を最も下げるように設計されている(いわゆる最適設計がなされている)。このような最適設計を行った電流リードでも、例えば室温と液体窒素温度との間に、無通電時で約20W/kA(1kA級の電流リードで20W)の熱侵入、通電時で約50W/kAの熱侵入がある。したがって、例えば配電系統のフィーダー線の典型的な電流容量である600A級の機器を考えた場合、電流リードからの侵入熱は無通電時で約12W/本となり、3相交流器のように6本の電流リードが必要な場合には電流リードからの侵入熱は合計で約72Wとなることになる。これは、無通電状態でもこの熱量を取り去るために、2kW程度のエネルギーが必要となることを意味する。   For this reason, the low temperature vessel currently used for cooling the superconductor has been devised to reduce the heat penetration into the low temperature region, and the intrusion heat in the entire cooling vessel has been reduced. However, it is difficult to reduce the heat intrusion from the current lead, and in the low temperature container provided with the current lead having a large current capacity, the intrusion heat from the lead occupies a large part of the total intrusion heat. The reason is that the current lead is usually made of a good electrical conductor to pass current, while the good electrical conductor is generally a good thermal conductor. For this reason, it is not easy to reduce heat penetration from the current lead. For example, in order to reduce heat intrusion from the outside of the cryogenic vessel, it is only necessary to reduce the cross-sectional area of the current lead and increase the overall length (that is, heat intrusion can be reduced by reducing the temperature gradient in the current lead). ). However, this simultaneously increases the electrical resistance of the current lead, and thus increases Joule heat generated in the current lead when energized. This amount of heat is superimposed on the amount of heat entering from the outside, so that if the resistance of the current lead is too large, the heat entering the low temperature portion will eventually increase. Therefore, the current lead that is usually used is designed so as to determine the current carrying capacity and minimize the heat intrusion under the current carrying (so-called optimum design). Even in a current lead having such an optimal design, for example, between about room temperature and liquid nitrogen temperature, about 20 W / kA (20 W with a 1 kA class current lead) intrusions when no current is applied, and about 50 W / kg when energized. There is kA heat penetration. Therefore, for example, when considering a 600A class device that is a typical current capacity of a feeder wire of a power distribution system, the intrusion heat from the current lead is about 12 W / line when no current is applied, as in a three-phase AC device. If a single current lead is required, the intrusion heat from the current lead will be about 72 W in total. This means that about 2 kW of energy is required to remove this amount of heat even in a non-energized state.

一方、限流器の設置場所として想定されている場所は、変電所間の母線連系点や、コジェネレーションを利用したオンサイト給電システムと配電線系統との連系点などである。これらの連系点の特徴は、通過する電流値の大きさが一定ではなく、時間あるいは日によって大きく変化するという点である。たとえば、前者の場合、通常の運転形態では限流器を通過する電流量はほとんどなく、各変電所間で電力需給バランスなどに変動が生じた場合だけ比較的大きな電流が通過する。また、後者の場合、昼と夜とで連系点を通過する電流量は大きく異なる。   On the other hand, the place where the current limiter is supposed to be installed is a bus connection point between substations, a connection point between an on-site power supply system using cogeneration and a distribution line system, or the like. A characteristic of these interconnection points is that the magnitude of the current value passing therethrough is not constant but varies greatly with time or day. For example, in the former case, in the normal operation mode, there is almost no amount of current passing through the current limiter, and a relatively large current passes only when fluctuations occur in the power supply / demand balance between the substations. In the latter case, the amount of current passing through the interconnection point differs greatly between day and night.

このような特徴を持つ個所への超電導限流器の適用を考えた場合、その電流リードを小さい電流値で設計すると、通過電流値の小さいときには支障なく電流を流せ、かつ熱侵入も少なくてすむ。しかしながら、大電流を流す必要が生じた際には、大きなジュール熱を発生してしまう。このため、小電流通電時の侵入熱が増加するにもかかわらず、大きな電流値を通過できるように設計することになる(すなわち無通電時の侵入熱が大きい電流リードを用いることになる)。このことからわかるように、電流通過量にあわせて電流リードを変えることができれば、今よりも侵入熱を小さくできるものの、通常の電流リードでは断面積を変化させることができない。   When considering the application of a superconducting fault current limiter to a location with such characteristics, if the current lead is designed with a small current value, current can flow without any problem when the passing current value is small, and heat penetration can be reduced. . However, when a large current needs to flow, large Joule heat is generated. For this reason, the design is such that a large current value can be passed even though the intrusion heat at the time of energizing a small current is increased (that is, a current lead having a large invasion heat at the time of non-energization is used). As can be seen from this, if the current lead can be changed in accordance with the amount of current passing, the intrusion heat can be made smaller than the present one, but the cross-sectional area cannot be changed with a normal current lead.

