JPS61127106A - Superconductive electromagnet device - Google Patents

Superconductive electromagnet device

Info

Publication number
JPS61127106A
JPS61127106A JP59249270A JP24927084A JPS61127106A JP S61127106 A JPS61127106 A JP S61127106A JP 59249270 A JP59249270 A JP 59249270A JP 24927084 A JP24927084 A JP 24927084A JP S61127106 A JPS61127106 A JP S61127106A
Authority
JP
Japan
Prior art keywords
switch
current
persistent current
permanent
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59249270A
Other languages
Japanese (ja)
Inventor
Akira Ishihara
石原 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59249270A priority Critical patent/JPS61127106A/en
Publication of JPS61127106A publication Critical patent/JPS61127106A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent loss of the permanent-current mode and burning of a thermal permanent-current switch as well as to provide stable return even in transition of the switch to the normal conductive state by disposing in parallel with the thermal permanent-current switch an auxiliary circuit including mechanically operated electric contacts. CONSTITUTION:When the resistance of a superconductive wire 4a is R1 and the resistance of an auxiliary circuit including electric contacts 5a, 5b is R2, the current of the permanent-current mode usually all flows in the circuit of a thermal permanent-current switch 4. If disturbance such as temporary injection of a hot gas occurs, the switch changes to the normal conducting state in spite of no energization of the heater 4b, the auxiliary circuit is connected in parallel with the superconductive wire 4a, and the current of the thermal permanent- current switch 4 is increased by R2/(R1+R2) times. It is easy to cause R2<<R1, and thus the heat of the switch 4 can be cooled and maintained below the limit enabling return to the superconductive state. When the switch 4 returns to the superconductive state, the current of the permanent-current mode flows through the switch 4, causing no burning.

Description

【発明の詳細な説明】 〔発明の一属する技術分野〕 この発明はたとえば磁気浮上用超電導電磁石装置など励
磁用電源と切り離して永久電流モードで運転される超電
導電磁石装置の永久電流スイッチに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a persistent current switch for a superconducting electromagnet device, such as a superconducting electromagnet device for magnetic levitation, which is operated in a persistent current mode separated from an excitation power source.

〔従来技術とその問題点〕[Prior art and its problems]

この種の永久電流スイッチとしては、従来電気接点を機
械的に接触、開離させることによって開閉を行う永久電
流スイッチあるいは第3図のように極低温下の超電導線
にヒーターを併設し、加熱。
This type of persistent current switch conventionally opens and closes by mechanically touching and opening electrical contacts, or it uses a heater attached to a superconducting wire at extremely low temperatures to heat it, as shown in Figure 3.

冷却によシ超電導線を常電導状態と超電導状態との間の
遷移を行わせることによシ開閉する熱式永久電流スイッ
チが一般に知られている。ここで第3図について説明す
ると、極低温容器1の中に収納された超電導コイル2は
電流リード3a 、 3bを介して図示しない励磁用電
源に接続されている。この超電導コイル2に並列接続さ
れる熱式永久電流スイッチ4は超電導線4aとこれに近
接して設けられ超電導線4aを加熱するヒーター4bと
で構成されている。この熱式永久電流スイッチ4は閉状
態の超電導線4aの抵抗値が零となるため、永久電流の
減衰率が特に小さいことが要求される超電導装置におい
て好んで用いられるみ ところが熱式永久電流スイッチにおいては、開状態は超
電導線4aを常電導状態にすることによってなされるた
め、開状態においても低抵抗値で短絡された状態にある
。この開状態における抵抗値を超電導電磁石装置の運転
に支障のない抵抗値とするため1通常の超電導コイルに
用いられている超電導線、たとえば銅のような低抵抗金
属を安定化材として用いた複合超電導線と異なり、超電
導体のみからなる超電導線が用いられるのが一般である
。したがって熱式永久電流スイッチでは銅安定化材のよ
うな低抵抗金属がないことから通電状態での安定性が悪
く、小さな熱的9機械的じよう乱によシ常電導状態へと
遷移してスイッチが開状態となることによυ永久電流モ
ードの喪失やスイッチの焼損を生ずるという問題があっ
た。
BACKGROUND ART A thermal persistent current switch that opens and closes by causing a superconducting wire to transition between a normal conducting state and a superconducting state by cooling is generally known. Now, referring to FIG. 3, the superconducting coil 2 housed in the cryogenic container 1 is connected to an excitation power source (not shown) via current leads 3a and 3b. A thermal persistent current switch 4 connected in parallel to the superconducting coil 2 is composed of a superconducting wire 4a and a heater 4b provided close to the superconducting wire 4a for heating the superconducting wire 4a. Since the resistance value of the superconducting wire 4a in the closed state is zero, this thermal persistent current switch 4 is preferably used in superconducting devices that require a particularly small attenuation rate of persistent current. In this case, the open state is achieved by bringing the superconducting wire 4a into a normal conducting state, so even in the open state, the superconducting wire 4a remains in a short-circuited state with a low resistance value. In order to make the resistance value in this open state a resistance value that does not hinder the operation of the superconducting electromagnet device, 1. A composite material using a low-resistance metal such as copper as a stabilizing material for the superconducting wire used in normal superconducting coils. Unlike superconducting wires, superconducting wires made only of superconductors are generally used. Therefore, since thermal persistent current switches do not have low-resistance metals such as copper stabilizing materials, they have poor stability in the current-carrying state, and are susceptible to transition to a normally conducting state due to small thermal or mechanical disturbances. There is a problem in that when the switch is in an open state, the υ persistent current mode is lost and the switch burns out.

