JP5039985B2 - Transformer type superconducting fault current limiter - Google Patents

Transformer type superconducting fault current limiter Download PDF

Info

Publication number
JP5039985B2
JP5039985B2 JP2007271989A JP2007271989A JP5039985B2 JP 5039985 B2 JP5039985 B2 JP 5039985B2 JP 2007271989 A JP2007271989 A JP 2007271989A JP 2007271989 A JP2007271989 A JP 2007271989A JP 5039985 B2 JP5039985 B2 JP 5039985B2
Authority
JP
Japan
Prior art keywords
current
transformer
superconductor
current limiter
superconducting fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007271989A
Other languages
Japanese (ja)
Other versions
JP2009100612A (en
Inventor
紀治 玉田
邦明 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2007271989A priority Critical patent/JP5039985B2/en
Publication of JP2009100612A publication Critical patent/JP2009100612A/en
Application granted granted Critical
Publication of JP5039985B2 publication Critical patent/JP5039985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、電力系統における事故電流を抑制する変圧器型超電導限流器に係り、特に限流動作を行わせるための超電導体の超電導状態から常電導状態への転位を、制御電流により自由に行えるようにした変圧器型超電導限流器に関するものである。   The present invention relates to a transformer-type superconducting fault current limiter that suppresses fault currents in a power system, and in particular, the transition from a superconducting state to a normal conducting state of a superconductor for performing a current limiting operation can be freely performed by a control current. The present invention relates to a transformer type superconducting fault current limiter that can be used.

電力の自由化や分散電源の導入は世界的な傾向であり、消費者にとっては競争原理の導入で、電気料金の低価格化が可能となるので歓迎されている。また、電力の自由化でIPP(Independent Power Producer:個人的電源設備)の大容量化が、さらに、今後普及が予想される自立型の地域電力ネットワークでは、内部に風力や太陽光、燃料電池など様々な分散電源が使われるものと予想される。   The liberalization of electric power and the introduction of distributed power sources are global trends, and consumers are welcomed by introducing the principle of competition and lowering the price of electricity. In addition, the increase in capacity of IPP (Independent Power Producer) due to the liberalization of electric power, and in the self-supporting regional power network that is expected to become popular in the future, wind power, solar power, fuel cells, etc. Various distributed power sources are expected to be used.

しかしながら反面、こういった自立型の地域電力ネットワークが電力会社の送電網に接続されることで生じる種々の危険性が指摘されている。すなわち現在の送電設備は、何処かに故障が発生しても系統の安定度を保つような制御をおこなってはいるが、こういった新電源設備や分散電源で構成される地域ネットワークの接続が増えると、場合によっては制御領域を越えてしまい、電力系統全体の危険性が増して、万一の事故で系統全体が不安定となって大規模な停電に繋がる可能性がある。   On the other hand, however, various dangers have been pointed out when such a self-supporting regional power network is connected to a power company's power grid. In other words, the current power transmission facilities are controlled so that the stability of the system is maintained even if a failure occurs somewhere, but the connection of regional networks composed of such new power facilities and distributed power sources is not possible. If it increases, the control area may be exceeded in some cases, the risk of the entire power system increases, and in the unlikely event of an accident, the entire system may become unstable, leading to a large-scale power outage.

例えば図10に示したように、電力会社の発電所20Ga、21Gbにつながる電力系統に、こういったIPP電源24G0、25G1や、内部にIPP電源26G2を有する自立型の地域電力ネットワークがつながれた場合、25G1や26G2に事故が生じると、その電力系統に繋がれた電力消費地A、Bにも影響が及ぶ。   For example, as shown in FIG. 10, when the power system connected to the power plants 20Ga and 21Gb of the electric power company is connected to such an IPP power supply 24G0 and 25G1 and a self-supporting local power network having the IPP power supply 26G2 inside. When an accident occurs in 25G1 or 26G2, power consumption areas A and B connected to the power system are also affected.

電力系統に事故が生じた場合は事故点の電圧は零に近くなり、発電側からその点へ通常より1桁以上大きい短絡電流、或いは地落電流が流れ込む。この電流によって系統機器が損傷を受けないよう、通常は遮断器で事故点を系統から切り離すが、遮断器は中央指令所からの指令を受けて遮断を終了するまでに略0.1秒の時間が必要であり、短時間の間、故障電流が系統に流れてしまうということと、遮断器には定格電流があって定格以上の電流が流れる場合には使用することができない。従って遮断器を使用する場合、事故電流がその容量を超えてしまわないように機器配置をしなければならない。   When an accident occurs in the power system, the voltage at the accident point is close to zero, and a short-circuit current or ground current that is one digit larger than usual flows from the power generation side to that point. In order to prevent damage to the system equipment due to this current, the fault point is usually separated from the system by a circuit breaker. However, the circuit breaker takes about 0.1 second to complete the circuit shut-off after receiving a command from the central command station. This means that a fault current flows through the system for a short period of time, and the circuit breaker has a rated current and cannot be used when a current exceeding the rating flows. Therefore, when using a circuit breaker, the equipment must be arranged so that the accident current does not exceed its capacity.

こういった問題を回避するため、遮断器技術を今以上に高信頼、高速にする必要があるが、遮断器が対応できない短時間の間、故障電流を抑制する限流器の存在が極めて重要になっている。すなわち、図10に示した系においても、発電所20Ga、21Gbを接続する系統に遮断機と限流器(FCL)10、10を接続したり、IPP電源25G1や26G2を有する自律分散系27に限流器10、10を介して電力系統につながれていれば、故障の影響が全域に及ぶ事がなくなるわけである。 In order to avoid these problems, it is necessary to make the circuit breaker technology more reliable and faster than before, but the existence of a current limiter that suppresses the fault current for a short time that the circuit breaker cannot handle is extremely important. It has become. That is, also in the system shown in FIG. 10, an autonomous distributed system having a circuit breaker and current limiters (FCL) 10 3 , 10 4 connected to a system connecting power plants 20Ga, 21Gb, or having IPP power supplies 25G1 and 26G2 27 is connected to the power system via the current limiters 10 1 , 10 2 , the influence of the failure does not reach the entire area.

しかしながら限流器は、電力会社自体にとっては設置するメリットが小さい。また、直列機器であるため電圧降下が生じ、大電流を制御するため電力用半導体素子が必要となるがそのために機器が高価となり、逆に安価な非半導体素子式の限流器では限流動作を自由に制御できない、などの問題がある。また、限流器に電力用半導体素子を使う場合、素子が高価なので限流器だけの使用例は殆ど無く、通常は位相や周波数、電圧、電流等、あらゆるパラメータを制御する回路と共に用いられるのが一般的である。仮に限流器回路のみをSCR、IGBT、GTOなどの電力用半導体素子で構成する場合、バイパス抵抗を用いて限流動作時に故障電流がパイパス抵抗を流れるようにして抑制する方法になるが、万が一の事故対策にだけ高価な電力用半導体素子を用いるのでは経済性が全く成立しない。   However, the current limiter has little merit for the electric power company itself. In addition, because it is a series device, a voltage drop occurs, and a power semiconductor element is required to control a large current, which makes the device expensive, and conversely, an inexpensive non-semiconductor element type current limiter has a current limiting operation. There are problems such as inability to control freely. Also, when power semiconductor elements are used for current limiters, the elements are expensive, so there are few examples of using current limiters only, and they are usually used with circuits that control all parameters such as phase, frequency, voltage, and current. Is common. If only the current limiter circuit is composed of power semiconductor elements such as SCR, IGBT, GTO, etc., it is a method to suppress the fault current so that it flows through the bypass resistance during current limiting operation using a bypass resistor. If an expensive power semiconductor element is used only for countermeasures against accidents, economic efficiency cannot be established.

そのため、電力用半導体素子を用いない限流器が注目されていて、例えば最も簡単な半導体素子を使わない限流器として、直列接続した数mH程度の値のリアクトルがある。このリアクトルは限流リアクトルとも呼ばれ、磁気飽和が生じないようにヨークにギャップを設けるのが普通である。しかしながら、限流リアクトルは常に電圧降下を生じるため、その分、電源の電圧を上げる必要がある。   Therefore, current limiters that do not use power semiconductor elements are attracting attention. For example, as the current limiters that do not use the simplest semiconductor elements, there are reactors having a value of about several mH connected in series. This reactor is also called a current-limiting reactor, and it is usual to provide a gap in the yoke so that magnetic saturation does not occur. However, since the current-limiting reactor always causes a voltage drop, it is necessary to increase the voltage of the power source accordingly.

正常動作時には電圧降下が生じない限流器としては、アーク駆動式限流器と超電導限流器がある。アーク駆動式限流器は基本的にはバイパス抵抗を有する遮断器であり、故障電流を遮断器で遮断し、その時に発生するアークを消去しながら、電流をバイパス回路に流して故障電流を抑制する方法である。このアーク駆動方式限流器の場合、小型・軽量化が容易であり、しかも常温動作するので既に小規模のものは実用段階にある。しかし機械的な遮断動作があるために不安が残り、万一、遮断動作が不調でも、大事故に繋がらないような系統に利用されていることが多い。   Current limiting devices that do not cause a voltage drop during normal operation include arc-driven current limiting devices and superconducting current limiting devices. An arc-driven current limiter is basically a circuit breaker with a bypass resistance. The fault current is interrupted by the circuit breaker, and the arc generated at that time is erased while the current is passed to the bypass circuit to suppress the fault current. It is a method to do. In the case of this arc drive type current limiting device, it is easy to reduce the size and weight, and since it operates at room temperature, a small-scale one is already in practical use. However, it is often used in systems that do not lead to major accidents even if the shutoff operation is unsatisfactory due to the mechanical shutoff operation.

