JPS6115381A - Superconductive switch - Google Patents

Superconductive switch

Info

Publication number
JPS6115381A
JPS6115381A JP59135931A JP13593184A JPS6115381A JP S6115381 A JPS6115381 A JP S6115381A JP 59135931 A JP59135931 A JP 59135931A JP 13593184 A JP13593184 A JP 13593184A JP S6115381 A JPS6115381 A JP S6115381A
Authority
JP
Japan
Prior art keywords
heater
superconducting
switch
wire
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59135931A
Other languages
Japanese (ja)
Other versions
JPH0231511B2 (en
Inventor
Susumu Mitsune
進 三根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59135931A priority Critical patent/JPS6115381A/en
Publication of JPS6115381A publication Critical patent/JPS6115381A/en
Publication of JPH0231511B2 publication Critical patent/JPH0231511B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • H10N60/35Cryotrons
    • H10N60/355Power cryotrons

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To reduce heater power kept at the switch-off state by a method wherein the winding part wound with a superconductive gate wire and a heater wire that heats the gate wire and a coolant path that cools this winding part by thermal conduction are provided to a superconductive switch. CONSTITUTION:In switching ON, a valve 14 is opend and the conduction of a heater 22 is stopped. This enables the winding part 23 to be cooled by thermal conduction with liquid helium passing through the coolant path 13; accordingly, the superconductive gate wire 21 comes into a state of superconduction. In switching OFF, the valve 24 is closed and the heater 22 is conducted. This enables the winding part 23 to be heated by the heater 22; accordingly, the superconductive gate wire 21 comes into a state of normal conduction. Here, when the valve 14 is closed, the coolant path 13 becomes filled with helium gas, and the winding part 23 gets the temperature readily increased by the heater 22. Thereby, switching off is enabled with a small heater power.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気浮上列車等に用いる超電導マグネットを
永久電流状態で使うための超電導スイッチに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting switch for using a superconducting magnet used in a magnetically levitated train or the like in a persistent current state.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、超電導スイッチは、第4図に示す磁気浮上列車用
超電導マグネットの場合のように、スイッチ本体を液体
ヘリウムの中に)受して用いられている。ここで、図中
41は超電導マグネッi〜本体の巻線部、42は液体ヘ
リウムが入る2IaI(液体ヘリウム容器)、45は超
電導スイッチ本体である。また、48はスイッチ本体4
5を収納した容器であり、液体ヘリウム容器42に連通
されている。
Conventionally, superconducting switches have been used with the switch body immersed in liquid helium, as in the case of a superconducting magnet for a magnetically levitated train shown in FIG. Here, in the figure, 41 is the winding part of the superconducting magnet i to the main body, 42 is 2IaI (liquid helium container) containing liquid helium, and 45 is the superconducting switch main body. In addition, 48 is the switch body 4
5, and is connected to a liquid helium container 42.

しかしながら、この種の超電導マグネッ1゛・にあって
は次のような問題があった。即ち;超電導スイッチ本体
45が液体l\ツリウム中浸されているため、スイッチ
OFF状態に保持するためのヒータパワーが多く必要で
ある。また、第4図に示すように液体ヘリウム空間がマ
グネツ1へ巻線部41と独立した容器の構造の場合、マ
グネット用超電導線と超電導スイッチゲート線とを結ぶ
導線46は真空気密及び電気絶縁を兼ねたシール部47
を必要としたが、このシール部47の信頼性は不十分で
あった。
However, this type of superconducting magnet 1 has the following problems. That is, since the superconducting switch body 45 is immersed in liquid thulium, a large amount of heater power is required to keep the switch in the OFF state. In addition, as shown in FIG. 4, if the liquid helium space is connected to the magnet 1 in a container independent from the winding part 41, the conducting wire 46 connecting the superconducting wire for the magnet and the superconducting switch gate wire must be vacuum-tight and electrically insulated. Seal portion 47 that also serves as
However, the reliability of this seal portion 47 was insufficient.