そこで、例えば電流リード中に開極部を設け、さらに開極部領域を真空断熱した構造により無通電時に電流リードからの侵入熱を低減する提案がなされている。(特許文献1および2参照)
特開平9−223621号公報 特開2001−148520号公報
In view of this, for example, a proposal has been made to reduce the intrusion heat from the current lead when no current is applied by a structure in which an opening portion is provided in the current lead and the opening portion region is vacuum insulated. (See Patent Documents 1 and 2)
Japanese Patent Laid-Open No. 9-223621 JP 2001-148520 A

特許文献1および2に提案されている電流リードでは、電流を通電しない場合に電流リードの一部を開極することにより電流リード中の伝導によって侵入する熱を遮断することができ、また、開極部を真空断熱することにより気体の対流などに起因する熱侵入も低減することができる。しかしながら、単純に真空領域に開極可能な接点部分を設けただけでは輻射による侵入熱を低減することができない。この真空中に開極した部分での侵入熱は以下のように見積もることができる(以下、実験物理学講座15「低温」、共立出版株式会社を参照のこと)。   In the current leads proposed in Patent Documents 1 and 2, when a current is not passed, a part of the current lead can be opened to cut off the heat that enters due to conduction in the current lead. Heat intrusion caused by gas convection can be reduced by vacuum-insulating the pole portion. However, the intrusion heat due to radiation cannot be reduced simply by providing a contact portion that can be opened in the vacuum region. The intrusion heat at the portion opened in the vacuum can be estimated as follows (refer to Experimental Physics Course 15 “Low Temperature”, Kyoritsu Shuppan Co., Ltd.).

まず、真空断熱空間中にある2つの物体間を通した侵入熱の大きさは、Stefan-Boltzmannの輻射の法則を用いることにより
熱侵入=5.67×10-12×εA(T2 4−T1 4) ・・・(1)
で与えられる。ここで、Aは真空断熱層内で向かい合った固体表面の面積(cm2)を表している。また、εは電極の材質から決まる係数であるが、真空断熱領域内面が例えばガラスなどの材料でできている場合、この係数は1程度である。従って、T2として300K、T1として液体窒素温度の77Kを代入すると、式(1)の値は
熱侵入〜0.046×A ・・・(2)
となることがわかる。ここで、真空断熱層中の開極部分の断面積を、遮断器の真空領域を参考にして200cm2程度とすると、電流リード1本あたりの熱侵入は、約9Wと見積もることができる。この値は先に述べた最適設計された600A級電流リード非通電時の熱侵入12Wと比べて著しく改善されているとはいえない。このように、真空断熱領域に開極部を設けるだけでは、電流を通電しない場合の侵入熱や大幅に低減することはできない。
First, the magnitude of the intrusion heat that passes between two objects in the vacuum insulation space can be calculated by using Stefan-Boltzmann's radiation law: heat intrusion = 5.67 × 10 −12 × εA (T 2 4 − T 1 4) ··· (1)
Given in. Here, A represents the area (cm 2 ) of the solid surface facing each other in the vacuum heat insulating layer. Further, ε is a coefficient determined by the material of the electrode, but this coefficient is about 1 when the inner surface of the vacuum heat insulating region is made of a material such as glass. Therefore, if 300 K is substituted for T 2 and 77 K of the liquid nitrogen temperature is substituted for T 1 , the value of equation (1) is the heat penetration to 0.046 × A (2)
It turns out that it becomes. Here, if the cross-sectional area of the opening portion in the vacuum heat insulating layer is about 200 cm 2 with reference to the vacuum region of the circuit breaker, the heat penetration per current lead can be estimated to be about 9 W. This value cannot be said to be remarkably improved as compared with the optimally designed heat penetration 12W when the 600A class current lead is not energized as described above. In this way, the intrusion heat and the significant reduction when no current is passed cannot be reduced simply by providing the opening portion in the vacuum heat insulating region.

本発明の目的は、低温領域への熱侵入を低減し、冷却に必要な動力を低減できる低温容器を提供することにある。   An object of the present invention is to provide a cryogenic container capable of reducing heat penetration into a low temperature region and reducing power required for cooling.

本発明の一態様に係る低温容器は、超電導体を冷却した状態に保持する容器部と、前記容器部に取り付けられ、断熱材によって区画された内部空間を有する真空断熱部と、前記真空断熱部の内部空間に開極可能に配置された、前記超電導体に接続された低温側電流リードおよび室温側電流リードと、前記低温側電流リードと前記室温側電流リードとの間に両者と接合して配置され、開極時に前記低温側電流リードおよび前記室温側電流リードの両方から電気的に切り離される導電体と、前記真空断熱部の内部に配置された1つまたは複数の輻射シールドとを具備したことを特徴とする。 A cryogenic container according to an aspect of the present invention includes a container part that holds a superconductor in a cooled state, a vacuum heat insulating part that is attached to the container part and has an internal space partitioned by a heat insulating material, and the vacuum heat insulating part. A low-temperature side current lead and a room- temperature side current lead connected to the superconductor, and disposed between the low-temperature side current lead and the room-temperature-side current lead. A conductor that is disposed and electrically disconnected from both the low temperature side current lead and the room temperature side current lead at the time of opening; and one or more radiation shields disposed inside the vacuum heat insulating portion. It is characterized by that.

本発明の低温容器によれば、無通電時に、真空断熱部の内部空間で低温側電流リードと室温側電流リードを開極することによって伝導またはガス対流による侵入熱を低減するとともに、輻射シールドによって輻射による熱侵入も低減することができる。   According to the low temperature container of the present invention, when no current is applied, the intrusion heat due to conduction or gas convection is reduced by opening the low temperature side current lead and the room temperature side current lead in the internal space of the vacuum heat insulating portion, and the radiation shield Heat intrusion due to radiation can also be reduced.