一方の超電導限流器は超電導体の臨界電流特性を利用し、臨界電流値以下の電流であればゼロ抵抗だが、臨界電流値以上の過大電流が流れると超電導体が常電導に転位することで発生した抵抗が故障電流を抑制する方法である。超電導限流器は、冷却系を含めた装置の何処に不調があっても必ず限流動作状態になるセルフセーフ機能を有しており、信頼性が高いので、これまでにも多種多様な超電導限流器が提案されている。その中で代表的なものは、超電導体に直接電流を流して動作させる抵抗転位型限流器と、変圧器の2次側の超電導体を常電導転位させる変圧器型超電導限流器である。   One superconducting fault current limiter uses the critical current characteristics of superconductors, and is zero resistance if the current is below the critical current value, but if an excessive current above the critical current value flows, the superconductor is transferred to normal conduction. The generated resistance suppresses the fault current. The superconducting fault current limiter has a self-safe function that always operates in a current limiting state regardless of the malfunction of the equipment, including the cooling system, and is highly reliable. A current limiting device has been proposed. Among them, typical ones are a resistance dislocation type current limiter that operates by directly passing a current through the superconductor, and a transformer type superconducting current limiter that causes the superconductor on the secondary side of the transformer to perform normal conduction transition. .

抵抗転位型超電導限流器は構造も原理も簡単だが、超電導体に高電圧が掛かるので、低温電気絶縁の問題が常に最重要課題になる。そこで冷却材には密度が均一な液体窒素冷却が使われる。しかし限流動作時には超電導体の発熱で必ず気液混合状態になるため、セラミックスやFRPなどの固体絶縁体で電気絶縁を確保する必要があり、クライオスタット設計が難しい。変圧器型超電導限流器では超電導体に高電圧が掛からないので、低温電気絶縁の問題は回避できる。   Although the resistance dislocation type superconducting fault current limiter is simple in structure and principle, high voltage is applied to the superconductor, so the problem of low-temperature electrical insulation is always the most important issue. Therefore, liquid nitrogen cooling with a uniform density is used as the coolant. However, during current limiting operation, the superconductor is always in a gas-liquid mixed state due to the heat generated by the superconductor, so it is necessary to ensure electrical insulation with a solid insulator such as ceramics or FRP, making it difficult to design a cryostat. In the transformer type superconducting fault current limiter, a high voltage is not applied to the superconductor, so that the problem of low temperature electrical insulation can be avoided.

超電導限流器はセルフセーフ機能を有して信頼性が高いが、限流動作が超電導体の臨界電流値だけで決まるため、これまでの方式では限流動作設定条件を自由に調整・制御できない不便さがある。空心変圧器の場合、1次コイルと2次コイルの磁気結合を調整して限流動作条件を調製する方法も有り得るが、このような調整法では、相互インピーダンスの影響を完全にキャンセルできないから、正常動作時でも常に電圧降下が発生して超電導限流器の良さを失ってしまう。   The superconducting fault current limiter has a self-safe function and is highly reliable. However, since the current limiting operation is determined only by the critical current value of the superconductor, the current limiting operation setting conditions cannot be freely adjusted and controlled with the conventional methods. There is inconvenience. In the case of an air core transformer, there may be a method of adjusting the current coupling operating condition by adjusting the magnetic coupling of the primary coil and the secondary coil, but with such an adjustment method, the influence of the mutual impedance cannot be completely cancelled. Even during normal operation, a voltage drop always occurs and the superconducting fault current limiter is lost.

こういった変圧器型超電導限流器については、例えば特許文献1に断熱槽内に1次コイルを固定的に設け、2次コイルを2次コイル吊りフランジおよび2次コイル吊り棒で上下移動可能に構成し、2次コイルを冷媒で冷却した状態で1次コイルに対して軸方向に移動させて、限流器としての動作電流を調整する限流器が示されている。   For such a transformer type superconducting fault current limiter, for example, in Patent Document 1, a primary coil is fixedly installed in a heat insulation tank, and a secondary coil can be moved up and down by a secondary coil suspension flange and a secondary coil suspension rod. The current limiter is configured to adjust the operating current as a current limiter by moving the secondary coil in the axial direction with respect to the primary coil while being cooled with a refrigerant.

また特許文献2に示された変圧器型限流方法及び限流器では、常電導の変圧器を用いて1次側を高電圧に、2次側を低電圧に設定し、この変圧器の2次側に、大面積の絶縁体基板上に作製した高臨界電流密度と常電導時の高抵抗率を有する、高温超電導酸化物薄膜の限流素子を接続して高電圧電気絶縁は常温の変圧器1次側コイルに、超電導限流素子に2次側の低電圧・大電流の制御作用を分担させる。そして事故により1次側の電流が増大することで2次側電流が増大し、2次側超電導体が超電導から常電導に変化することで、1次側に大きなインピーダンスが発生することを利用して限流動作を行わせ、超電導素子の熱負荷を軽減して高価な大面積超電導薄膜を使った限流素子の使用量をできるだけ減らして、高電圧対応可能な低価格の限流器を実現できるとしている。   Further, in the transformer type current limiting method and current limiter disclosed in Patent Document 2, the primary side is set to a high voltage and the secondary side is set to a low voltage using a normally conducting transformer, and the transformer On the secondary side, a high-current superconducting oxide thin-film current-limiting element having a high critical current density and a high resistivity during normal conduction made on a large-area insulator substrate is connected, and high-voltage electrical insulation is performed at room temperature. The transformer primary side coil is assigned the control action of the secondary side low voltage and large current to the superconducting current limiting element. The secondary current increases due to an increase in the primary current due to the accident, and a large impedance is generated on the primary side when the secondary superconductor changes from superconducting to normal conducting. Current limiting operation, reducing the thermal load on the superconducting element and reducing the amount of current limiting element using an expensive large-area superconducting thin film as much as possible, realizing a low-cost current limiter that can handle high voltages I can do it.

また本願出願人は、限流器そのものの構造ではないが特許文献3において、例えば酸化物高温超電導体の臨界電流を大きくするため、超電導限流器の冷却に、液体分と固体分とが混在したスラッシュ冷媒を用いることを提案している。   Further, although the present applicant does not have the structure of the current limiter itself, in Patent Document 3, for example, in order to increase the critical current of the oxide high-temperature superconductor, the liquid component and the solid content are mixed for cooling the superconducting current limiter. It is proposed to use a slush refrigerant.

さらに特許文献4には、超電導材料の相転移によるインピーダンス変化を利用した誘導型の限流器と、所定電圧以下の電圧が印加されたときは比較的高抵抗を示し、前記所定電圧を超えると急激に抵抗値が低下する特性を持つ、例えばバリスタなどの非線形抵抗素子と抵抗との直列回路とを備え、誘導型の限流器と直列回路とが並列接続された故障電流限流器が提案されている。   Furthermore, Patent Document 4 shows an inductive current limiter that utilizes impedance changes due to phase transition of a superconducting material, and a relatively high resistance when a voltage equal to or lower than a predetermined voltage is applied. Proposed a fault current limiter that has a characteristic that the resistance value decreases rapidly, for example, a series circuit of a non-linear resistance element such as a varistor and a resistor, and an inductive current limiter and a series circuit connected in parallel Has been.

特開平11−089085号公報Japanese Patent Laid-Open No. 11-089085 特開2002−262450号公報JP 2002-262450 A 特開2006−052921号公報JP 2006-052921 A 特開2006−295994号公報JP 2006-295994 A

しかしながら、特許文献1に示された限流器は、2次コイルを冷媒で冷却した状態で1次コイルに対して軸方向に移動させる機構が必要であり、限流器としての動作電流を調整することは可能であるが、構成がそれだけ複雑になるし、正常動作時の電圧降下もゼロにできなくなる。また特許文献2に示された限流器も、限流動作点を自由に設定・調整することが難しく、また、超電導薄膜に流れる2次側電流は常電導転移直後に小さい値に限流されて焼損することはないが、常電導から超電導に戻すのにはある程度の時間が必要である。   However, the current limiter disclosed in Patent Document 1 requires a mechanism that moves the secondary coil in the axial direction with respect to the primary coil while being cooled with the refrigerant, and adjusts the operating current as the current limiter. It is possible to do this, but the configuration becomes complicated, and the voltage drop during normal operation cannot be reduced to zero. The current limiter disclosed in Patent Document 2 is also difficult to freely set and adjust the current limiting operating point, and the secondary current flowing in the superconducting thin film is limited to a small value immediately after the normal conducting transition. However, it takes some time to return from normal conduction to superconductivity.

さらに特許文献3に示された装置は、酸化物高温超電導体の臨界電流を大きくするための超電導限流器の冷却方法に関するもので、限流器の構造に関するものではなく、特許文献4に示された限流器は誘導型の限流器と非線形抵抗素子を組み合わせたもので、限流器そのものの構造に関しての開示はない。   Furthermore, the apparatus disclosed in Patent Document 3 relates to a cooling method for a superconducting current limiter for increasing the critical current of an oxide high-temperature superconductor, and does not relate to the structure of the current limiter. The current limiting device is a combination of an inductive current limiting device and a non-linear resistance element, and there is no disclosure regarding the structure of the current limiting device itself.

そのため本発明においては、簡単、安価な構成で低温電気絶縁の問題を回避でき、かつ、限流動作設定条件を自由に調整・制御できると共に、超電導状態から常電導状態に転移して限流動作が行われた後、超電導体を、常電導状態から超電導状態に短時間で復帰させることもできる変圧器型超電導限流器を提供することが課題である。   Therefore, in the present invention, the problem of low-temperature electrical insulation can be avoided with a simple and inexpensive configuration, and the current limiting operation setting conditions can be freely adjusted and controlled, and the current limiting operation is shifted from the superconducting state to the normal conducting state. It is an object to provide a transformer type superconducting current limiter that can return the superconductor from the normal conducting state to the superconducting state in a short time after the above.

