JP2008159828A - Current lead, and superconducting device - Google Patents

Current lead, and superconducting device Download PDF

Info

Publication number
JP2008159828A
JP2008159828A JP2006346933A JP2006346933A JP2008159828A JP 2008159828 A JP2008159828 A JP 2008159828A JP 2006346933 A JP2006346933 A JP 2006346933A JP 2006346933 A JP2006346933 A JP 2006346933A JP 2008159828 A JP2008159828 A JP 2008159828A
Authority
JP
Japan
Prior art keywords
conductor
current lead
superconducting
insulation container
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006346933A
Other languages
Japanese (ja)
Inventor
Koichi Osemochi
光一 大勢持
Yusuke Ishii
祐介 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006346933A priority Critical patent/JP2008159828A/en
Publication of JP2008159828A publication Critical patent/JP2008159828A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evade a damage of an oxide superconducting material by difference of thermal shrinkage in a current lead using an oxide superconductor and a bypass conductor. <P>SOLUTION: The current lead has: a normal conduction current lead 1a which passes through a vacuum heat-insulating container 2 and is made of a fine conductive metal; an oxide superconductor 10 disposed in the vacuum heat-insulating container 2 for connecting the normal conduction current lead 1a with a superconducting apparatus 3; and a bypass conductor 20 disposed in the vacuum heat-insulating container 2 for connecting the normal conduction current lead 1a with the superconducting apparatus 3 electrically in parallel to the oxide superconductor 10. In the bypass conductor 20, a first conductor 21 made of a first metal material in which Young's modulus is relatively low and a coefficient of thermal conductivity and a conductivity are relatively high is mutually series-connected with a second conductor 22 made of a second metal material in which Young's modulus is relatively higher than the first metal material and the coefficient of thermal conductivity and the conductivity are relatively lower than that. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸化物超電導導体を用いた電流リードと、かかる電流リードを有する超電導装置に関するものである。   The present invention relates to a current lead using an oxide superconductor and a superconducting device having such a current lead.

超電導現象の最大の特徴は、臨界温度で超電導導体の電気抵抗がゼロになるため、通電しても熱が発生せず、そのため無損失で大電流を流すことができるということである。超電導電力貯蔵システムに使用される超電導マグネット装置は、この超電導現象を応用したその代表的な装置である。   The greatest feature of the superconducting phenomenon is that the electric resistance of the superconducting conductor becomes zero at the critical temperature, so that no heat is generated even when energized, so that a large current can flow without loss. A superconducting magnet device used in a superconducting power storage system is a typical device that applies this superconducting phenomenon.

従来の典型的な超電導マグネット装置においては、超電導マグネットがクライオスタットと称する真空断熱容器の熱シールド内に収納され、真空断熱容器に取り付けられた冷凍機で超電導マグネットを冷却する構成になっている。この超電導マグネット装置には、室温に設置された電源から極低温下に設置された超電導マグネットまで電流を供給する電流リードが必要である。電流リードは、良導電性金属からなる常電導電流リードと酸化物超電導体からなる超電導電流リードが接続されている。電流リードは冷凍機や冷却媒体により冷却される構造になっている。   In a typical conventional superconducting magnet device, a superconducting magnet is housed in a heat shield of a vacuum heat insulating container called a cryostat, and the superconducting magnet is cooled by a refrigerator attached to the vacuum heat insulating container. This superconducting magnet device requires a current lead for supplying a current from a power source installed at room temperature to a superconducting magnet installed at a very low temperature. The current lead is connected to a normal conductive current lead made of a highly conductive metal and a superconductive current lead made of an oxide superconductor. The current lead is structured to be cooled by a refrigerator or a cooling medium.

また、超電導電流リードにクエンチが発生したときに電流をバイパスさせて超電導電流リードを保護するために、超電導電流リードに並列にバイパス導体を接続する技術が、特許文献1、2などにより知られている。このバイパス導体の材質は熱伝導率の低いものが好ましく、ステンレス鋼などが好適とされている。
特開平8−321416号公報 特開平5−109531号公報
Also, Patent Documents 1 and 2 disclose a technique for connecting a bypass conductor in parallel to a superconducting current lead in order to bypass the current and protect the superconducting current lead when quenching occurs in the superconducting current lead. Yes. The material of the bypass conductor is preferably a material having low thermal conductivity, and stainless steel or the like is suitable.
JP-A-8-32416 Japanese Patent Laid-Open No. 5-109531

バイパス導体に用いられるステンレス鋼などの熱伝導率の低い材料は、一般に、ヤング率が比較的高いものが多い。このため、たとえば運転開始時における冷却に伴なう熱収縮の差によって酸化物超電導体に引っ張り荷重が生じ、酸化物超電導体が損傷する恐れがある。   In general, a material having a low thermal conductivity such as stainless steel used for the bypass conductor has a relatively high Young's modulus. For this reason, for example, a tensile load is generated in the oxide superconductor due to a difference in thermal contraction accompanying cooling at the start of operation, and the oxide superconductor may be damaged.