〔発明の目的] 本発明の目的は、スイッチOFF状態に保持するための
ヒータパワーが少なくて済み、且つ超電導マグネット用
超電導線と結ぶ導線に絶縁気密シールが不要な超電導ス
イッチを提供することにある。
[Object of the Invention] An object of the present invention is to provide a superconducting switch that requires less heater power to maintain the switch in the OFF state and does not require an insulating airtight seal on the conductor wire connected to the superconducting wire for a superconducting magnet. .

〔発明の概要〕[Summary of the invention]

本発明の骨子は、超電導スイッチ巻回部を熱伝導によっ
て冷却することにある。
The gist of the present invention is to cool the superconducting switch windings by thermal conduction.

即ち本発明は、超電導ゲート線及び該ゲート線を加熱す
るヒータ線が巻回された巻回部と、この巻回部を熱伝導
で冷却する冷媒通路とを具備してなる超電導スイッチで
あり、上記熱伝導による冷却によりスイッチONし、上
記ヒータによる加熱によりスイッチ○FFするようにし
たものである。
That is, the present invention is a superconducting switch comprising a superconducting gate wire, a winding portion around which a heater wire for heating the gate wire is wound, and a refrigerant passage cooling the winding portion by thermal conduction. The switch is turned on by cooling by the heat conduction, and the switch is turned OFF by heating by the heater.

〔発明の効果〕 本発明によれば、スイッチ本体が液体ヘリウムで直接冷
却されているのではなく、冷媒通路からの熱伝導で冷却
されているので、スイッチOFF状態に保持するための
ヒータパワーを少なくすることができる。さらに、極低
温で用いる絶縁気密シールが不要となるため、冷媒であ
る液体ヘリウムの蒸発を少なくできると共に、信頼性の
高上をはかり得る。
[Effects of the Invention] According to the present invention, the switch body is not directly cooled with liquid helium, but is cooled by heat conduction from the refrigerant passage, so the heater power required to keep the switch in the OFF state is reduced. It can be reduced. Furthermore, since an insulating airtight seal used at extremely low temperatures is not required, evaporation of liquid helium, which is a refrigerant, can be reduced and reliability can be improved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる超電導マグネットの
概略構造を系す断面図である。図中第1はマグネット用
超電導線を巻回したマグネット巻線部であり、この巻線
部第1は液体ヘリウム容器12の周囲に配置され、該容
器内の液体ヘリウムによって冷却されている。液体ヘリ
ウム容器12には冷媒通路13が接続され、この通路1
3内にも液体ヘリウムが通流されている。また、冷媒通
路13の一部にはゲートバルブ14が設けられており、
このバルブ14により冷媒通路13内の液体ヘリウムの
通流が制御されている。
FIG. 1 is a sectional view showing a schematic structure of a superconducting magnet according to an embodiment of the present invention. The first part in the figure is a magnet winding part in which a superconducting wire for a magnet is wound. The first winding part is arranged around a liquid helium container 12 and is cooled by the liquid helium in the container. A refrigerant passage 13 is connected to the liquid helium container 12, and this passage 1
Liquid helium is also passed through the interior of the tank. Further, a gate valve 14 is provided in a part of the refrigerant passage 13,
This valve 14 controls the flow of liquid helium within the refrigerant passage 13 .