上記課題を解決するため本発明になる変圧器型超電導限流器は、
電力系統に接続された電力用導線で巻回された変圧器1次側と、超電導体線材が巻回された、超電導環境に置かれた変圧器2次側とからなり、前記1次側の異常電流による2次側超電導体線材の超電導状態から常電導状態への転移で生じた1次側インピーダンスで限流動作を行う、変圧器型超電導限流器において、
前記変圧器2次側の超電導体線材はワンターン環状線材とされて互い違いにミアンダ構造に複数巻回され、一のワンターン環状線材に隣接する他のワンターン環状線材との接続点から次のワンターン環状線材に対する接続点までの左右の距離が、略同距離となるようにされていることを特徴とする。
In order to solve the above problems, the transformer type superconducting fault current limiter according to the present invention is
A primary side of a transformer wound with a power conductor connected to the power system, and a secondary side of a transformer placed in a superconducting environment around which a superconductor wire is wound. In a transformer type superconducting fault current limiter that performs current limiting operation with the primary side impedance generated by the transition from the superconducting state to the normal conducting state of the secondary superconductor wire due to abnormal current,
The superconductor wire on the secondary side of the transformer is a one-turn annular wire, and is alternately wound around a meander structure, and the next one-turn annular wire from the connection point with another one-turn annular wire adjacent to the one-turn annular wire. The distance between the right and left to the connection point with respect to is substantially the same distance.

このように、変圧器2次側の超電導体線材としてワンターン環状線材を用いたことで、変圧器2次回路の環状電流に対してはそれぞれのワンターン環状線材が並列動作し、変圧器動作には影響を与えずに限流動作をおこなわせることができる。   Thus, by using the one-turn annular wire as the superconductor wire on the secondary side of the transformer, each one-turn annular wire operates in parallel with respect to the annular current of the transformer secondary circuit. The current limiting operation can be performed without affecting.

また、前記変圧器型超電導限流器は、前記電力系統の異常を検知して2次側超電導体を常電導状態に転移させる制御電流回路が、前記ミアンダ構造とした複数のワンターン環状線材に直列に接続されていることで、2次側超電導体に制御電流を流すとそれぞれのワンターン環状線材には制御電流が、入力点から他のワンターン環状線材への接続点まで左右略同距離を流れることになるから、変圧器2次回路の環状電流に対して影響を与えることなく、すなわち変圧器動作には影響を与えず、2次側超電導体を常電導状態に転移させることができ、それにより、限流動作点を自由に制御できる変圧器型超電導限流器とすることができる。   The transformer-type superconducting fault current limiter includes a control current circuit that detects an abnormality in the power system and changes the secondary superconductor to a normal conducting state in series with the plurality of one-turn annular wires having the meander structure. When a control current is supplied to the secondary superconductor, the control current flows through each one-turn annular wire from the input point to the connection point to the other one-turn annular wire. Therefore, the secondary superconductor can be transferred to the normal conducting state without affecting the annular current of the transformer secondary circuit, that is, without affecting the transformer operation, The transformer type superconducting current limiter can freely control the current limiting operating point.

そして、前記制御電流回路は前記電力系統の異常を検知する異常電流検出器と、パルス電流供給源と、前記異常電流検出器による前記電力系統の異常電流検出結果によりONし、前記パルス電流供給源からのパルス電流を前記超電導体ワンターン環状線材に送るスイッチ回路とで構成したり、前記制御電流回路は前記電力系統の異常を検知する異常電流検出器と、高周波電流源と、前記異常電流検出器による前記電力系統の異常電流検出結果によりONし、前記高周波電流源からの高周波電流を前記超電導体ワンターン環状線材に送るスイッチ回路することで、非常に簡単な回路で2次側超電導体を常電導状態に転移させることができる。   The control current circuit is turned ON by an abnormal current detector that detects an abnormality of the power system, a pulse current supply source, and an abnormal current detection result of the power system by the abnormal current detector, and the pulse current supply source A switch circuit that sends a pulse current from the superconductor one-turn annular wire, the control current circuit detects an abnormality in the power system, an abnormal current detector, a high-frequency current source, and the abnormal current detector The secondary superconductor is normally conducted with a very simple circuit by switching on the abnormal current detection result of the power system by the switch circuit and sending the high-frequency current from the high-frequency current source to the superconductor one-turn annular wire. It can be transferred to a state.

さらに、前記2次側超電導体線材は、液体分と固体分とが混在したスラッシュ冷媒により超電導状態とすることで、例えば固体・液体・気体が共存するスラッシュ窒素、或いはスラッシュ・アルゴン、スラッシュ・ネオン、スラッシュ・水素などを用いると、例えばスラッシュ窒素では温度が約63kと液体窒素の77kに比べて低温となり、超電導体の臨界電流が液体窒素に比べて50%ほど増加する。超電導体に交流を流すと、あたかも有限な抵抗が存在するかのように超電導体にはヒステリシス損失が発生するが、流す電流が同じならばスラッシュ窒素冷却運転では交流損失を40%程度軽減できる。   Furthermore, the secondary superconductor wire is made in a superconducting state by a slush refrigerant in which a liquid component and a solid component are mixed so that, for example, slush nitrogen, slush / argon, slash / neon coexisting with solid / liquid / gas When slush, hydrogen, etc. are used, for example, slush nitrogen has a temperature of about 63 k, which is lower than that of liquid nitrogen of 77 k, and the critical current of the superconductor increases by about 50% compared to liquid nitrogen. When an alternating current is passed through the superconductor, hysteresis loss occurs in the superconductor as if a finite resistance exists. However, if the flowing current is the same, the AC loss can be reduced by about 40% in the slush nitrogen cooling operation.

そして、前記超電導体は、酸化物高温超電導体であり、前記超電導体は、YBaCuまたはBiSrCuであることが本発明の好適な実施形態である。 In the preferred embodiment of the present invention, the superconductor is an oxide high temperature superconductor, and the superconductor is YBa 2 Cu 3 O x or Bi 2 Sr 2 Cu 3 O x .

以上記載のごとく本発明になる変圧器型超電導限流器は、変圧器2次側の超電導体線材をワンターン環状線材としたことで、変圧器2次回路の環状電流に対してはそれぞれのワンターン環状線材が並列動作し、変圧器動作には影響を与えずに限流動作をおこなわせることができる。また、複数のワンターン環状線材をミアンダ構造として制御電流回路を接続し、変圧器2次側の超電導体線材を常電導状態に転移させる限流動作点を制御電流により自由に制御できるようにしたから、変圧器動作には影響を与えずに任意に2次側超電導体を常電導状態に転移させることができ、限流動作設定条件を自由に調整・制御できる。   As described above, the transformer-type superconducting fault current limiter according to the present invention uses a one-turn annular wire as the superconductor wire on the secondary side of the transformer. The annular wires operate in parallel, and the current limiting operation can be performed without affecting the transformer operation. In addition, since a plurality of one-turn annular wires have a meander structure and a control current circuit is connected, the current-limiting operating point for transitioning the superconductor wire on the secondary side of the transformer to the normal conducting state can be freely controlled by the control current. The secondary superconductor can be arbitrarily transferred to the normal conducting state without affecting the transformer operation, and the current limiting operation setting conditions can be freely adjusted and controlled.

さらに、変圧器2次側の超電導体線材の冷却に、液体分と固体分とが混在したスラッシュ冷媒を用いるようにしたことで、限流動作が行われた後に常電導状態から超電導状態に復帰させることも短時間で行うことができ、かつ、簡単、安価な構成で低温電気絶縁の問題をも回避した変圧器型超電導限流器を提供することができる。   In addition, by using a slush refrigerant mixed with liquid and solid components to cool the superconductor wire on the secondary side of the transformer, it returns from the normal conducting state to the superconducting state after the current-limiting operation is performed. It is possible to provide a transformer type superconducting fault current limiter that can be performed in a short time, and that avoids the problem of low-temperature electrical insulation with a simple and inexpensive configuration.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本発明になる変圧器型超電導限流器10の基本構成を示す図、図2は変圧器型超電導限流器10における、磁気ヨーク19に巻回したワンターン環状線材(以下、ワンターンコイルと略称する)13の概念を説明するための図で、(A)は各ワンターンコイル13における電流の流れを説明する便宜上、各ワンターンコイル13をずらして上面から見た図、(B)は同じく電流の流れを説明するためワンターンコイルを斜めから見た図、図3は変圧器型超電導限流器10における、超電導体ワンターンコイル13を常伝導状態に転移させる制御電流回路16の例のブロック図であり、(A)は高周波電流回路で構成した場合、(B)はコンデンサ放電方式で構成した場合である。   FIG. 1 is a diagram showing a basic configuration of a transformer type superconducting fault current limiter 10 according to the present invention. FIG. 2 is a one-turn annular wire (hereinafter referred to as one turn) wound around a magnetic yoke 19 in the transformer type superconducting fault current limiter 10. (A) is a diagram for explaining the concept of (13), (A) is a view of each one-turn coil 13 as viewed from the top, for convenience of explanation of the current flow in each one-turn coil 13, (B) is FIG. 3 is an oblique view of the one-turn coil for explaining the current flow. FIG. 3 is a block diagram of an example of the control current circuit 16 in the transformer type superconducting fault current limiter 10 for transferring the superconductor one-turn coil 13 to the normal state. FIG. 4A shows a case where a high frequency current circuit is used, and FIG. 5B shows a case where a capacitor discharge method is used.