(実施例1)
図1に低温容器の概略的な断面図を示す。容器部は容器本体1と蓋体2を含む。この蓋体2に2つの真空断熱部10、10が取り付けられる。容器本体1の内部には低温液体3(たとえば液体窒素)が収容され、この低温液体3に超電導体4が浸漬される。超電導体4は真空断熱部10、10に挿入されている低温側電流リードと接続される。本実施例では1対の真空断熱部10、10を設けて2本の電流リードを用いており、電力機器としてはいわゆる単相器となっている。
(Example 1)
FIG. 1 shows a schematic cross-sectional view of a cryogenic container. The container portion includes a container body 1 and a lid body 2. Two vacuum heat insulating portions 10 and 10 are attached to the lid 2. The container body 1 contains a low-temperature liquid 3 (for example, liquid nitrogen), and the superconductor 4 is immersed in the low-temperature liquid 3. The superconductor 4 is connected to the low-temperature current lead inserted in the vacuum heat insulating portions 10 and 10. In this embodiment, a pair of vacuum heat insulating portions 10 and 10 are provided and two current leads are used, and the power device is a so-called single phase device.

図2および図3に本実施例1における真空断熱部10の内部を示す。図2は接合時を示し、図3は開極時を示す。真空断熱部10は円筒状の断熱材からなっており、その内部空間には低温側電流リード11と室温側電流リード12が挿入されている。真空断熱部10の上部には、室温側電流リード12を上下に駆動させる駆動装置13が設けられている。なお、低温側電流リード11を駆動するようにしてもよい。駆動装置13によって、図2に示すように低温側電流リード11と室温側電流リード12を接合したり、図3に示すように低温側電流リード11と室温側電流リード12を開極したりすることができる。これらの部分は市販の真空遮断器を応用して作製している。   2 and 3 show the inside of the vacuum heat insulating portion 10 in the first embodiment. FIG. 2 shows the time of joining, and FIG. 3 shows the time of opening. The vacuum heat insulating part 10 is made of a cylindrical heat insulating material, and a low temperature side current lead 11 and a room temperature side current lead 12 are inserted into the internal space thereof. A driving device 13 that drives the room-temperature-side current lead 12 up and down is provided above the vacuum heat insulating unit 10. Note that the low temperature side current lead 11 may be driven. The drive device 13 joins the low temperature side current lead 11 and the room temperature side current lead 12 as shown in FIG. 2, or opens the low temperature side current lead 11 and the room temperature side current lead 12 as shown in FIG. be able to. These parts are made by applying a commercially available vacuum circuit breaker.

真空断熱部10の内部空間においては、低温側電流リード11および室温側電流リード12の周面と真空断熱部10の内壁との間に輻射シールド14が固定されている。図4の平面図に示すように、この輻射シールド14は中央に穴のあいたリング状の形状を有する。低温側電流リード11または室温側電流リード12は輻射シールド14の穴を貫通する。このように、輻射シールド14は室温側から低温側への輻射による熱侵入を抑制するように、室温側と低温側とをできるだけ隔離するように配置される。輻射シールド14の数は特に限定されず適宜の数が設けられ、配置位置も限定されない。   In the internal space of the vacuum heat insulating portion 10, a radiation shield 14 is fixed between the peripheral surfaces of the low temperature side current lead 11 and the room temperature side current lead 12 and the inner wall of the vacuum heat insulating portion 10. As shown in the plan view of FIG. 4, the radiation shield 14 has a ring shape with a hole in the center. The low temperature side current lead 11 or the room temperature side current lead 12 passes through the hole of the radiation shield 14. In this way, the radiation shield 14 is disposed so as to separate the room temperature side and the low temperature side as much as possible so as to suppress heat penetration due to radiation from the room temperature side to the low temperature side. The number of radiation shields 14 is not particularly limited, an appropriate number is provided, and the arrangement position is not limited.

本実施例においては、低温側電流リード11と室温側電流リード12の接点以外の部分は600Aの通電容量で最適設計されている。   In this embodiment, the portion other than the contact point between the low temperature side current lead 11 and the room temperature side current lead 12 is optimally designed with a current carrying capacity of 600A.

本実施例1の低温容器と、通常の600Aで最適設計した電流リードが設けられている低温容器(従来例)とを用い、侵入熱の大きさを調べる実験を行った。この実験では、低温容器内を液体窒素で満たし、始めの1時間の間600A、50Hzの連続通電を行なった。続いて電流を遮断し、5時間にわたり電流遮断状態を維持した。このとき、実施例1の低温容器では、低温側電流リード11と室温側電流リード12を開極した。この間の液体窒素の蒸発量(リットル)を測定した。図5に、液体窒素蒸発量の時間変化を示す。   Using the cryogenic container of Example 1 and a cryogenic container (conventional example) provided with a current lead optimally designed at 600 A, an experiment was conducted to examine the magnitude of the intrusion heat. In this experiment, the cryogenic vessel was filled with liquid nitrogen, and continuous energization at 600 A and 50 Hz was performed for the first hour. Subsequently, the current was interrupted, and the current interrupted state was maintained for 5 hours. At this time, in the low temperature container of Example 1, the low temperature side current lead 11 and the room temperature side current lead 12 were opened. During this time, the evaporation amount (liter) of liquid nitrogen was measured. FIG. 5 shows the time change of the liquid nitrogen evaporation amount.