本発明は、上記の事情に鑑みてなされたもので、酸化物超電導材とバイパス導電体を用いた電流リードまたはこれを採用した超電導装置において、熱収縮の差による酸化物超電導材の損傷を回避することを目的とする。   The present invention has been made in view of the above circumstances, and avoids damage to an oxide superconductor due to a difference in thermal shrinkage in a current lead using an oxide superconductor and a bypass conductor or a superconducting device employing the current lead. The purpose is to do.

上記目的を達成するために、本発明に係る電流リードは、真空断熱容器内に収容され低温に冷却されて超電導状態に置かれる超電導機器と、前記真空断熱容器の外側の電源と、を接続し、前記真空断熱容器に対して電気的に絶縁された電流リードであって、前記真空断熱容器を貫通し良導電性金属からなる常電導電流リード部と、前記真空断熱容器内に配置されて前記常電導電流リード部と前記超電導機器とを接続する酸化物超電導導体と、前記真空断熱容器内に配置されて前記酸化物超電導導体に対して電気的に並列に前記常電導電流リード部と前記超電導機器とを接続するバイパス導電体と、を有し、前記バイパス導電体は、ヤング率が比較的低く熱伝導率および導電率が比較的高い第1の金属材料からなる第1の導電体部と、前記第1の金属材料に比べてヤング率が比較的高く熱伝導率および導電率が比較的低い第2の金属材料からなる第2の導電体部とが互いに直列に接続されていること、を特徴とする。   In order to achieve the above object, a current lead according to the present invention connects a superconducting device housed in a vacuum insulation container, cooled to a low temperature and placed in a superconducting state, and a power supply outside the vacuum insulation container. A current lead electrically insulated from the vacuum heat insulating container, the normal current conducting lead portion made of a good conductive metal penetrating the vacuum heat insulating container, and disposed in the vacuum heat insulating container An oxide superconducting conductor connecting the normal conducting current lead part and the superconducting device, and the normal conducting current lead part and the superconducting disposed in the vacuum heat insulating container and electrically parallel to the oxide superconducting conductor A bypass conductor for connecting to a device, wherein the bypass conductor includes a first conductor portion made of a first metal material having a relatively low Young's modulus and a relatively high thermal conductivity and conductivity. The first The second conductor portion Young's modulus as compared with the metal material has a relatively high thermal conductivity and the electrical conductivity of a relatively low second metallic material are connected in series with each other, and wherein.

また本発明に係る超電導装置は、低温に冷却されて超電導状態に置かれる超電導機器と、前記超電導機器を収容する真空断熱容器と、前記真空断熱容器の外側の電源と前記超電導機器とを接続し、前記真空断熱容器に対して電気的に絶縁された電流リードと、を有する超電導装置において、前記電流リードは、前記真空断熱容器を貫通し良導電性金属からなる常電導電流リード部と、前記真空断熱容器内に配置されて前記常電導電流リード部と前記超電導機器とを接続する酸化物超電導導体と、前記真空断熱容器内に配置されて前記酸化物超電導導体に対して電気的に並列に前記常電導電流リード部と前記超電導機器とを接続するバイパス導電体と、を有し、前記バイパス導電体は、ヤング率が比較的低く熱伝導率および導電率が比較的高い第1の金属材料からなる第1の導電体部と、前記第1の金属材料に比べてヤング率が比較的高く熱伝導率および導電率が比較的低い第2の金属材料からなる第2の導電体部とが互いに直列に接続されていること、を特徴とする。   Further, the superconducting device according to the present invention connects a superconducting device cooled to a low temperature and placed in a superconducting state, a vacuum heat insulating container containing the superconducting device, a power source outside the vacuum heat insulating container, and the superconducting device. A current lead electrically insulated from the vacuum heat insulating container, wherein the current lead penetrates the vacuum heat insulating container and is made of a normal conductive current lead portion made of a highly conductive metal; and An oxide superconducting conductor that is disposed in a vacuum heat insulating container and connects the normal conductive current lead portion and the superconducting device, and is disposed in the vacuum heat insulating container and is electrically parallel to the oxide superconducting conductor. A bypass conductor that connects the normal conductive current lead portion and the superconducting device, and the bypass conductor has a relatively low Young's modulus and a relatively high thermal conductivity and conductivity. A first conductor portion made of one metal material, and a second conductor made of a second metal material having a relatively high Young's modulus and a relatively low thermal conductivity and conductivity compared to the first metal material. The body part is connected to each other in series.