図中、10は本発明になる変圧器型超電導限流器、11は磁気ヨーク19に巻回された2次側ワンターンコイル13を超電導状態におくため、例えばスラッシュ窒素、スラッシュ・アルゴン、スラッシュ・ネオン、スラッシュ・水素などの液体分と固体分とが混在したスラッシュ冷媒12を用いて冷却するクライオスタット、14は変圧器1次側に接続される電力系統、16は本発明になる変圧器型超電導限流器10における2次側ワンターンコイル13を常電導状態に強制転移させるための制御電流回路、17、18はその制御電流の配線である。   In the figure, 10 is a transformer type superconducting fault current limiter according to the present invention, 11 is a secondary side one-turn coil 13 wound around a magnetic yoke 19, and is placed in a superconducting state, for example, slush nitrogen, slash argon, slash A cryostat that cools using a slush refrigerant 12 in which a liquid component such as neon, slush and hydrogen and a solid component are mixed, 14 is an electric power system connected to the primary side of the transformer, and 16 is a transformer type superconductivity according to the present invention. Control current circuits 17 and 18 for forcibly transferring the secondary one-turn coil 13 in the current limiter 10 to the normal conducting state are wirings for the control current.

本発明になる変圧器型超電導限流器は、変圧器を構成する磁気ヨーク19における1次側巻線コイル15に電力系統14が接続され、2次側(低電圧側)には図2に示したように、例えばYBaCu超電導体のテープ線材(Y系超電導テープ線材)や、BiSrCaCuのテープ線材(Bi系超電導テープ線材)等の高温超電導体、あるいは薄膜高温超電導体で作られた複数のワンターンコイル13、13、13、……13等が巻回されて、制御電流回路16が直列に接続されている。 In the transformer type superconducting fault current limiter according to the present invention, the power system 14 is connected to the primary winding coil 15 in the magnetic yoke 19 constituting the transformer, and the secondary side (low voltage side) is shown in FIG. As shown, high-temperature superconductivity such as YBa 2 Cu 3 O 7 superconductor tape wire (Y-based superconducting tape wire) and Bi 2 Sr 2 Ca 2 Cu 3 O x tape wire (Bi-based superconducting tape wire). A plurality of one- turn coils 13 1 , 13 2 , 13 3 ,... 13 n made of a body or a thin film high-temperature superconductor are wound, and a control current circuit 16 is connected in series.

変圧器2次側(低電圧側)の複数のワンターンコイル13、13、13、……13は、各ワンターンコイル13をずらして上面から見た図2(A)、及びワンターンコイル13を斜めから見た図2(B)からわかるように、例えばワンターンコイル13における制御電流回路16への接続点17と隣り合うワンターンコイル13への配線13a、この配線13aと次のワンターンコイル13への配線13b、……がそれぞれ互い違いに略180度ずれた位置、すなわち接続点17から接続点13aまでの左右の距離、配線13aと配線13bまでの左右の距離、……がそれぞれ略等距離となるようにしてミアンダ構造に接続されている。 A plurality of one-turn coils 13 1 , 13 2 , 13 3 ,... 13 n on the secondary side (low-voltage side) of the transformer are shown in FIG. 13 as can be seen from Figure 2 viewed from oblique (B), for example one-turn coil 13 1 of the control current lines 13a to the one-turn coil 13 2 adjacent to the connection point 17 to the circuit 16, the wiring 13a and the next Wantan wire 13b of the coil 13 3, ... are shifted alternately approximately 180 degrees each position, i.e. the distance between the left and right from the connection point 17 to the connection point 13a, the distance between the left and right wiring 13a to the wire 13b, ..., respectively It is connected to the meander structure so as to be substantially equidistant.

そのため、制御電流回路16から配線17でワンターンコイル13に送り込まれた電流は、ワンターンコイル13の入力端17から左右両側に分かれて配線13aに向け、矢印30で示した経路で流れて次のワンターンコイル13でも、同じく左右両側に分かれて配線13bに向けて矢印30で示した経路で……、という具合に、それぞれのワンターンコイル13、13、13、……13を左右半周ずつ流れ、配線18から制御電流回路16に戻るようになっている。 Therefore, the current fed from the control current circuit 16 to the one-turn coil 13 1 wiring 17 toward the wiring 13a from the one-turn coil 13 of the input terminal 17 is divided into right and left sides, and flows through a path indicated by arrow 30 1 following one turn even coil 13 2, like ... a path indicated by arrow 30 2 toward the wiring 13b is divided into left and right sides, so on, each one-turn coil 13 1, 13 2, 13 3, ... 13 n flows through the left and right halves, and returns from the wiring 18 to the control current circuit 16.

そのため、このワンターンコイル13、13、13、……13は変圧器の2次巻線としては、図2(B)に31で示した1次側の電流により誘起される環状電流に対し、それぞれのワンターンコイル13、13、13、……13が並列動作するために変圧器動作には影響を与えず、ワンターンコイル13を構成する超電導体を、制御電流回路16から送られる小さな制御電流で超電導状態から常電導状態へ転移させることができる。 Therefore, the one- turn coils 13 1 , 13 2 , 13 3 ,... 13 n are annular currents induced by the primary current indicated by 31 in FIG. On the other hand, since each one-turn coil 13 1 , 13 2 , 13 3 ,... 13 n operates in parallel, the transformer operation is not affected, and the superconductor constituting the one-turn coil 13 is connected to the control current circuit 16. It is possible to transition from the superconducting state to the normal conducting state with a small control current sent from the.

いま、変圧器型超電導限流器10における磁気ヨーク19で構成される変圧器を理想変圧器とし、1次側巻線コイル15の1次側自己インダクタンスをL、導体抵抗をr、2次側ワンターンコイル13の2次側自己インダクタンスをL、ワンターンコイル13の常電導時における抵抗をRx、L、Lの相互インダクタンスをM、磁気結合係数をk、1次、2次側の電流をそれぞれI、I、1次側電源電圧をE、電源周波数をωとすると、次の(1)式が成立する。

Figure 0005039985
Now, the transformer composed of the magnetic yoke 19 in the transformer type superconducting fault current limiter 10 is an ideal transformer, and the primary self-inductance of the primary winding coil 15 is L 1 , and the conductor resistance is r 1 , 2 The secondary side self-inductance of the secondary one-turn coil 13 is L 2 , the resistance of the one- turn coil 13 during normal conduction is Rx, the mutual inductance of L 1 and L 2 is M, the magnetic coupling coefficient is k, the primary and secondary sides Where I 1 and I 2 are the primary power supply voltage, E 0 is the primary power supply voltage, and ω is the power supply frequency.
Figure 0005039985

ここでdI/dt=jωIと置き換えて上記(1)式を解くと、1次側のインピーダンスZは下記(2)式で求めることができる。

Figure 0005039985
仮に1次と2次の磁気結合が100%(k=1)であれば、この(2)式はさらに簡単に下記(3)式となる。
Figure 0005039985
If the above equation (1) is solved by substituting dI / dt = jωI, the primary-side impedance Z 1 can be obtained by the following equation (2).
Figure 0005039985
If the primary and secondary magnetic couplings are 100% (k = 1), this equation (2) can be further simply expressed by the following equation (3).
Figure 0005039985

ここで2次側が超電導状態であれば、Rx=0なのでZ=rとなる。一般的にrは充分小さいので無視するとZ≒0となり、1次側に電圧降下は生じない。しかし、2次側の超電導ワンターンコイル超電導状態から常導電状態に転移し、Rx≠0となると(3)式のインピーダンスが出現し、1次側にΔV=Z・Iの電圧降下が生じて故障電流を抑制する。 Here, if the secondary side is in a superconducting state, since Rx = 0, Z 1 = r 1 . In general, r 1 is sufficiently small so that if ignored, Z 1 ≈0 and no voltage drop occurs on the primary side. However, when the secondary side superconducting one-turn coil transitions from the superconducting state to the normal conducting state and Rx ≠ 0, the impedance of equation (3) appears, and a voltage drop of ΔV = Z 1 · I 1 occurs on the primary side. Suppress the fault current.

また、本発明になる変圧器型超電導限流器10は、2次側ワンターンコイル13を超電導状態にするためのクライオスタット11の冷却に、液体分と固体分とが混在したスラッシュ冷媒12、例えばスラッシュ窒素、或いはスラッシュ・アルゴン、スラッシュ・ネオン、スラッシュ・水素などを用いる。このうち通常の液体窒素は77kであるが、このように液体分と固体分とが混在したスラッシュ窒素では3重点状態の63kの液体であり、例えば横軸にエントロピー、縦軸に温度(単位:k)を示した図4のように、固体領域の点aから液体領域の点bまでの融解熱と、蒸発点hと液化点hとの(h−h)の過冷却エンタルピー量、更にTΔSの蒸発潜熱の全てが使えるので、大きな冷却能力を有している。 Further, the transformer type superconducting fault current limiter 10 according to the present invention is a slush refrigerant 12 in which a liquid component and a solid component are mixed to cool the cryostat 11 for bringing the secondary one-turn coil 13 into a superconducting state. Use nitrogen, slash / argon, slash / neon, slash / hydrogen, etc. Of these, normal liquid nitrogen is 77k, but slush nitrogen in which liquid and solid are mixed in this way is a 63k liquid in a triple point state. For example, the horizontal axis represents entropy and the vertical axis represents temperature (unit: As shown in FIG. 4 showing k), the heat of fusion from the point a in the solid region to the point b in the liquid region, and the supercooling enthalpy of (h c −h b ) between the evaporation point h c and the liquefaction point h b Since it can use all of the amount of latent heat of vaporization, and further TΔS, it has a large cooling capacity.