図5からわかるように、どちらの低温容器でも、始めの1時間で約1.7リットルの液体窒素が蒸発している。この値と、液体窒素の蒸発潜熱(約160J/cm3)に基づいて電流リードからの熱侵入を見積もると、600A通電時にはどちらの低温容器でも約75Wの熱侵入があることがわかる。この値と、電流リードを設けないクライオスタットへの侵入熱(約10W)に基づいて電流リードからの熱侵入を見積もると、どちらの低温容器でも電流リードの最適設計値である約50W/1kAの値をほぼ達成していることがわかる。 As can be seen from FIG. 5, about 1.7 liters of liquid nitrogen has evaporated in the first hour in either cryogenic vessel. If heat penetration from the current lead is estimated based on this value and the latent heat of vaporization of liquid nitrogen (about 160 J / cm 3 ), it can be seen that there is about 75 W of heat penetration in either low-temperature vessel when 600 A is energized. Estimating the heat penetration from the current lead based on this value and the heat penetration into the cryostat without the current lead (about 10 W), the value of about 50 W / 1 kA, which is the optimum design value of the current lead in either cryogenic vessel. It can be seen that almost has been achieved.

しかし、電流を遮断した後には、従来例の低温容器と実施例1の低温容器とで、液体窒素蒸発量に大きな差がでる。従来例の低温容器では5時間で約4.3リットルの液体窒素が蒸発しており、熱侵入は約28Wであった。これに対して、実施例1の低温容器では5時間で約2.6リットルの液体窒素が蒸発しており、侵入熱は約13Wであった。これらの結果から、無通電時があるような個所へ適用する低温容器の場合、本実施例1の低温容器を用いることにより、電流リード部からの熱侵入を半分以下と大幅に低減できることが判明した。   However, after the current is cut off, there is a large difference in the evaporation amount of liquid nitrogen between the conventional cryogenic container and the cryogenic container of Example 1. In the cryogenic container of the conventional example, about 4.3 liters of liquid nitrogen was evaporated in 5 hours, and heat penetration was about 28 W. On the other hand, in the low temperature container of Example 1, about 2.6 liters of liquid nitrogen was evaporated in 5 hours, and the intrusion heat was about 13 W. From these results, it was found that in the case of a cryogenic container applied to a place where there is no energization, the use of the cryogenic container of Example 1 can greatly reduce the heat intrusion from the current lead part to less than half. did.

次に、本実施例1の低温容器と、真空断熱部の輻射シールドを除去した以外は実施例1と同じ構造を有する低温容器(比較例)とを用い、上記と同様に侵入熱の大きさを調べる実験を行った。すなわち、始めの1時間の間600A、50Hzの連続通電を行なった後、いずれの低温容器でも低温側電流リード11と室温側電流リード12を開極し、5時間にわたり電流遮断状態を維持した。図6に、液体窒素蒸発量の時間変化を示す。   Next, using the low-temperature container of Example 1 and the low-temperature container (Comparative Example) having the same structure as Example 1 except that the radiation shield of the vacuum heat insulating portion was removed, the magnitude of intrusion heat was the same as above. An experiment was conducted to investigate. That is, after continuous energization at 600 A and 50 Hz for the first hour, the low temperature side current lead 11 and the room temperature side current lead 12 were opened in any of the low temperature containers, and the current interruption state was maintained for 5 hours. FIG. 6 shows the change over time in the amount of liquid nitrogen evaporation.

図6から、比較例の低温容器では、5時間の無通電時に蒸発した液体窒素は約3.95リットルであり、侵入熱は約25Wであることがわかった。この比較例のように輻射シールドを設けずに、単に真空断熱部の内部空間で低温側電流リード11と室温側電流リード12を開極できるようにしただけでは侵入熱を遮断する効果が少ない。これに対して、実施例1の低温容器は、比較例の低温容器と比べても、侵入熱を約半分にできることが確認された。   From FIG. 6, it was found that in the low temperature container of the comparative example, the liquid nitrogen evaporated when no power was supplied for 5 hours was about 3.95 liters, and the intrusion heat was about 25 W. If the low temperature side current lead 11 and the room temperature side current lead 12 can be opened in the internal space of the vacuum heat insulating portion without providing a radiation shield as in this comparative example, the effect of blocking the intrusion heat is small. On the other hand, it was confirmed that the low temperature container of Example 1 can reduce the intrusion heat by about half compared with the low temperature container of the comparative example.