本発明によれば、酸化物超電導材とバイパス導電体を用いた電流リードまたはこれを採用した超電導装置において、熱収縮の差による酸化物超電導材の損傷を回避または抑制することができる。   According to the present invention, in a current lead using an oxide superconductor and a bypass conductor or a superconducting device employing the current lead, damage to the oxide superconductor due to a difference in thermal shrinkage can be avoided or suppressed.

以下に、本発明に係る超電導装置の実施形態について図面を参照しながら説明する。   Embodiments of a superconducting device according to the present invention will be described below with reference to the drawings.

図1は本発明の第1の実施形態に係る電流リードとその周辺を示す立面図である。この図に示すように、真空断熱容器2内に超電導機器(たとえば超電導マグネット)3が収容されている。超電導機器3に電流を供給するための電源30は真空断熱容器2の外に配置されている。電流導入端子8が、真空断熱容器2の上部を貫通して配置され、電流導入端子8を介して真空断熱容器2内の常電導電流リード1aと電源30が電気的に接続されている。常電導電流リード1aは良導電性金属からできている。常電導電流リード1aおよび電源30は、電流導入端子8で、真空断熱容器2に対しては電気的に絶縁されている。   FIG. 1 is an elevational view showing a current lead and its periphery according to a first embodiment of the present invention. As shown in this figure, a superconducting device (for example, a superconducting magnet) 3 is accommodated in a vacuum heat insulating container 2. A power supply 30 for supplying current to the superconducting device 3 is disposed outside the vacuum heat insulating container 2. A current introduction terminal 8 is disposed through the upper portion of the vacuum heat insulating container 2, and the normal conductive current lead 1 a in the vacuum heat insulation container 2 and the power supply 30 are electrically connected via the current introduction terminal 8. The normal conductive current lead 1a is made of a highly conductive metal. The normal conductive current lead 1 a and the power supply 30 are electrically insulated from the vacuum heat insulating container 2 by the current introduction terminal 8.

真空断熱容器2内で、常電導電流リード1aの下端が高温端側電極11aに接続されている。高温端側電極11aは、良導電性金属からできていて、超電導機器3の上方に配置されている。高温端側電極11aには酸化物超電導導体10が接続されている。酸化物超電導導体10は、鉛直方向に延び、上端が高温端側電極11aに接続され、下端は低温端側電極11bを介して超電導機器3に接続されている。酸化物超電導導体10は、たとえば、酸化物超電導バルク材あるいは酸化物超電導薄膜テープ線材である。   In the vacuum heat insulating container 2, the lower end of the normal conducting current lead 1a is connected to the high temperature end side electrode 11a. The high temperature end side electrode 11 a is made of a highly conductive metal and is disposed above the superconducting device 3. The oxide superconductor 10 is connected to the high temperature end electrode 11a. The oxide superconducting conductor 10 extends in the vertical direction, the upper end is connected to the high temperature end side electrode 11a, and the lower end is connected to the superconducting device 3 via the low temperature end side electrode 11b. The oxide superconducting conductor 10 is, for example, an oxide superconducting bulk material or an oxide superconducting thin film tape wire.