変圧器型超電導限流器10では、2次側の超電導体に常に交流電流が流れるが、超電導体に交流を流すと、あたかも有限な抵抗が存在するかのように超電導体にはヒステリシス損失が発生する。このヒステリシス損失は交流損失とも呼ばれ、δを超電導体の厚み、Iを最大電流値、交流損失をPac、臨界電流値をJc、周波数をfとすると、交流損失をPacは下記(4)式で表すことができる。

Figure 0005039985
In the transformer type superconducting fault current limiter 10, an alternating current always flows through the secondary superconductor. However, when alternating current flows through the superconductor, the superconductor has a hysteresis loss as if a finite resistance exists. appear. The hysteresis loss is also known as AC loss, the superconductor having a thickness of [delta], the maximum current value I m, Pac AC loss, the critical current value Jc, when the frequency is f, Pac AC loss below (4) It can be expressed by a formula.
Figure 0005039985

この(4)式から、交流損失Pacは周波数fと最大電流Iの3乗に比例し、臨界電流値Jcに反比例することがわかるが、上記したようにスラッシュ窒素は63kと液体窒素の77kに比べて低温なので、横軸に臨界電流密度(単位:A/cm)、縦軸に温度(単位:k)を取り、例えばYBaCu薄膜高温超電導体の臨界電流を示した図5に示すように、臨界電流密度が50%ほど増加し、これは電流Iが同じならば、スラッシュ窒素冷却運転で交流損失を40%程度軽減できることを意味する。 From equation (4), AC loss Pac is proportional to the third power of the frequency f and the maximum current I m, but understood to be inversely proportional to the critical current value Jc, slush nitrogen as described above 63k and liquid nitrogen 77k The critical current density (unit: A / cm 2 ) is taken on the horizontal axis and the temperature (unit: k) is taken on the vertical axis, and the critical current of, for example, YBa 2 Cu 3 O 7 thin film high-temperature superconductor is shown. As shown in FIG. 5, the critical current density increases by about 50%, which means that if the current Im is the same, the AC loss can be reduced by about 40% by the slush nitrogen cooling operation.

しかし逆に、スラッシュ冷媒12を用いて超電導体状態を常伝導状態に転移するための臨界電流値が大きくなると、限流動作を開始するためにそれだけ大きな故障電流が必要となる。そのため本発明の変圧器型超電導限流器10では、故障電流を検出してこの検出信号から超電導ワンターンコイル13を常電導状態に転位させ、限流動作を開始させる制御電流回路16を用いて限流器の動作設定条件を自由に調整できるようにした。   On the contrary, if the critical current value for transferring the superconductor state to the normal state using the slush refrigerant 12 becomes large, a large fault current is required to start the current limiting operation. Therefore, in the transformer type superconducting fault current limiter 10 of the present invention, the fault current is detected, the superconducting one-turn coil 13 is shifted to the normal conducting state from this detection signal, and the control current circuit 16 is used to start the current limiting operation. The operation setting conditions of the fluency can be adjusted freely.

その回路例が図3であり、(A)はこの制御電流回路16を高周波電流回路で構成した場合、(B)はコンデンサ放電方式で構成した場合である。まず図3(A)において、13は図1、図2に示した2次側ワンターンコイル、14は電力系統からの電流、40は高周波電源、41は例えばサイリスタなどのスイッチングデバイス、42は電力系統の過電流検出器、43は高周波トランス、44はコンデンサ、LH1、LH2は高周波トランス43の1次側、2次側のインピーダンスであり、2次側超電導ワンターンコイル13は、その抵抗をRとしたとき、高周波トランス43における2次側のインピーダンスLH2とCを高周波電源40の周波数に共振させるように設定する。 An example of the circuit is shown in FIG. 3, where (A) shows a case where the control current circuit 16 is constituted by a high-frequency current circuit, and (B) shows a case where it is constituted by a capacitor discharge system. First, in FIG. 3A, 13 is the secondary one-turn coil shown in FIGS. 1 and 2, 14 is a current from the power system, 40 is a high frequency power supply, 41 is a switching device such as a thyristor, and 42 is a power system. Overcurrent detector, 43 is a high frequency transformer, 44 is a capacitor, L H1 and L H2 are impedances on the primary side and secondary side of the high frequency transformer 43, and the secondary superconducting one-turn coil 13 has its resistance R Then, the secondary side impedances L H2 and C in the high frequency transformer 43 are set to resonate with the frequency of the high frequency power supply 40.

今、電力系統からの電流14が異常電流となり、それを電力系統の過電流検出器42が検出するとスイッチングデバイス41がONとなり、高周波電源40からの高周波が高周波トランス43を介してコンデンサ44、本発明の変圧器型超電導限流器10におけるミアンダ構造に直列接続された2次側ワンターンコイル13に印加される。   Now, when the current 14 from the power system becomes an abnormal current and is detected by the overcurrent detector 42 of the power system, the switching device 41 is turned on, and the high frequency from the high frequency power supply 40 is passed through the high frequency transformer 43 to the capacitor 44, It is applied to the secondary one-turn coil 13 connected in series to the meander structure in the transformer type superconducting fault current limiter 10 of the invention.

すると前記(4)式に示したように、高周波電源40からの高周波の周波数fと最大電流Iの3乗に比例し、臨界電流値Jcに反比例した交流損失Pacが発生し、その熱によってワンターンコイル13は瞬時に常伝導状態に転移し、1次側に前記(3)式によるインピーダンスZが出現してΔV=Z・Iの電圧降下が生じ、故障電流が抑制される。 Then, as shown in the equation (4), is proportional to the cube of the high frequency of f and the maximum current I m from the high frequency power source 40, AC loss Pac is generated in inverse proportion to the critical current value Jc, by the heat The one-turn coil 13 instantaneously shifts to a normal conduction state, and the impedance Z 1 according to the equation (3) appears on the primary side, a voltage drop of ΔV = Z 1 · I 1 occurs, and the fault current is suppressed.

一方、図3(B)のコンデンサ放電方式は、45がDC電源、46が充電抵抗、47がコンデンサ、48が例えばサイリスタなどのスイッチングデバイス、49は電力系統14の過電流検出器、50は電流制限抵抗であり、DC電源45の電圧をE、コンデンサ47の容量をC、蓄えられた電荷をQ、電流制限抵抗50の抵抗値をRとすると、ワンターンコイル13に流れる電流i(t)は、Q=C×Eなので下記(5)式になる。
i(t)=(E/R)exp(−t/CR) …………………(5)
そのため、超電導ワンターンコイル13に流れる臨界電流をIとしたとき、(E/R)>2Iとなるように電流制限抵抗50Rを設定すると、超電導ワンターンコイル13は超電導状態から常伝導状態となる。
On the other hand, in the capacitor discharge method of FIG. 3B, 45 is a DC power source, 46 is a charging resistor, 47 is a capacitor, 48 is a switching device such as a thyristor, 49 is an overcurrent detector of the power system 14, and 50 is a current. A limiting resistor, where the voltage of the DC power source 45 is E 0 , the capacitance of the capacitor 47 is C, the stored charge is Q, and the resistance value of the current limiting resistor 50 is R 0 , the current i (t that flows through the one-turn coil 13 ) will Q = C × E 0, so the following equation (5).
i (t) = (E 0 / R 0 ) exp (−t / CR 0 ) (5)
Therefore, when the current limiting resistance 50R 0 is set so that (E 0 / R 0 )> 2I c when the critical current flowing in the superconducting one-turn coil 13 is I c , the superconducting one-turn coil 13 becomes normal conducting from the superconducting state. It becomes a state.

いま、電力系統からの電流14が異常電流となってそれを電力系統の過電流検出器49が検出すると、スイッチングデバイス48がONとなってコンデンサ47から電流制限抵抗50を通り、本発明の変圧器型超電導限流器10におけるミアンダ構造に直列接続された2次側ワンターンコイル13に印加される。このとき、電流制限抵抗50Rが上記のように設定されていると、超電導ワンターンコイル13は超電導状態から常伝導状態となり、1次側に前記(3)式によるインピーダンスZが出現してΔV=Z・Iの電圧降下が生じ、故障電流が抑制される。 Now, when the current 14 from the power system becomes an abnormal current and is detected by the overcurrent detector 49 of the power system, the switching device 48 is turned on and passes through the current limiting resistor 50 from the capacitor 47 and is transformed. Applied to the secondary one-turn coil 13 connected in series to the meander structure in the superconducting current limiting device 10. At this time, the current limiting resistor 50R 0 is set as described above, a superconducting one-turn coil 13 becomes normal state from the superconducting state, the impedance Z 1 by the equation (3) to the primary side appeared ΔV = Z 1 · I 1 voltage drop occurs, and the fault current is suppressed.

次に、本発明になる変圧器型超電導限流器10を、66kV、100Aの限流器に適用した場合の具体例構成イメージにつき、図6乃至図8を用いて説明する。図6は、本発明の変圧器型超電導限流器10を、66kV、100Aの限流器に適用した場合の具体例構成イメージ図であり、図7は図6に示した本発明になる変圧器型超電導限流器10を用いた試験回路例、図8は本発明になる変圧器型超電導限流器10の動作シミュレーション結果の波形を示した図で、(A)は実線が限流器ありの場合、破線が限流器なしの場合、(B)は制御電流回路16を用いた限流動作シミューレーションで、実線が限流器ありの場合、破線が限流器なしの場合、図9はBiSrCaCuのテープ線材の交流損失を示したグラフである。 Next, a specific example configuration image when the transformer type superconducting current limiting device 10 according to the present invention is applied to a 66 kV, 100 A current limiting device will be described with reference to FIGS. 6 to 8. FIG. 6 is a schematic diagram of an example configuration when the transformer type superconducting fault current limiter 10 of the present invention is applied to a 66 kV, 100 A current limiter, and FIG. 7 is a transformer according to the present invention shown in FIG. FIG. 8 is a diagram showing a waveform of an operation simulation result of the transformer type superconducting fault current limiter 10 according to the present invention. FIG. 8A is a solid line with a current limiter. , The broken line is without a current limiter, (B) is a current limiting operation simulation using the control current circuit 16, the solid line is with a current limiter, the broken line is with no current limiter, 9 is a graph showing the AC loss of the Bi 2 Sr 2 Ca 2 Cu 3 O x tape wire.