(実施例2)
図7および図8に本実施例2における真空断熱部10の内部を示す。図7は接合時を示し、図8は開極時を示す。図7および図8では、真空断熱部10の内壁に板バネ15が取り付けられ、板バネ15の先端に板状部材16が固定され、この板状部材16は低温側電流リード11と室温側電流リード12との間に配置されている。板バネ15に支持された板状部材16は接合時と開極時とで位置(高さ)が変化するようになっている。この板状部材16は厚さ5mmで、中央の接合部が導電体(この例では無酸素銅)で形成され、その周辺が熱伝導率の低い絶縁性材料(この例では繊維強化プラスチックFRP)で囲まれている。図7に示されるように、接合時には低温側電流リード11と板状部材16の中央接合部と室温側電流リード12とが接合している。図8に示されるように、開極時に室温側電流リード12を上方へ駆動すると、板状部材16の中央接合部は低温側電流リード11および室温側電流リード12の両方から電気的に切り離される。すなわち、低温側電流リード11と板状部材16の中央接合部との間および室温側電流リード12と板状部材16の中央接合部との間に合計2個所の開極部ができる。
(Example 2)
7 and 8 show the inside of the vacuum heat insulating portion 10 according to the second embodiment. FIG. 7 shows the time of bonding, and FIG. 8 shows the time of opening. 7 and 8, a plate spring 15 is attached to the inner wall of the vacuum heat insulating portion 10, and a plate-like member 16 is fixed to the tip of the plate spring 15. The plate-like member 16 is connected to the low-temperature side current lead 11 and the room-temperature side current. It is arranged between the leads 12. The position (height) of the plate-like member 16 supported by the plate spring 15 is changed between joining and opening. This plate-like member 16 has a thickness of 5 mm, a central joint is formed of a conductor (in this example, oxygen-free copper), and the periphery thereof is an insulating material having low thermal conductivity (in this example, fiber-reinforced plastic FRP). Surrounded by As shown in FIG. 7, the low temperature side current lead 11, the central joint portion of the plate-like member 16, and the room temperature side current lead 12 are joined at the time of joining. As shown in FIG. 8, when the room temperature side current lead 12 is driven upward at the time of opening, the center joint portion of the plate-like member 16 is electrically disconnected from both the low temperature side current lead 11 and the room temperature side current lead 12. . That is, a total of two opening portions are formed between the low temperature side current lead 11 and the central joint portion of the plate-like member 16 and between the room temperature side current lead 12 and the central joint portion of the plate-like member 16.

本実施例2の低温容器と、上記実施例1の低温容器とを用い、上記と同じ条件で侵入熱の大きさを調べる実験を行った。すなわち、始めの1時間の間600A、50Hzの連続通電を行なった後、いずれの低温容器でも低温側電流リード11と室温側電流リード12を開極し、5時間にわたり電流遮断状態を維持した。図9に、液体窒素蒸発量の時間変化を示す。   Using the low temperature container of Example 2 and the low temperature container of Example 1 above, an experiment was conducted to examine the magnitude of intrusion heat under the same conditions as described above. That is, after continuous energization at 600 A and 50 Hz for the first hour, the low temperature side current lead 11 and the room temperature side current lead 12 were opened in any of the low temperature containers, and the current interruption state was maintained for 5 hours. FIG. 9 shows the change over time in the evaporation amount of liquid nitrogen.

図9から、実施例2の低温容器では、5時間の無通電時に蒸発した液体窒素は約2.2リットルであり、侵入熱は約9.5Wであることがわかった。このように、実施例2の低温容器は、実施例1の低温容器よりも無通電時の熱侵入がさらに小さくなった。   From FIG. 9, it was found that in the low temperature container of Example 2, the liquid nitrogen evaporated at the time of no energization for 5 hours was about 2.2 liters, and the intrusion heat was about 9.5 W. As described above, the low temperature container of Example 2 was further less intruded by heat when no current was applied than the low temperature container of Example 1.

この理由は、実施例1では低温側電流リード11と室温側電流リード12の対向面間の輻射を低減できないのに対し、実施例2ではこの輻射を低減できるためである。実際に、実施例2の低温容器において各電極部分に熱電対を貼り付けて温度を測定したところ、板状部材16の表面温度は、低温側電流リード11と室温側電流リード12の中間の温度を示していた。このように、輻射熱による熱侵入を低減するためには、本実施例2のように低温部と室温部との中間に設けた板状部材16の温度がほとんど輻射によって決まることが重要である。このような構造では、輻射熱は低温部と室温部との中間に設けた板状部材16の枚数分の1に低減することができる。(実験物理学講座15「低温」、共立出版株式会社P81参照)。   This is because the radiation between the opposing surfaces of the low temperature side current lead 11 and the room temperature side current lead 12 cannot be reduced in the first embodiment, whereas this radiation can be reduced in the second embodiment. Actually, when the temperature was measured by attaching a thermocouple to each electrode portion in the low temperature container of Example 2, the surface temperature of the plate-like member 16 was an intermediate temperature between the low temperature side current lead 11 and the room temperature side current lead 12. Was showing. As described above, in order to reduce the heat intrusion due to radiant heat, it is important that the temperature of the plate-like member 16 provided between the low temperature portion and the room temperature portion is almost determined by radiation as in the second embodiment. In such a structure, radiant heat can be reduced to 1 / the number of the plate-like members 16 provided between the low temperature part and the room temperature part. (See Experimental Physics Course 15 “Low Temperature”, Kyoritsu Publishing Co., Ltd. P81).