バイパス導電体20は、酸化物超電導導体10をバイパスして、高温端側電極11aと低温端側電極11bとを接続している。バイパス導電体20は、高温端側電極11aに接続された第1の導電体部21と低温端側電極11bに接続された第2の導電体部22とが互いに直列に接続されてなる。第1の導電体部21は、ヤング率が比較的が低く、熱伝導率および導電率が比較的高い金属材料、たとえば銅、または銅を含む合金からなる。一方、第2の導電体部22は、第1の導電体部21に比べて、ヤング率が比較的が高く、熱伝導率および導電率が比較的低い金属材料、たとえばステンレス鋼からなる。第1の導電体部21と第2の導電体部22は、溶接や圧接などの冶金的接合により互いに接合されている。また、第1の導電体部21および第2の導電体部22はそれぞれに少なくとも一つの曲がり部を有する。   The bypass conductor 20 bypasses the oxide superconducting conductor 10 and connects the high temperature end side electrode 11a and the low temperature end side electrode 11b. The bypass conductor 20 is formed by connecting a first conductor portion 21 connected to the high temperature end side electrode 11a and a second conductor portion 22 connected to the low temperature end side electrode 11b in series. The first conductor portion 21 is made of a metal material having a relatively low Young's modulus and a relatively high thermal conductivity and conductivity, such as copper or an alloy containing copper. On the other hand, the second conductor portion 22 is made of a metal material having a relatively high Young's modulus and a relatively low thermal conductivity and conductivity, for example, stainless steel, as compared with the first conductor portion 21. The first conductor part 21 and the second conductor part 22 are joined to each other by metallurgical joining such as welding or pressure welding. Each of the first conductor portion 21 and the second conductor portion 22 has at least one bent portion.

高温端側電極11aには伝熱板6が取り付けられ、伝熱板6は絶縁板7を介して冷凍機5に接続されている。冷凍機5は真空断熱容器2に取り付けられている。高温端側電極11aは、伝熱板6および絶縁板7を通じて冷凍機5と熱的に接続されて冷却される。超電導機器3の冷却は、この冷凍機5によってもよいし、図示しない別の冷凍機によって超電導機器3を直接冷却してもよい。   A heat transfer plate 6 is attached to the high temperature end side electrode 11 a, and the heat transfer plate 6 is connected to the refrigerator 5 through an insulating plate 7. The refrigerator 5 is attached to the vacuum heat insulating container 2. The high temperature end side electrode 11 a is cooled by being thermally connected to the refrigerator 5 through the heat transfer plate 6 and the insulating plate 7. The superconducting device 3 may be cooled by the refrigerator 5 or the superconducting device 3 may be directly cooled by another refrigerator (not shown).

この実施形態によれば、酸化物超電導導体10にクエンチが発生したときに、バイパス導電体20に電流がバイパスし、酸化物超電導導体10を保護することができる。また、バイパス導電体20が第1の導電体部21と第2の導電体部22からできていることから、低熱伝導率の第1の導電体部21によって熱伝導が抑制される。しかも、冷却時や昇温時に、酸化物超電導導体10とバイパス導電体20との熱収縮または熱膨張の差によるひずみは、おもに低ヤング率の第2の導電体部22によって吸収される。このため、酸化物超電導導体10にかかる荷重を小さく抑制し、損傷を回避することができる。さらに、第1の導電体部21および第2の導電体部22それぞれに曲がり部があることにより、バイパス導電体20の収縮・膨張に伴なう酸化物超電導導体10にかかる荷重を緩和することができる。   According to this embodiment, when quenching occurs in the oxide superconductor 10, current bypasses the bypass conductor 20, and the oxide superconductor 10 can be protected. Further, since the bypass conductor 20 is made up of the first conductor portion 21 and the second conductor portion 22, the heat conduction is suppressed by the first conductor portion 21 having low thermal conductivity. In addition, distortion due to a difference in thermal contraction or thermal expansion between the oxide superconductor 10 and the bypass conductor 20 is mainly absorbed by the second conductor portion 22 having a low Young's modulus during cooling or temperature rise. For this reason, the load concerning the oxide superconductor 10 can be suppressed small, and damage can be avoided. Furthermore, each of the first conductor portion 21 and the second conductor portion 22 has a bent portion, so that the load applied to the oxide superconducting conductor 10 accompanying the contraction / expansion of the bypass conductor 20 can be reduced. Can do.

以上説明した実施形態は単なる例示であって、本発明はこれらに限定されるものではない。   The embodiments described above are merely examples, and the present invention is not limited to these.

たとえば、バイパス導電体20の形状は、図1では曲線状に示しているが、たとえば酸化物超電導導体10の周囲を囲むようならせん状やベローズであってもよい。   For example, the shape of the bypass conductor 20 is shown in a curved line in FIG. 1, but may be a spiral shape or a bellows surrounding the oxide superconducting conductor 10, for example.

また、上記実施形態では真空断熱容器2内に収容する超電導機器3として超伝導マグネットを例にとって説明したが、その他の超電導機器であってもよい。   In the above embodiment, a superconducting magnet has been described as an example of the superconducting device 3 accommodated in the vacuum heat insulating container 2, but other superconducting devices may be used.