一方、前記冷媒通路13の外周には超電導スイッチ本体
15が取着されている。このスイッチ本体°15は、第
2図に示す如く冷媒通路13の外周に超電導ゲート線2
1及びヒータ線22をそれぞれ巻回して構成されている
。そして、超電導ゲート線21は冷媒通路13内を通流
する液体ヘリウムにより熱伝導で冷却され、ヒータ線2
2により加熱されるものとなっている。なお、図中16
は前記巻線部第1と超電導ゲート線21とを接続するだ
めの導線、23は超電導ゲート線21及びヒータ線22
を巻回した巻回部を示している。
On the other hand, a superconducting switch main body 15 is attached to the outer periphery of the refrigerant passage 13. This switch body 15 has a superconducting gate wire 2 on the outer periphery of the refrigerant passage 13 as shown in FIG.
1 and heater wire 22 are wound around each other. Then, the superconducting gate wire 21 is cooled by thermal conduction by liquid helium flowing through the coolant passage 13, and the heater wire 21 is cooled by heat conduction.
It is heated by 2. In addition, 16 in the figure
23 is a conductive wire connecting the first winding portion and the superconducting gate wire 21, and 23 is the superconducting gate wire 21 and the heater wire 22.
The figure shows the winding portion of the winding.

このような構成において、スイッチONする時はバルブ
14を開くと共にヒータ22の通電を停止する。これに
より、冷媒通路13内を通流する液体ヘリウムにより巻
回部23が熱伝導で冷却されることになり、超電導ゲー
ト線21は超電導状態となる。一方、スイッチOF’F
する時は、バルブ14を閉じると共にヒータ22に通電
する。これにより巻回部23はヒータ22により加熱さ
れることになり、超電導ゲート線21は常電導状態とな
る。ここて、バルブ14を閉じた場合、冷媒通路13が
ヘリウムガスで充満されることになり、巻回部23はヒ
ータ22により容易に温度上昇する。このため、少ない
ヒータ電力でスイッチOFFすることが可能となる。ま
た、本構成゛の場合、超電導スイッチ本体15が液体ヘ
リウム中に浸されているのではなく、液体ヘリウムが通
流する冷媒通路13の外周に配置されているので、極低
温で用いる絶縁気密シールが不要となる。
In such a configuration, when the switch is turned on, the valve 14 is opened and the heater 22 is de-energized. As a result, the winding portion 23 is cooled by thermal conduction by the liquid helium flowing through the coolant passage 13, and the superconducting gate line 21 enters a superconducting state. On the other hand, the switch OFF'F
When doing so, the valve 14 is closed and the heater 22 is energized. As a result, the winding portion 23 is heated by the heater 22, and the superconducting gate line 21 enters a normal conductive state. Here, when the valve 14 is closed, the refrigerant passage 13 is filled with helium gas, and the temperature of the winding portion 23 is easily raised by the heater 22. Therefore, it is possible to turn off the switch with less heater power. In addition, in the case of this configuration, the superconducting switch main body 15 is not immersed in liquid helium, but is placed on the outer periphery of the refrigerant passage 13 through which liquid helium flows. becomes unnecessary.

このように本実施例によれば、巻回部23が液体ヘリウ
ムで直接冷却されているのではなく、冷媒通路13を形
成する配管の熱伝導で冷却されているので、バルブ14
を閉じることにより、巻回部23を容易に温度上昇させ
ることができる。このため、スイッチOFFするための
ヒータ電力を少なくすることができる。また、極低温で
用いる絶縁気密シールが不要となるので、冷媒である液
体ヘリウムの蒸発を少なくでき、且つ信頼性の向上をは
かり得る等の利点がある。
As described above, according to this embodiment, the winding portion 23 is not directly cooled with liquid helium, but is cooled by heat conduction of the piping forming the refrigerant passage 13, so that the valve 14 is not cooled directly with liquid helium.
By closing the winding portion 23, the temperature of the winding portion 23 can be easily raised. Therefore, the heater power needed to turn off the switch can be reduced. Further, since an insulating airtight seal used at extremely low temperatures is not required, there are advantages such as reducing evaporation of liquid helium, which is a refrigerant, and improving reliability.

第3図は他の実施例の要部構成を示す断面図である。こ
の実施例が先に説明した実施例と異なる点は、前記冷媒
通路13と巻回部23との間に熱絶縁層23を配設した
ことにある。
FIG. 3 is a cross-sectional view showing the main structure of another embodiment. This embodiment differs from the previously described embodiments in that a thermal insulation layer 23 is provided between the refrigerant passage 13 and the winding portion 23.