(実施例3)
図10および図11に本実施例3における真空断熱部10の内部を示す。図10は接合時を示し、図11は開極時を示す。本実施例3においては、真空断熱部10の内部に、固定の遮蔽シールド14に加えて、移動機構(図示せず)によって移動可能な遮蔽シールド17が設けられている。図11に示すように、開極時には、移動可能な遮蔽シールド17は低温側電流リード11と室温側電流リード12との間に挿入される。
Example 3
10 and 11 show the inside of the vacuum heat insulating portion 10 in the third embodiment. FIG. 10 shows the time of bonding, and FIG. 11 shows the time of opening. In the third embodiment, in addition to the fixed shielding shield 14, a shielding shield 17 that can be moved by a moving mechanism (not shown) is provided inside the vacuum heat insulating portion 10. As shown in FIG. 11, the movable shield shield 17 is inserted between the low temperature side current lead 11 and the room temperature side current lead 12 at the time of opening.

本実施例3の低温容器について上記と同じ条件で侵入熱の大きさを調べる実験を行った結果、侵入熱を約3Wまで下げられることがわかった。この侵入熱の値は、単に真空断熱部の内部空間で低温側電流リード11と室温側電流リード12を開極できるようにした比較例(実施例1の記載を参照のこと)の低温容器の約1/8に低減できていることを意味している。   As a result of conducting an experiment for examining the magnitude of the intrusion heat under the same conditions as described above for the low temperature container of Example 3, it was found that the intrusion heat could be lowered to about 3 W. The value of the intrusion heat is simply that of the low temperature container of the comparative example (see the description of Example 1) in which the low temperature side current lead 11 and the room temperature side current lead 12 can be opened in the internal space of the vacuum heat insulating portion. It means that it can be reduced to about 1/8.

(実施例4)
図12および図13に本実施例4における真空断熱部10の内部を示す。図12は接合時を示し、図13は開極時を示す。本実施例4においては、低温側電流リード11だけでなく室温側電流リード12も固定され、両者の間は離間している。また、真空断熱部10の内部に、固定の遮蔽シールド14に加えて、移動機構18によって水平方向に移動可能な遮蔽シールド19が設けられている。この遮蔽シールド19に接合部材20が取り付けられている。図12に示すように、接合時には遮蔽シールド19が低温側電流リード11と室温側電流リード12との間に挿入された状態で、低温側電流リード11および室温側電流リード12の側面に接合部材20が接合する。図13に示すように、開極時には低温側電流リード11および室温側電流リード12の側面から接合部材20が離れるが、遮蔽シールド19は低温側電流リード11と室温側電流リード12との間に挿入された状態を維持する。
(Example 4)
12 and 13 show the inside of the vacuum heat insulating portion 10 in the fourth embodiment. FIG. 12 shows the time of bonding, and FIG. 13 shows the time of opening. In the fourth embodiment, not only the low temperature side current lead 11 but also the room temperature side current lead 12 is fixed, and they are separated from each other. In addition to the fixed shield shield 14, a shield shield 19 that can be moved in the horizontal direction by the moving mechanism 18 is provided inside the vacuum heat insulating portion 10. A joining member 20 is attached to the shielding shield 19. As shown in FIG. 12, in the state where the shielding shield 19 is inserted between the low temperature side current lead 11 and the room temperature side current lead 12 at the time of bonding, a bonding member is attached to the side surfaces of the low temperature side current lead 11 and the room temperature side current lead 12. 20 are joined. As shown in FIG. 13, the bonding member 20 is separated from the side surfaces of the low temperature side current lead 11 and the room temperature side current lead 12 at the time of opening, but the shielding shield 19 is interposed between the low temperature side current lead 11 and the room temperature side current lead 12. Keep inserted.

本実施例4の低温容器について上記と同じ条件で侵入熱の大きさを調べる実験を行った結果、侵入熱は約5Wと見積もられた。この値は実施例3よりは若干大きいが、比較例の低温容器に比べると十分に小さい。しかも、本実施例4の低温容器は機構も簡単であるため、高い信頼性が期待される。   As a result of an experiment for examining the magnitude of the intrusion heat under the same conditions as described above for the low temperature container of Example 4, the intrusion heat was estimated to be about 5 W. This value is slightly larger than that of Example 3, but is sufficiently smaller than that of the comparative cryogenic container. In addition, since the mechanism of the cryogenic container of Example 4 is simple, high reliability is expected.

(実施例5)
図14および図15に本実施例5における真空断熱部10の内部を示す。図14は接合時を示し、図15は開極時を示す。これまでの実施例の低温容器は、電力供給形態が通常通電時と無通電という2つの場合を取る個所に対して適用するものである。しかし、このような低温容器は通電電流を減らしても零にすることはない個所に対して適用することはできない。これに対して、本実施例5の低温容器はこのような個所への適用を可能としたものである。本実施例5の低温容器は、実施例2の低温容器に加えて、低温側電流リード11と室温側電流リード12とを常時接続して小電流を通電させるバイパス電流リード21を有する。より具体的には、低温側電流リード11および室温側電流リード12は550Aで最適化されているのに対し、並列接続されたバイパス電流リード21は通常電流値50Aで設計されている。
(Example 5)
14 and 15 show the inside of the vacuum heat insulating portion 10 in the fifth embodiment. FIG. 14 shows the time of joining, and FIG. 15 shows the time of opening. The cryogenic containers of the embodiments so far are applied to locations where the power supply form takes two cases of normal energization and non-energization. However, such a cryogenic container cannot be applied to a place where the energization current is not reduced to zero. In contrast, the cryogenic container of the fifth embodiment can be applied to such a place. The low temperature container of the fifth embodiment includes a bypass current lead 21 that constantly connects the low temperature side current lead 11 and the room temperature side current lead 12 to pass a small current in addition to the low temperature container of the second embodiment. More specifically, the low-temperature side current lead 11 and the room temperature-side current lead 12 are optimized at 550 A, whereas the bypass current lead 21 connected in parallel is designed with a normal current value of 50 A.