〔発明の目的〕[Purpose of the invention]

この発明は上述した問題点に鑑み、熱式永久電流スイッ
チが仮に常電導状態へ遷移しても、永久電流モードの喪
失やスイッチの焼損がなく、かつ安定に低減衰率の永久
電流モードを得ることができる超電導電磁石装置を提供
することを目的とする。
In view of the above-mentioned problems, this invention prevents loss of the persistent current mode or burnout of the switch even if the thermal persistent current switch transitions to a normal conduction state, and stably obtains a persistent current mode with a low attenuation rate. The purpose of the present invention is to provide a superconducting electromagnet device that can perform the following steps.

〔発明の要点〕[Key points of the invention]

この発明では、熱式永久電流スイッチと並列に機械的に
開閉可能な接点機構を備えた補助回路を設け、永久電流
閉ループの一部を分担させるもので、永久電流モードで
は熱式永久電流スイッチを閉状態にするとともに前記補
助回路の電気接点を閉じて使用する。このようにすれば
超電導コイルが永久電流そ−ドで運転の際に何らかのし
よう乱によって熱式永久電流スイッチが開状態となって
も新しく設けた補助回路の電気接点が閉路しているので
永久電流閉ループは形成されておシ、永久電流モードが
喪失されることなくスイッチの焼損が防止でき、かつ通
常の永久電流モード運転への復帰も容易に可能とするも
のである。
In this invention, an auxiliary circuit equipped with a contact mechanism that can be mechanically opened/closed is provided in parallel with the thermal persistent current switch to share a part of the persistent current closed loop.In the persistent current mode, the thermal persistent current switch is It is used by turning it into a closed state and closing the electrical contacts of the auxiliary circuit. In this way, even if the thermal persistent current switch is opened due to some disturbance when the superconducting coil is operated with persistent current, the electrical contacts of the newly installed auxiliary circuit are closed, so the persistent current A closed loop is formed to prevent switch burnout without loss of persistent current mode, and to easily return to normal persistent current mode operation.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の実施例を示すもので、極低温容器I
K内蔵された超電導コイル2と永久電流運転用の閉回路
を構成している熱式永久電流スイッチ4に並列に機械的
な開閉操作が行われる電気接点5a 、 5bを含む補
助回路を設けたものである。
FIG. 1 shows an embodiment of the present invention, in which cryogenic container I
An auxiliary circuit including electrical contacts 5a and 5b for mechanical opening/closing operation is provided in parallel to the built-in superconducting coil 2 and the thermal persistent current switch 4 forming a closed circuit for persistent current operation. It is.