まず図6において60は磁気ヨーク、61は1次側高電圧コイル、62は空隙、63は図1に13で示した2次側ワンターンコイルを冷却するためのクライオスタット、64は降圧ブッシングであり、磁気ヨーク60の小直径を例えば60として示したように0.8mとし、高さを4.8m、1次側と2次側の中心間隔を3.6mとする。 First, in FIG. 6, 60 is a magnetic yoke, 61 is a primary high voltage coil, 62 is a gap, 63 is a cryostat for cooling the secondary one-turn coil shown by 13 in FIG. 1, and 64 is a step-down bushing. and 0.8m as shown small diameter of the magnetic yoke 60, for example, as 60 1, the height 4.8 m, the center distance of the primary and secondary sides and 3.6 m.

前記したように電圧階級を基幹系の66kV、電流を100Aとし、限流器10用の変圧器に磁気ヨーク60を使って鉄損や励磁電流が十分小さく理想変圧器を実現できると仮定すると、限流器10として動作させるために変圧器1次側に高圧線導体でN=400ターンのコイルを巻き、2次側の超電導のワンターンコイル13として、市販の4mm幅のYBaCuテープ線材(以後、Y系テープ線材と略称する)を使う。 As described above, assuming that the voltage class is 66 kV of the basic system, the current is 100 A, and the magnetic yoke 60 is used for the transformer for the current limiter 10, the iron loss and the exciting current are sufficiently small, and an ideal transformer can be realized. In order to operate as the current limiting device 10, a coil of N 1 = 400 turns is wound around the primary side of the transformer with a high-voltage line conductor, and a commercially available 4 mm wide YBa 2 Cu 3 O is formed as a secondary superconducting one -turn coil 13. 7 tape wire (hereinafter abbreviated as Y tape wire) is used.

磁性体である磁気ヨーク60の非透磁率μsを1000とし、最大飽和磁束値を1.5Tとすると、1次側インダクタンスLは1.97(H)、2次側インダクタンスLは12.3(μH)、100%の磁気結合は非現実的なので95%とすると、相互インダクタンスMは46.8(mH)となる。変圧器2次側の巻き数Nはワンターンであるから1であり、1次側の電流をI(上記の場合100A×21/2(A))とし、2次側超電導ワンターンコイル13の冷却にスラッシュ冷媒の1つであるスラッシュ窒素を用いるとすると、変圧器の基本特性N=Nから、変圧器2次側の電流Iは下記(6)式で表される。
≒6×10(A) ………………(6)
When the magnetic permeability 60 of the magnetic yoke 60 that is a magnetic material is 1000 and the maximum saturation magnetic flux value is 1.5 T, the primary inductance L 1 is 1.97 (H), and the secondary inductance L 2 is 12.2. 3 (μH), 100% magnetic coupling is unrealistic, so if it is 95%, the mutual inductance M is 46.8 (mH). The number of turns N 2 on the secondary side of the transformer is 1 because it is one turn, and the primary side current is I 1 (100 A × 2 1/2 (A) in the above case), and the secondary side superconducting one-turn coil 13. If slush nitrogen, which is one of the slush refrigerants, is used for cooling of the transformer, the current I 2 on the secondary side of the transformer is expressed by the following equation (6) from the basic characteristic N 1 I 1 = N 2 I 2 of the transformer. Is done.
I 2 ≈6 × 10 4 (A) (6)

そのワンターンコイル13に流れる臨界電流Iが80(A)とすると、このI値と(6)式とから、変圧器型超電導限流器10として機能させるには、
6×10/80=750(本)
のY系テープ線材が必要になり、2次側巻線の全幅はテープ線材幅が4mmなので750×0.004=3.0(m)となる。このようなY系テープ線材を納めるクライオスタットの高さは、図6に具体的に数値を示したように3.2mとなり、ヨーク60の小直径は前記したように0.8mであるから、クライオスタットの断熱材厚みを考慮してワンターンコイルの直径は0.85m、1周長が2.67mで750本なので全長約2000mのY系テープ線材が必要となる。
Assuming that the critical current I c flowing through the one-turn coil 13 is 80 (A), from this I c value and the equation (6), in order to function as the transformer type superconducting current limiter 10,
6 × 10 4/80 = 750 ( the)
Y-type tape wire is required, and the total width of the secondary winding is 750 × 0.004 = 3.0 (m) because the tape wire width is 4 mm. The height of the cryostat that accommodates such a Y-based tape wire is 3.2 m as specifically shown in FIG. 6, and the small diameter of the yoke 60 is 0.8 m as described above. Considering the thickness of the heat insulating material, the diameter of the one-turn coil is 0.85 m, the circumference is 2.67 m and 750, so a Y-type tape wire with a total length of about 2000 m is required.

図7は図6に示した変圧器型超電導限流器10を用いた限流器試験回路例であり、図中、70は電力系統の過電流検出器、71は負荷抵抗(一例として700Ω)、72は限流器10に限流動作を行わせるためのスイッチングデバイス、73は負荷抵抗(一例として100Ω)、74は電流計(CT)である。   FIG. 7 shows an example of a current limiter test circuit using the transformer type superconducting current limiter 10 shown in FIG. 6, in which 70 is an overcurrent detector of the power system, and 71 is a load resistance (700Ω as an example). , 72 is a switching device for causing the current limiter 10 to perform a current limiting operation, 73 is a load resistance (100Ω as an example), and 74 is an ammeter (CT).

この図7に示した試験回路において、通常は72で示したスイッチングデバイスが開いているため、66kVの入力電圧は限流器10、電流計(CT)74から71、73で示した負荷抵抗(700+100Ω)を通る。この状態で時刻t=0.5secにおいて、スイッチングデバイス72を閉じて電流が負荷抵抗71(700Ω)を通らないようにして、負荷抵抗が73の100Ωのみに変化した時のシミュレーション結果を示したのが図8(A)である。   In the test circuit shown in FIG. 7, since the switching device indicated by 72 is normally open, the input voltage of 66 kV is the load resistance indicated by the current limiter 10 and the ammeters (CT) 74 to 71, 73. 700 + 100Ω). In this state, at time t = 0.5 sec, the switching device 72 is closed so that the current does not pass through the load resistance 71 (700Ω), and the simulation result when the load resistance is changed to only 100Ω of 73 is shown. Is FIG. 8 (A).

この図8(A)において横軸は時間(単位:sec)、縦軸は電流(単位:A)、実線は限流器10がある場合、破線は限流器がない場合であり、時刻t=0.5secまではピークが約116Aだった電流が、限流器無し(破線)では0.5secから1000Aを超す故障電流が流れるところ、限流器10がある場合(実線)はそれを400A程度に抑制している。この図8(A)に示した例は大きな事故を想定した場合であり、このような大電流事故では、制御系の動作には無関係に、変圧器型超電導限流器として動作している。   In FIG. 8A, the horizontal axis is time (unit: sec), the vertical axis is current (unit: A), the solid line is when the current limiter 10 is present, the broken line is when there is no current limiter, and the time t = A peak current of about 116 A until 0.5 sec. When there is no current limiter (broken line), a fault current exceeding 0.5 A flows from 0.5 sec to 1000 A. When the current limiter 10 is present (solid line), the current is 400 A. It is suppressed to the extent. The example shown in FIG. 8A is a case where a large accident is assumed, and in such a large current accident, it operates as a transformer type superconducting current limiter regardless of the operation of the control system.

また、図8(B)は、同じく時刻t=0.5secで負荷抵抗が800Ωから600Ωに変化した場合のシミュレーション結果であり、この場合、2次側電流が超電導体の臨界電流値を超さないので変圧器型限流器としては動作せず、時刻t=0.6secで電力系統の過電流検出器70が、制御電流を2次側超電導体に送って強制的に常電導状態に転移させて限流動作させた場合である。   FIG. 8B shows the simulation result when the load resistance is changed from 800Ω to 600Ω at the same time t = 0.5 sec. In this case, the secondary current exceeds the critical current value of the superconductor. Therefore, it does not operate as a transformer type current limiter, and at time t = 0.6 sec, the overcurrent detector 70 of the power system sends a control current to the secondary superconductor to forcibly shift to the normal conducting state. In this case, the current limiting operation is performed.

この図8(B)も(A)の場合と同様、横軸は時間(単位:sec)、縦軸は電流(単位:A)、実線は限流器10がある場合、破線は限流器がない場合であり、時刻t=0.5secまではピークが約116Aだった電流が、限流器無し(破線)では0.5secから150Aを超す故障電流が流れるところ、過電流検出器70が制御電流を2次側超電導体に送り、強制的に常電導状態に転移させて限流動作させたことで約120A程度に抑制している。なお、実際の限流器では、0.1秒の時間遅れは発生しないが、この図8(B)では分かり易くするため時間遅れを設定してある。   In FIG. 8B as well as in FIG. 8A, the horizontal axis is time (unit: sec), the vertical axis is current (unit: A), the solid line is the current limiter 10, and the broken line is the current limiter. In the case where there is no fault current, a peak current of about 116 A until time t = 0.5 sec. When a fault current without a current limiter (broken line) flows from 0.5 sec to over 150 A, the overcurrent detector 70 The control current is sent to the secondary superconductor to forcibly shift to the normal conducting state and the current limiting operation is performed to suppress the current to about 120A. In the actual current limiter, a time delay of 0.1 seconds does not occur, but in FIG. 8B, a time delay is set for easy understanding.