また、上記実施形態の説明における上下関係は説明の便宜のためであって、本発明は重力の方向にかかわりなく適用可能である。   Further, the vertical relationship in the description of the above embodiment is for convenience of description, and the present invention can be applied regardless of the direction of gravity.

本発明の第1の実施形態に係る電流リードとその周辺を示す立面図。1 is an elevation view showing a current lead and its periphery according to a first embodiment of the present invention.

符号の説明Explanation of symbols

1・・・電流リード
1a・・・常電導電流リード
2・・・真空断熱容器
3・・・超電導マグネット(超電導機器)
5・・・冷凍機
6・・・伝熱板
7・・・絶縁板
8・・・電流導入端子
10・・・酸化物超電導導体
11a・・・高温端側電極
11b・・・低温端側電極
20・・・バイパス導電体
21・・・第1の導電体部
22・・・第2の導電体部
30・・・電源
DESCRIPTION OF SYMBOLS 1 ... Current lead 1a ... Normal electric conduction current lead 2 ... Vacuum insulation container 3 ... Superconducting magnet (superconducting equipment)
5 ... Refrigerator 6 ... Heat transfer plate 7 ... Insulating plate 8 ... Current introduction terminal 10 ... Oxide superconducting conductor 11a ... High temperature end side electrode 11b ... Low temperature end side electrode 20 ... Bypass conductor 21 ... 1st conductor part 22 ... 2nd conductor part 30 ... Power supply

Claims (5)

真空断熱容器内に収容され低温に冷却されて超電導状態に置かれる超電導機器と、前記真空断熱容器の外側の電源と、を接続し、前記真空断熱容器に対して電気的に絶縁された電流リードであって、
前記真空断熱容器を貫通し良導電性金属からなる常電導電流リード部と、
前記真空断熱容器内に配置されて前記常電導電流リード部と前記超電導機器とを接続する酸化物超電導導体と、
前記真空断熱容器内に配置されて前記酸化物超電導導体に対して電気的に並列に前記常電導電流リード部と前記超電導機器とを接続するバイパス導電体と、
を有し、
前記バイパス導電体は、ヤング率が比較的低く熱伝導率および導電率が比較的高い第1の金属材料からなる第1の導電体部と、前記第1の金属材料に比べてヤング率が比較的高く熱伝導率および導電率が比較的低い第2の金属材料からなる第2の導電体部とが互いに直列に接続されていること、を特徴とする電流リード。
A current lead electrically connected to a superconducting device housed in a vacuum insulation container, cooled to a low temperature and placed in a superconducting state, and a power supply outside the vacuum insulation container, and electrically insulated from the vacuum insulation container Because
A normal conductive flow lead portion made of a highly conductive metal that penetrates the vacuum insulation container;
An oxide superconducting conductor disposed in the vacuum insulation container and connecting the normal conducting current lead portion and the superconducting device;
A bypass conductor disposed in the vacuum heat insulation container and electrically connecting the normal conducting current lead portion and the superconducting device in parallel with the oxide superconducting conductor;
Have
The bypass conductor has a Young's modulus compared to the first metal material and the first conductor portion made of the first metal material having a relatively low Young's modulus and a relatively high thermal conductivity and conductivity. A current lead comprising: a second conductor portion made of a second metal material having a relatively high thermal conductivity and a relatively low electrical conductivity, connected in series to each other.
前記第1の導電体部および第2の導電体部の少なくとも一方が、少なくとも一つの曲がり部を有すること、を特徴とする請求項1に記載の電流リード。   The current lead according to claim 1, wherein at least one of the first conductor portion and the second conductor portion has at least one bent portion. 前記第1の導電体部と第2の導電体部とが冶金的に接続されていること、を特徴とする請求項1または請求項2に記載の電流リード。   The current lead according to claim 1, wherein the first conductor portion and the second conductor portion are metallurgically connected. 前記第1の金属材料は銅または銅を含む合金であり、前記第2の金属材料はステンレス鋼であること、を特徴とする請求項1ないし請求項3のいずれか一項に記載の電流リード。   4. The current lead according to claim 1, wherein the first metal material is copper or an alloy containing copper, and the second metal material is stainless steel. 5. . 低温に冷却されて超電導状態に置かれる超電導機器と、
前記超電導機器を収容する真空断熱容器と、
前記真空断熱容器の外側の電源と前記超電導機器とを接続し、前記真空断熱容器に対して電気的に絶縁された電流リードと、
を有する超電導装置において、
前記電流リードは、
前記真空断熱容器を貫通し良導電性金属からなる常電導電流リード部と、
前記真空断熱容器内に配置されて前記常電導電流リード部と前記超電導機器とを接続する酸化物超電導導体と、
前記真空断熱容器内に配置されて前記酸化物超電導導体に対して電気的に並列に前記常電導電流リード部と前記超電導機器とを接続するバイパス導電体と、
を有し、
前記バイパス導電体は、ヤング率が比較的低く熱伝導率および導電率が比較的高い第1の金属材料からなる第1の導電体部と、前記第1の金属材料に比べてヤング率が比較的高く熱伝導率および導電率が比較的低い第2の金属材料からなる第2の導電体部とが互いに直列に接続されていること、を特徴とする超電導装置。
A superconducting device that is cooled to a low temperature and placed in a superconducting state;
A vacuum insulation container for accommodating the superconducting device;
Connecting the power supply outside the vacuum insulation container and the superconducting device, and a current lead electrically insulated from the vacuum insulation container;
In a superconducting device having
The current lead is
A normal conductive flow lead portion made of a highly conductive metal that penetrates the vacuum insulation container;
An oxide superconducting conductor disposed in the vacuum insulation container and connecting the normal conducting current lead portion and the superconducting device;
A bypass conductor disposed in the vacuum heat insulation container and electrically connecting the normal conducting current lead portion and the superconducting device in parallel with the oxide superconducting conductor;
Have
The bypass conductor has a Young's modulus compared to the first metal material and the first conductor portion made of the first metal material having a relatively low Young's modulus and a relatively high thermal conductivity and conductivity. And a second conductor portion made of a second metal material having a relatively high thermal conductivity and relatively low electrical conductivity, connected in series to each other.
JP2006346933A 2006-12-25 2006-12-25 Current lead, and superconducting device Pending JP2008159828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006346933A JP2008159828A (en) 2006-12-25 2006-12-25 Current lead, and superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346933A JP2008159828A (en) 2006-12-25 2006-12-25 Current lead, and superconducting device