本実施例5の低温容器について、低温側電流リード11と室温側電流リード12を開極し、バイパス電流リード21を通して50Aの通電を行った場合、電流リード1本あたりの侵入熱を約8Wにできることがわかった。一方、従来例の低温容器のように600Aで最適設計された電流リードを用いた場合、50A通電時でも電流リード1本あたり約30Wの侵入熱がある。このように、本実施例5のようにバイパス電流リード21をもつ低温容器は、従来例の低温容器と比較して、小電流通電時の電流リードからの侵入熱を大幅に低減できることがわかる。   For the low temperature container of the fifth embodiment, when the low temperature side current lead 11 and the room temperature side current lead 12 are opened and 50 A is energized through the bypass current lead 21, the intrusion heat per current lead is about 8 W. I knew it was possible. On the other hand, when a current lead optimally designed at 600 A is used as in the conventional cryogenic container, there is about 30 W of intrusion heat per current lead even when 50 A is energized. Thus, it can be seen that the low temperature container having the bypass current lead 21 as in the fifth embodiment can significantly reduce the intrusion heat from the current lead when a small current is applied, as compared with the conventional low temperature container.

本発明の実施形態に係る低温容器の概略的な断面図。1 is a schematic cross-sectional view of a cryogenic container according to an embodiment of the present invention. 実施例1の低温容器における真空断熱部の接合時の状態を示す断面図。Sectional drawing which shows the state at the time of joining of the vacuum heat insulation part in the cryogenic container of Example 1. FIG. 実施例1の低温容器における真空断熱部の開極時の状態を示す断面図。Sectional drawing which shows the state at the time of opening of the vacuum heat insulation part in the cryogenic container of Example 1. FIG. 実施例1において用いられる輻射シールドの平面図。2 is a plan view of a radiation shield used in Embodiment 1. FIG. 実施例1の低温容器と従来例の低温容器について、液体窒素蒸発量の時間変化を示す図。The figure which shows the time change of liquid nitrogen evaporation about the low temperature container of Example 1, and the low temperature container of a prior art example. 実施例1の低温容器と比較例の低温容器について、液体窒素蒸発量の時間変化を示す図。The figure which shows the time change of liquid nitrogen evaporation about the low temperature container of Example 1, and the low temperature container of a comparative example. 実施例2の低温容器における真空断熱部の接合時の状態を示す断面図。Sectional drawing which shows the state at the time of joining of the vacuum heat insulation part in the cryogenic container of Example 2. FIG. 実施例2の低温容器における真空断熱部の開極時の状態を示す断面図。Sectional drawing which shows the state at the time of the opening of the vacuum heat insulation part in the cryogenic container of Example 2. FIG. 実施例2の低温容器と実施例1の低温容器について、液体窒素蒸発量の時間変化を示す図。The figure which shows the time change of liquid nitrogen evaporation about the low temperature container of Example 2, and the low temperature container of Example 1. FIG. 実施例3の低温容器における真空断熱部の接合時の状態を示す断面図。Sectional drawing which shows the state at the time of joining of the vacuum heat insulation part in the cryogenic container of Example 3. FIG. 実施例3の低温容器における真空断熱部の開極時の状態を示す断面図。Sectional drawing which shows the state at the time of opening of the vacuum heat insulation part in the cryogenic container of Example 3. FIG. 実施例4の低温容器における真空断熱部の接合時の状態を示す断面図。Sectional drawing which shows the state at the time of joining of the vacuum heat insulation part in the cryogenic container of Example 4. FIG. 実施例4の低温容器における真空断熱部の開極時の状態を示す断面図。Sectional drawing which shows the state at the time of the opening of the vacuum heat insulation part in the cryogenic container of Example 4. FIG. 実施例5の低温容器における真空断熱部の接合時の状態を示す断面図。Sectional drawing which shows the state at the time of joining of the vacuum heat insulation part in the cryogenic container of Example 5. FIG. 実施例5の低温容器における真空断熱部の開極時の状態を示す断面図。Sectional drawing which shows the state at the time of opening of the vacuum heat insulation part in the cryogenic container of Example 5. FIG.