このように、本発明になる変圧器型超電導限流器では、限流動作点を自由に設定・調整が可能であり、これまでの超電導限流器が抱える設定調整問題を完全に解決できる事になる。   Thus, in the transformer type superconducting fault current limiter according to the present invention, the current limiting operating point can be freely set and adjusted, and the setting adjustment problem of the conventional superconducting current limiter can be completely solved. become.

なお、前記したように限流器は、もともと遮断器が動作するまでの数サイクルの故障電流を抑制する電力機器であるが、動作時に発熱があるため再起動には冷却時間が必要である。特に、超電導体に高電圧を掛ける抵抗転位型限流器では、数サイクルの限流動作で超電導体は常温まで温度上昇し、万が一、遮断器が動作しない最悪の場合には超電導体は焼損する。温度上昇を抑えるため熱容量の大きな金属ブロックに熱を逃がす方法も考えられるが、電気絶縁上の問題から難しい。   As described above, the current limiter is originally a power device that suppresses a failure current of several cycles until the circuit breaker operates. However, since it generates heat during operation, a cooling time is required for restarting. In particular, in a resistance dislocation type fault current limiter that applies a high voltage to the superconductor, the temperature of the superconductor rises to room temperature with a few cycles of current limiting operation, and in the worst case when the breaker does not operate, the superconductor burns out. . In order to suppress the temperature rise, a method of releasing heat to a metal block having a large heat capacity can be considered, but it is difficult due to a problem in electrical insulation.

一方、本発明のような変圧器型超電導限流器は、例えば前記図6の構成の場合、4mm幅のテープ線材の抵抗が0.75Ωであるとして750本並列なので、全体抵抗はRn=1mΩとなる。冷却系には前記したように循環するスラッシュ窒素冷却システムを想定し、液体窒素の核沸騰現象から予測して、控えめに、β=1.0(W/cm・k)と仮定する。これより、超電導テープ線材の全表面積はS=2.67×3.=8(m)なので、熱伝達係数は、α=S×β=80000(W/k)となる。 On the other hand, the transformer type superconducting fault current limiter as in the present invention is parallel to 750 assuming that the resistance of a 4 mm-wide tape wire is 0.75Ω, for example, in the case of the configuration shown in FIG. 6, the total resistance is Rn = 1 mΩ. It becomes. As the cooling system, a slush nitrogen cooling system that circulates as described above is assumed, and β = 1.0 (W / cm 2 · k) is conservatively predicted from the nucleate boiling phenomenon of liquid nitrogen. Accordingly, the total surface area of the superconducting tape wire is S = 2.67 × 3. Since = 8 (m 2 ), the heat transfer coefficient is α = S × β = 80000 (W / k).

常電導転移時の発熱量は、Q=Rn×I =Rn×(Nなので、図8(A)の場合はQ=0.001×(400×100)=1.6×10(W)[電流のピーク値を使っているので、実際の発熱はこれより小さい]となる。T→∞の温度上昇はΔT=Q/αなので、図8(B)の場合、ΔT=20(k)となる。スラッシュ窒素温度が63kなので、限流動作してもテープ線材は83k程度の温度上昇に収まり、臨界温度以下である。つまり限流器10は、過大電流の原因が除去されると瞬時に再起動することができる。 The calorific value at the normal conduction transition is Q = Rn × I 2 2 = Rn × (N 1 I 1 ) 2, so in the case of FIG. 8A, Q = 0.001 × (400 × 100) 2 = 1. 6 × 10 6 (W) [Because the peak value of the current is used, the actual heat generation is smaller than this]. Since the temperature rise from T → ∞ is ΔT = Q / α, in the case of FIG. 8B, ΔT = 20 (k). Since the slush nitrogen temperature is 63 k, the tape wire stays within a temperature rise of about 83 k even if the current limiting operation is performed, and is below the critical temperature. That is, the current limiter 10 can be restarted instantly when the cause of the excessive current is removed.

また、図8(A)のような重故障の場合、I=360Aなので、T→∞でΔT=260(k)となり、常温まで上昇するが焼損する事は無い。つまり遮断器が動作しない最悪の場合であっても、再冷却すれば限流器は再起動できる事になる。一般的に変圧器型の限流器は、抵抗転位型限流器に比べて動作時の温度上昇が小さいが、その理由は同じ限流特性を実現する上で、変圧器型限流器が多くの超電導テープ線材量を必要とするためであり、その結果、冷却表面積が増大して温度上昇が小さくなる。 In the case of a serious failure as shown in FIG. 8A, since I 1 = 360 A, ΔT = 260 (k) from T → ∞, and the temperature rises to room temperature, but does not burn out. In other words, even in the worst case where the circuit breaker does not operate, the current limiting device can be restarted by recooling. Generally, a transformer type current limiter has a smaller temperature rise during operation than a resistance shift type current limiter. The reason for this is that the transformer type current limiter This is because a large amount of the superconducting tape wire is required. As a result, the cooling surface area is increased and the temperature rise is reduced.

最後に前記図6に示した、高電圧66kV、100A級の変圧器型超電導限流器を実際に作製した場合に必要な冷凍機のパワーについて検討する。前記図6に示した変圧器型超電導限流器の場合、熱負荷は外部(常温)からの熱侵入、超電導体の交流損失、電気絶縁材料からの誘電体損失等になる。前記図6に示した変圧器型超電導限流器の場合、超電導体は低電圧動作なので誘電体損失を無視出来る。   Finally, the power of the refrigerator necessary for actually producing the high voltage 66 kV, 100 A class transformer type superconducting fault current limiter shown in FIG. 6 will be discussed. In the case of the transformer type superconducting fault current limiter shown in FIG. 6, the heat load is heat penetration from the outside (at room temperature), AC loss of the superconductor, dielectric loss from the electrically insulating material, and the like. In the case of the transformer type superconducting fault current limiter shown in FIG. 6, the dielectric loss can be ignored because the superconductor operates at a low voltage.

超電導体の交流損失に関しては、臨界電流密度が大きいY系線材を使う場合、Bi線材より小さいと考えられるが、仮にBi線材と同程度とすると、横軸に電流、縦軸に交流損失を取って1cm幅のBiテープ線材の交流損失特性を示した図9のグラフから、電流80Aであれば〜10−3(W/m)程度となる。また、テープ線材の総延長は2000m強なので、図6に示した提案変圧器型超電導限流器の交流損失は数W程度となる。 Regarding the AC loss of the superconductor, when using a Y-based wire with a large critical current density, it is considered to be smaller than the Bi wire. From the graph of FIG. 9 showing the AC loss characteristics of the Bi tape wire having a width of 1 cm, the current is about −3 −3 (W / m) when the current is 80 A. Further, since the total length of the tape wire is slightly over 2000 m, the AC loss of the proposed transformer type superconducting fault current limiter shown in FIG.

一方、外部からの熱侵入に関しては、図6に示した変圧器型超電導限流器にはケーブルやマグネットのようなパワーリードが無いので、クライオスタットからの熱侵入のみとなるから、図6に示したクライオスタットが真空断熱構造であるとして、表面はマイラー・シートで遮熱されているとすると、マイラー・シートの熱輻射率を0.01とした場合、全表面積が約20mなので約50Wとなり、熱負荷の殆どは輻射による熱侵入になる。さらに、例えばスラッシュ窒素冷凍機のCOPを仮に0.05と仮定すると、1kWの動力となり、実際の電力系統は3相交流なので、3個の限流器が必要であるから冷凍機の総合所要動力は3kW程度になる。 On the other hand, regarding the heat intrusion from the outside, the transformer type superconducting fault current limiter shown in FIG. 6 has no power lead such as a cable or a magnet, so only the heat intrusion from the cryostat is shown in FIG. Assuming that the cryostat has a vacuum heat insulation structure, and the surface is shielded by a Mylar sheet, assuming that the thermal emissivity of the Mylar sheet is 0.01, the total surface area is about 20 m 2, so it is about 50 W. Most of the heat load is heat penetration due to radiation. Further, for example, assuming that the COP of the slush nitrogen refrigerator is 0.05, the power is 1 kW, and since the actual power system is a three-phase AC, three current limiters are required, so the total required power of the refrigerator Is about 3kW.

本発明によれば、簡単、安価な構成で限流動作設定条件を自由に調整・制御できる変圧器型超電導限流器を提供でき、自立型の地域電力ネットワークなどの限流器として用いることで、万一の事故で系統全体が不安定となって大規模な停電に繋がる、といったことを未然に防ぐことができる。   According to the present invention, it is possible to provide a transformer type superconducting current limiter that can freely adjust and control the current limiting operation setting conditions with a simple and inexpensive configuration, and can be used as a current limiting device such as a self-supporting local power network. In the unlikely event of an accident, the entire system becomes unstable, leading to a large-scale power outage.