Publications (1)

Publication Number Publication Date
JP2008159828A true JP2008159828A (en) 2008-07-10

Family

ID=39660412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346933A Pending JP2008159828A (en) 2006-12-25 2006-12-25 Current lead, and superconducting device

Country Status (1)

Country Link
JP (1) JP2008159828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183138A (en) * 2013-03-19 2014-09-29 Toshiba Corp Superconducting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321416A (en) * 1994-04-27 1996-12-03 Fuji Electric Co Ltd Current lead for superconducting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321416A (en) * 1994-04-27 1996-12-03 Fuji Electric Co Ltd Current lead for superconducting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183138A (en) * 2013-03-19 2014-09-29 Toshiba Corp Superconducting device

Similar Documents

Publication Publication Date Title
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
US5742217A (en) High temperature superconductor lead assembly
JP5005582B2 (en) Superconducting current lead manufacturing method
JP5476242B2 (en) Superconducting wire connection structure and manufacturing method thereof
JP2006324325A (en) Super-conducting magnet apparatus
JP2011134921A (en) Superconducting magnet
JP5022279B2 (en) Oxide superconducting current lead
JP2010522010A (en) Superconducting magnetic system for magnetic resonance inspection system
JP5693915B2 (en) Superconducting current lead and superconducting magnet device
JP4599807B2 (en) Current leads for superconducting equipment
JP3569997B2 (en) Current leads for superconducting devices
JP2756551B2 (en) Conduction-cooled superconducting magnet device
JP2008159828A (en) Current lead, and superconducting device
JP4703545B2 (en) Superconducting devices and current leads
JP2006108560A (en) Current lead for superconductive apparatus
JP3284406B2 (en) Superconducting wire connecting device for cryogenic equipment
JP2004111581A (en) Superconducting magnet unit
JP3573972B2 (en) Superconducting magnet
JP4734004B2 (en) Superconducting current lead
JP4337253B2 (en) Superconducting current lead
MXPA02004830A (en) High temperature superconducting rotor power leads.
JP5204548B2 (en) Superconducting magnet device
JP2013143474A (en) Superconducting magnet device and current lead for the same
JP5749126B2 (en) Conduction cooled superconducting magnet system
JP4284253B2 (en) Cryogenic container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524