符号の説明Explanation of symbols

1…容器本体、2…蓋体、3…低温液体、4…超電導体、10…真空断熱部、11…低温側電流リード、12…室温側電流リード、13…駆動装置、14…輻射シールド、15…板バネ、16…板状部材、17…輻射シールド、18…移動機構、19…輻射シールド、20…接合部材、21…バイパス電流リード。   DESCRIPTION OF SYMBOLS 1 ... Container main body, 2 ... Cover body, 3 ... Low temperature liquid, 4 ... Superconductor, 10 ... Vacuum heat insulation part, 11 ... Low temperature side current lead, 12 ... Room temperature side current lead, 13 ... Drive apparatus, 14 ... Radiation shield, DESCRIPTION OF SYMBOLS 15 ... Leaf spring, 16 ... Plate-shaped member, 17 ... Radiation shield, 18 ... Moving mechanism, 19 ... Radiation shield, 20 ... Joining member, 21 ... Bypass current lead.

Claims (4)

超電導体を冷却した状態に保持する容器部と、
前記容器部に取り付けられ、断熱材によって区画された内部空間を有する真空断熱部と、
前記真空断熱部の内部空間に開極可能に配置された、前記超電導体に接続された低温側電流リードおよび室温側電流リードと、
前記低温側電流リードと前記室温側電流リードとの間に両者と接合して配置され、開極時に前記低温側電流リードおよび前記室温側電流リードの両方から電気的に切り離される導電体と、
前記真空断熱部の内部に配置された1つまたは複数の輻射シールドと
を具備したことを特徴とする低温容器。
A container for holding the superconductor in a cooled state;
A vacuum heat insulating part attached to the container part and having an internal space partitioned by a heat insulating material ;
A low temperature side current lead and a room temperature side current lead connected to the superconductor, arranged so as to be openable in the internal space of the vacuum heat insulating part,
A conductor disposed between and joined to the low temperature side current lead and the room temperature side current lead, and electrically disconnected from both the low temperature side current lead and the room temperature side current lead at the time of opening,
A cryogenic container comprising one or more radiation shields arranged inside the vacuum heat insulating portion.
前記低温側電流リードまたは前記室温側電流リードを駆動させて開極する駆動装置を有することを特徴とする請求項1に記載の低温容器。   The cryogenic container according to claim 1, further comprising a driving device that drives the low temperature side current lead or the room temperature side current lead to open the electrode. 前記輻射シールドのうち少なくとも1つは、開極時に前記低温側電流リードと前記室温側電流リードとの間に挿入されるように、移動可能に保持されていることを特徴とする請求項1に記載の低温容器。   The at least one of the radiation shields is movably held so as to be inserted between the low temperature side current lead and the room temperature side current lead at the time of opening. The cryogenic container described. 前記低温側電流リードと前記室温側電流リードとを常時接続して小電流を通電させるバイパス電流リードを有することを特徴とする請求項1に記載の低温容器。   The low-temperature container according to claim 1, further comprising a bypass current lead that constantly connects the low-temperature side current lead and the room-temperature side current lead to pass a small current.
JP2004258580A 2004-09-06 2004-09-06 Cryogenic container Active JP4284253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258580A JP4284253B2 (en) 2004-09-06 2004-09-06 Cryogenic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258580A JP4284253B2 (en) 2004-09-06 2004-09-06 Cryogenic container

Publications (2)

Publication Number Publication Date
JP2006073944A JP2006073944A (en) 2006-03-16
JP4284253B2 true JP4284253B2 (en) 2009-06-24

Family

ID=36154201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258580A Active JP4284253B2 (en) 2004-09-06 2004-09-06 Cryogenic container

Country Status (1)

Country Link
JP (1) JP4284253B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628391B2 (en) * 2015-03-18 2020-01-08 昭和電線ケーブルシステム株式会社 Flange unit for fixing current lead and flange unit with current lead
CN109143131B (en) * 2018-08-06 2020-12-15 上海联影医疗科技股份有限公司 Magnetic resonance imaging system and cryostat thereof

Also Published As

Publication number Publication date
JP2006073944A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4295189B2 (en) Superconducting resistance type current limiter
JP4620637B2 (en) Resistive superconducting fault current limiter
US8989828B2 (en) Superconducting magnet apparatus
JP2006324325A (en) Super-conducting magnet apparatus
US20150255200A1 (en) Fast Superconducting Switch for Superconducting Power Devices
JP4284253B2 (en) Cryogenic container
JPH10285792A (en) Current limiter
JP4599807B2 (en) Current leads for superconducting equipment
JP3569997B2 (en) Current leads for superconducting devices
JP2006108560A (en) Current lead for superconductive apparatus
JP5039985B2 (en) Transformer type superconducting fault current limiter
US20240096535A1 (en) Current leads for superconducting magnets
JP4638983B2 (en) Superconductor and manufacturing method thereof
KR101165229B1 (en) Superconducting generators to prevent heat generation
Maehata et al. High current transport test of a YBCO bulk conductor up to 25 kA
JP2004111581A (en) Superconducting magnet unit
JP4131769B2 (en) Superconducting current limiting fuse and overcurrent control system using the same
JP3715002B2 (en) Current lead for superconducting device and operation method thereof
JP3068898B2 (en) Current lead
SU714510A1 (en) Sectionized superconducting ac cable
KR101835268B1 (en) Transport current variable type power cable
JP4142835B2 (en) Superconducting magnet device
JP2006269184A (en) Lead for superconducting current
JPH10326915A (en) Connection structure of superconductive wire
JP2008159828A (en) Current lead, and superconducting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R151 Written notification of patent or utility model registration

Ref document number: 4284253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5