本発明になる変圧器型超電導限流器10の基本構成を示す図である。It is a figure which shows the basic composition of the transformer type superconducting fault current limiter 10 which becomes this invention. 本発明になる変圧器型超電導限流器10における、磁気ヨーク19に巻回したワンターンコイル13の概念を説明するための図で、(A)は各ワンターンコイル13における電流の流れを説明する便宜上、各ワンターンコイル13をずらして上面から見た図、(B)は同じく電流の流れを説明するためワンターンコイルを斜めから見た図である。FIG. 2 is a diagram for explaining the concept of a one-turn coil 13 wound around a magnetic yoke 19 in the transformer type superconducting fault current limiter 10 according to the present invention. FIG. FIG. 5B is a view of the one-turn coils 13 as viewed from the upper side, and FIG. 5B is a view of the one-turn coils as viewed obliquely in order to explain the current flow. 本発明になる変圧器型超電導限流器10における、超電導体ワンターンコイル13を常伝導状態に転移させる制御電流回路16の例のブロック図であり、(A)は高周波電流回路で構成した場合、(B)はコンデンサ放電方式で構成した場合である。In the transformer type superconducting fault current limiter 10 according to the present invention, it is a block diagram of an example of a control current circuit 16 for transferring the superconductor one-turn coil 13 to the normal conduction state, (A) is configured by a high-frequency current circuit, (B) shows the case of the capacitor discharge method. 固液混合流体であるスラッシュ窒素の冷却能力を示したグラフである。It is the graph which showed the cooling capacity of slush nitrogen which is a solid-liquid mixed fluid. YBaCu薄膜超電導体の臨界電流の温度依存性を示したグラフである。YBa is a graph showing the temperature dependence of the critical current of 2 Cu 3 O 7 thin superconductor. 本発明の変圧器型超電導限流器を、66kV、100Aの限流器に適用した場合の具体例構成イメージ図である。It is an example configuration image figure at the time of applying the transformer type superconducting fault current limiter of the present invention to a 66 kV, 100A current limiter. 図6に示した本発明になる変圧器型超電導限流器を用いた試験回路例である。It is an example of a test circuit using the transformer type superconducting fault current limiter according to the present invention shown in FIG. 本発明になる変圧器型超電導限流器10の動作シミュレーション結果は系を示した図で、(A)は実線が限流器ありの場合、破線が限流器なしの場合、(B)は制御電流回路16による限流動作シミューレーションで、実線が限流器ありの場合、破線が限流器なしの場合である。The operation simulation result of the transformer type superconducting fault current limiter 10 according to the present invention is a diagram showing the system. (A) is when the solid line is with the current limiter, and when the broken line is without the current limiter, (B) is In the current limiting operation simulation by the control current circuit 16, the solid line indicates the case with a current limiter, and the broken line indicates the case without a current limiter. BiSrCaCuのテープ線材の交流損失を示したグラフである。It is a graph showing the AC loss of the tape wire of Bi 2 Sr 2 Ca 2 Cu 3 O x. 電力系統における、本発明の変圧器型超電導限流器を用いる位置を示すイメージを示す図である。It is a figure which shows the image which shows the position which uses the transformer type superconducting fault current limiter of this invention in an electric power system.

符号の説明Explanation of symbols

10 変圧器型超電導限流器
11 クライオスタット
12 スラッシュ窒素
13 2次側ワンターンコイル
14 電力系統へ
15 変圧器1次側巻線コイル
16 制御電流回路
17、18 制御電流配線
19 磁気ヨーク
DESCRIPTION OF SYMBOLS 10 Transformer type superconducting fault current limiter 11 Cryostat 12 Slash nitrogen 13 Secondary side one turn coil 14 To power system 15 Transformer primary side winding coil 16 Control current circuit 17, 18 Control current wiring 19 Magnetic yoke

Claims (7)

電力系統に接続された電力用導線で巻回された変圧器1次側と、超電導体線材が巻回された、超電導環境に置かれた変圧器2次側とからなり、前記1次側の異常電流による2次側超電導体線材の超電導状態から常電導状態への転移で生じた1次側インピーダンスで限流動作を行う、変圧器型超電導限流器において、
前記変圧器2次側の超電導体線材はワンターン環状線材とされて互い違いにミアンダ構造に複数巻回され、一のワンターン環状線材に隣接する他のワンターン環状線材との接続点から次のワンターン環状線材に対する接続点までの左右の距離が、略同距離となるようにされていることを特徴とする変圧器型超電導限流器。
A primary side of a transformer wound with a power conductor connected to the power system, and a secondary side of a transformer placed in a superconducting environment around which a superconductor wire is wound. In a transformer type superconducting fault current limiter that performs current limiting operation with the primary side impedance generated by the transition from the superconducting state to the normal conducting state of the secondary superconductor wire due to abnormal current,
The superconductor wire on the secondary side of the transformer is a one-turn annular wire, and is alternately wound around a meander structure, and the next one-turn annular wire from the connection point with another one-turn annular wire adjacent to the one-turn annular wire. A transformer-type superconducting fault current limiter, characterized in that the left and right distances to the connection point are substantially the same distance.
前記変圧器型超電導限流器は、前記電力系統の異常を検知して2次側超電導体を常電導状態に転移させる制御電流回路が、前記ミアンダ構造とした複数のワンターン環状線材に直列に接続されていることを特徴とする請求項1に記載した変圧器型超電導限流器。   In the transformer-type superconducting fault current limiter, a control current circuit that detects an abnormality in the power system and changes the secondary superconductor to a normal conducting state is connected in series to the plurality of one-turn annular wires having the meander structure. The transformer-type superconducting fault current limiter according to claim 1, wherein 前記制御電流回路は前記電力系統の異常を検知する異常電流検出器と、パルス電流供給源と、前記異常電流検出器による前記電力系統の異常電流検出結果によりONし、前記パルス電流供給源からのパルス電流を前記超電導体ワンターン環状線材に送るスイッチ回路とからなることを特徴とする請求項2に記載した変圧器型超電導限流器。   The control current circuit is turned ON according to an abnormal current detection result of the power system by the abnormal current detector, an abnormal current detector that detects an abnormality of the power system, a pulse current supply source, and the pulse current supply source. The transformer-type superconducting fault current limiter according to claim 2, comprising a switch circuit for sending a pulse current to the superconductor one-turn annular wire. 前記制御電流回路は前記電力系統の異常を検知する異常電流検出器と、高周波電流源と、前記異常電流検出器による前記電力系統の異常電流検出結果によりONし、前記高周波電流源からの高周波電流を前記超電導体ワンターン環状線材に送るスイッチ回路とからなることを特徴とする請求項2に記載した変圧器型超電導限流器。   The control current circuit is turned on by an abnormal current detector for detecting an abnormality in the power system, a high-frequency current source, and an abnormal current detection result of the power system by the abnormal current detector, and a high-frequency current from the high-frequency current source The transformer-type superconducting fault current limiter according to claim 2, comprising: a switch circuit that sends a current to the superconductor one-turn annular wire. 前記2次側超電導体線材は、液体分と固体分とが混在したスラッシュ冷媒により超電導状態とすることを特徴とする請求項1乃至4のいずれかに記載した変圧器型超電導限流器。   The transformer-type superconducting fault current limiter according to any one of claims 1 to 4, wherein the secondary superconductor wire is put in a superconducting state by a slush refrigerant in which a liquid component and a solid component are mixed. 前記超電導体は、酸化物高温超電導体であることを特徴とする請求項1乃至5のいずれかに記載した変圧器型超電導限流器。   6. The transformer type superconducting fault current limiter according to claim 1, wherein the superconductor is an oxide high temperature superconductor. 前記超電導体は、YBaCuまたはBiSrCuであることを特徴とする請求項6に記載した変圧器型超電導限流器。 The superconductor, YBa 2 Cu 3 O x or Bi 2 Sr 2 Cu 3 O x transformer superconducting fault current limiter of claim 6, characterized in that the.
JP2007271989A 2007-10-19 2007-10-19 Transformer type superconducting fault current limiter Active JP5039985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271989A JP5039985B2 (en) 2007-10-19 2007-10-19 Transformer type superconducting fault current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271989A JP5039985B2 (en) 2007-10-19 2007-10-19 Transformer type superconducting fault current limiter

Publications (2)

Publication Number Publication Date
JP2009100612A JP2009100612A (en) 2009-05-07
JP5039985B2 true JP5039985B2 (en) 2012-10-03

Family

ID=40703104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271989A Active JP5039985B2 (en) 2007-10-19 2007-10-19 Transformer type superconducting fault current limiter

Country Status (1)

Country Link
JP (1) JP5039985B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053664B1 (en) * 2009-09-30 2011-08-03 한국전력공사 Transformer protection device
DE102010007087A1 (en) * 2010-02-06 2011-08-11 Karlsruher Institut für Technologie, 76131 Device for current limiting with a variable coil impedance
KR101470965B1 (en) * 2013-08-30 2014-12-10 연세대학교 산학협력단 Reverse magnetization structure of dc reactor and reverse magnetization method using superconducting bulk thereof

Also Published As

Publication number Publication date
JP2009100612A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
Barzegar‐Bafrooei et al. On the advance of SFCL: a comprehensive review
JP4295189B2 (en) Superconducting resistance type current limiter
Gray et al. A superconducting fault‐current limiter
US7902461B2 (en) Fault current limiting HTS cable and method of configuring same
Chen et al. Current limiting characteristics of a novel flux-coupling type superconducting fault current limiter
US20080194411A1 (en) HTS Wire
EP0315976A2 (en) Superconducting current limiting apparatus
Kozak et al. Design and tests of coreless inductive superconducting fault current limiter
JP2007158292A (en) Resistive superconducting fault current limiter
US20020018327A1 (en) Multi-winding fault-current limiter coil with flux shaper and cooling for use in an electrical power transmission/distribution application
Kozak et al. Tests and performance analysis of coreless inductive HTS fault current limiters
JP5039985B2 (en) Transformer type superconducting fault current limiter
Sharma et al. Basic concepts of superconducting fault current limiter
Liang et al. Experimental test of two types of non-inductive solenoidal coils for superconducting fault current limiters use
Ganev et al. Fault current limiters–principles and application
JP5233011B2 (en) Superconducting fault current limiter
Meerovich et al. High-temperature superconducting fault current limiters (FCLs) for power grid applications
Tomioka et al. The short-circuit test results of 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer
Yilmaz et al. Shortening recovery time with bypass breaker for resistive superconductor fault current limiters
JPH09182285A (en) Superconductive current limiter
Mumford Superconducting fault current limiters
Dong Study of superconducting fault current limiters in power systems
Neumueller et al. Economically viable fault current limiters using YBCO coated conductors
Arndt Fault-Current Limiters
Garcia Plasencia Modelling of resistive type superconducting fault current limiter for multi-terminal HVDC systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5039985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250