このような構成において超電導コイル2を励磁する際に
は、電気接点5a 、 5bを図示しない駆動機構によ
シ開状態とするとともに、ヒーター4bに所定の電流を
流して熱式永久電流スイッチ4を開状態(そのときの超
電導線4aの抵抗値をR1Ωとする)としたのち、電流
リード3a 、 3bにより図示しない電源から所定の
電流を超電導コイル2に流す。所定の励磁状態を得たの
ち永久電流モードとする場合には、まず前記開状態の電
気接点5a 、 5bを図示しない駆動機構によシ閉状
態にするとともにヒーター4bの電流を遮断して熱式永
久電流スイッチ4を閉状態とする。このとき電気接点5
a 、 5bは接触抵抗をもっているので補助回路には
微小な抵抗値几2Ωを有する。これに対し熱式永久電流
スイッチ4は主回路が超電導線4aよりなるため閉状態
では抵抗値が零である。したがって通常は永久電流モー
ドの電流はすべて熱式永久電流スイッチ4の回路に流れ
、前記補助回路には流れない。この運転状態において、
たとえば温度がIOK以上の温かいガスの一時的な注入
等のしよう乱を生ずると、熱式永久電流スイッチ4のヒ
ーター4bが熱せられないにもかかわらず常電導状態と
なシ熱式永久電流スイッチ4の超電導線4alCは抵抗
値R1Ωを生ずるが補助回路が並列に接続されているた
め熱式永久電流スイッチ4を流れる電流はR2/(R1
+R2)倍となる。このときのR2をR,に比べて十分
小さくすることは容易であり、熱式永久電流スイッチ4
での発熱量を冷媒による冷却によって再び超電導状態へ
復帰可能な限界下に保持することができる。熱式永久電
流スイッチ4が超電導状態に復帰すれば永久電流モード
の電流が再び熱式永久電流スイッチに流れ、低減衰状態
が得られる。またこの構成にも、この補助回路が防止の
役割をなすことは云うまでもない。
When exciting the superconducting coil 2 in such a configuration, the electrical contacts 5a and 5b are opened by a drive mechanism (not shown), and a predetermined current is passed through the heater 4b to turn on the thermal persistent current switch 4. After the superconducting wire 4a is in an open state (the resistance value of the superconducting wire 4a at that time is R1Ω), a predetermined current is caused to flow through the superconducting coil 2 from a power source (not shown) through the current leads 3a and 3b. When entering the persistent current mode after obtaining a predetermined excitation state, first the open electrical contacts 5a and 5b are closed by a drive mechanism (not shown), and the current of the heater 4b is cut off to switch to the thermal mode. The persistent current switch 4 is closed. At this time, electrical contact 5
Since a and 5b have contact resistance, the auxiliary circuit has a minute resistance value of 2Ω. On the other hand, since the main circuit of the thermal persistent current switch 4 is composed of the superconducting wire 4a, the resistance value is zero in the closed state. Therefore, normally all current in the persistent current mode flows through the circuit of the thermal persistent current switch 4 and not through the auxiliary circuit. In this operating state,
For example, if a disturbance occurs such as temporary injection of warm gas with a temperature higher than IOK, the thermal persistent current switch 4 becomes normally conductive even though the heater 4b of the thermal persistent current switch 4 is not heated. The superconducting wire 4alC produces a resistance value R1Ω, but since the auxiliary circuit is connected in parallel, the current flowing through the thermal persistent current switch 4 is R2/(R1
+R2) times. At this time, it is easy to make R2 sufficiently smaller than R, and the thermal persistent current switch 4
By cooling with a refrigerant, the amount of heat generated can be kept below the limit at which the superconducting state can be restored again. When the thermal persistent current switch 4 returns to the superconducting state, the persistent current mode current flows through the thermal persistent current switch again, and a low attenuation state is obtained. It goes without saying that the auxiliary circuit also plays a protective role in this configuration.

第2図はこの発明の異なる実施例を示すもので。FIG. 2 shows a different embodiment of this invention.

前述した第1図では補助回路を極低温領域に配設してい
たのに対して、電気接点5a 、 5bを極低温容器1
の外側の室温空間に設けたものである。本構成では熱式
永久電流スイッチ4と並列接続される補助回路は電気接
点5a 、 5bと一対の電流リード3a。
In the above-mentioned FIG. 1, the auxiliary circuit was arranged in the cryogenic region, whereas the electrical contacts 5a and 5b were arranged in the cryogenic container 1.
It is installed in a room temperature space outside of the In this configuration, the auxiliary circuit connected in parallel with the thermal persistent current switch 4 includes electrical contacts 5a and 5b and a pair of current leads 3a.

3bおよびそれらを接続するリードで構成されるため電
気接点3a 、 3bを閉状態としても、リードの抵抗
値比3Ωをもち、第1図におけるR2に比べて大きな値
となるが、一般にR3は亀に比べて十分小さいので第1
図と同様の効果を得ることができる。第1図の場合よ〕
有利な点は電気接点が室温域にあるため、接点開閉操作
が容易となるということである0 〔発明の効果〕 この発明によれば熱式永久電流スイッチに並列。
3b and the leads connecting them, even if the electrical contacts 3a and 3b are closed, the lead resistance ratio is 3Ω, which is a larger value than R2 in Fig. 1, but generally R3 is Since it is sufficiently small compared to
The same effect as shown in the figure can be obtained. In the case of Figure 1]
The advantage is that since the electrical contacts are in the room temperature range, the contact opening/closing operation becomes easy.

に機械的操作の電気接点を含む補助回路を配設したこと
により、超電導コイルを永久電流モードで運転する際、
何らかのしよう乱によって熱式永久電流スイッチが常電
導状態に遷移する事故が生じても、永久電流モードの喪
失、スイッチの焼損が防止でき、かつ通常の永久電流モ
ード運転への復帰が可能となる効果がある。
By installing an auxiliary circuit containing mechanically operated electrical contacts in the superconducting coil, when operating the superconducting coil in persistent current mode,
Even if an accident occurs in which a thermal persistent current switch transitions to a normal conduction state due to some kind of disturbance, loss of persistent current mode and burnout of the switch can be prevented, and it is possible to return to normal persistent current mode operation. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である超電導電磁石装置の
基本構成図、第2図はこの発明の異なる実施例である超
電導電磁石装置の基本構成図、第3図は従来構造の超電
導電磁石装置の基本構成図である。 2;超電導コイル、4:永久電流スイッチ、 4a:超
電導線、4b:ヒ−p−15a、5b : [気液点。 qか理士山口 鳥・ 第1図 第2図 第3図
Fig. 1 is a basic configuration diagram of a superconducting electromagnet device which is an embodiment of the present invention, Fig. 2 is a basic configuration diagram of a superconducting electromagnet device which is a different embodiment of this invention, and Fig. 3 is a basic configuration diagram of a superconducting electromagnet device of a conventional structure. FIG. 2: superconducting coil, 4: persistent current switch, 4a: superconducting wire, 4b: heap-p-15a, 5b: [gas-liquid point. q or R. Yamaguchi Tori/ Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)超電導線にヒーターを近接設置して極低温域に配置
し、加熱、冷却して前記超電導線を超電導状態と常電導
状態との遷移を行わせることにより開閉操作を得る永久
電流スイッチを超電導コイルに並列接続して永久電流モ
ードで運転する超電導電磁石装置において;前記永久電
流スイッチと並列に、機械的に開閉操作が行われる電気
接点を含む回路を接続したことを特徴とする超電導電磁
石装置。
1) A persistent current switch that obtains opening/closing operations by installing a heater close to the superconducting wire and placing it in an extremely low temperature region to heat and cool the superconducting wire to make the superconducting state transition between the superconducting state and the normal conducting state. A superconducting electromagnet device connected in parallel to a coil and operated in persistent current mode; characterized in that a circuit including an electrical contact that is mechanically opened and closed is connected in parallel with the persistent current switch.
JP59249270A 1984-11-26 1984-11-26 Superconductive electromagnet device Pending JPS61127106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249270A JPS61127106A (en) 1984-11-26 1984-11-26 Superconductive electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249270A JPS61127106A (en) 1984-11-26 1984-11-26 Superconductive electromagnet device

Publications (1)

Publication Number Publication Date
JPS61127106A true JPS61127106A (en) 1986-06-14

Family

ID=17190467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249270A Pending JPS61127106A (en) 1984-11-26 1984-11-26 Superconductive electromagnet device

Country Status (1)

Country Link
JP (1) JPS61127106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2445591A (en) * 2007-01-10 2008-07-16 Siemens Magnet Technology Ltd An emergency run-down unit for a superconducting magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2445591A (en) * 2007-01-10 2008-07-16 Siemens Magnet Technology Ltd An emergency run-down unit for a superconducting magnet
GB2445591B (en) * 2007-01-10 2009-01-28 Siemens Magnet Technology Ltd Emergency run-down unit for superconducting magnets
US8385033B2 (en) 2007-01-10 2013-02-26 Siemens Plc Emergency run-down unit for superconducting magnets

Similar Documents

Publication Publication Date Title
KR890001721B1 (en) Trip assembly for a circuit breaker
JPS60137077A (en) Switch for finely regulating continuous current loop of superconductive circuit
JPH06216418A (en) Contact maker breaker
JPS61127106A (en) Superconductive electromagnet device
JP2004179413A (en) Cooling type superconducting magnet device
JPS60165775A (en) Shorting switch unit of superconductive magnet coil
JP2003069093A (en) Perpetual current switch and superconducting magnet using it
JP2019161060A (en) Superconducting magnet device
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JP4959555B2 (en) Current limiting device with superconducting switching element
JP2545452B2 (en) Superconducting magnet device
JP3358958B2 (en) Thermal control type permanent current switch
JPH10326915A (en) Connection structure of superconductive wire
JPS5916208A (en) Connected superconductive wire
JPS61115308A (en) Superconducting device
JPS59113605A (en) Superconductive magnet device
CN212320941U (en) Thermocouple valve maintaining circuit
JPS62244110A (en) Superconducting coil device
JPH01248931A (en) Current limiting device
JPS617610A (en) Superconductive device
JPH09148122A (en) Superconductive switch for conduction cooling superconductive magnet
JPH01151123A (en) Superconductive temperature switch
JPS62208677A (en) Superconducting magnet device
JPH06208921A (en) Protector for high temperature superconducting current lead
JPS6115381A (en) Superconductive switch