このような構造であれば、巻回部23の液体ヘリウムに
よる熱伝導での冷却効率を下げることができるので、ス
イッチOFFするためのヒータ電力をより少なくするこ
とが可能となる。また、上記理由から冷媒通路13にバ
ルブ14がない場合でも、巻回部23の温度上昇を容易
にするこ・、とができ、先の実施例と同様な効果を得る
ことができる。
With such a structure, the cooling efficiency of the winding portion 23 due to heat conduction by liquid helium can be reduced, so it is possible to further reduce the heater power required to turn off the switch. Further, for the above-mentioned reason, even if the refrigerant passage 13 does not have the valve 14, the temperature of the winding portion 23 can be easily raised, and the same effects as in the previous embodiment can be obtained.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記超電導ゲート線の材料や冷媒通路をな
す配管の材料等は、仕様に応じて適宜定めればよい。ま
た、前記バルブは必ずしも必要なものではなく、冷媒通
路を流通する冷媒による冷却よりも前記ヒータからの加
熱が十分大きければ除去してもよい。その他、本発明の
要旨を逸脱しない範囲で、種々変形して実施することが
できる。
Note that the present invention is not limited to the embodiments described above. For example, the material of the superconducting gate wire, the material of the piping forming the refrigerant passage, etc. may be determined as appropriate according to the specifications. Further, the valve is not necessarily necessary, and may be removed if the heating from the heater is sufficiently greater than the cooling by the refrigerant flowing through the refrigerant passage. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる超電導マグネットの
概略構造を示す断面図、第2図は上記マグネットに用い
た超電導スイッチ本体の要部構成を示す断面図、第3図
は他の実施例の要部構成を示す断面図、第4図は従来の
超電導マグネットの概略構造を示す断面図である。 第1・・・マグネット巻線部、12・・・液体ヘリウム
容器、13・・・冷媒通路、14・・・ゲートバルブ、
15・・・超電導スイッチ本体、16・・・導線、21
・・・超電導ゲート線、22・・・ヒータ線、23・・
・巻回部、24・・・熱絶縁層。 出願人代理人 弁理士 鈴江武彦 第1図 第2図   第3図 第4図
FIG. 1 is a cross-sectional view showing a schematic structure of a superconducting magnet according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the main structure of a superconducting switch body used in the magnet, and FIG. 3 is a cross-sectional view showing another embodiment. FIG. 4 is a sectional view showing the schematic structure of a conventional superconducting magnet. 1st... Magnet winding part, 12... Liquid helium container, 13... Refrigerant passage, 14... Gate valve,
15...Superconducting switch body, 16...Conducting wire, 21
...Superconducting gate wire, 22...Heater wire, 23...
- Winding part, 24... thermal insulation layer. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)超電導ゲート線及び該ゲート線を加熱するヒータ
線が巻回された巻回部と、この巻回部を熱伝導で冷却す
る冷媒通路とを具備してなることを特徴とする超電導ス
イッチ。
(1) A superconducting switch comprising a superconducting gate wire, a winding portion around which a heater wire for heating the gate wire is wound, and a refrigerant passage cooling the winding portion by thermal conduction. .
(2)前記冷媒通路は、超電導マグネットを冷却するた
めの液体ヘリウム容器に連通されたものであることを特
徴とする特許請求の範囲第1項記載の超電導スイッチ。
(2) The superconducting switch according to claim 1, wherein the coolant passage communicates with a liquid helium container for cooling the superconducting magnet.
(3)前記冷媒通路は該通路を開閉するバルブを備えた
ものであり、このバルブはスイッチオフ時に閉じられる
ことを特徴とする特許請求の範囲第1項又は第2項記載
の超電導スイッチ。
(3) The superconducting switch according to claim 1 or 2, wherein the refrigerant passage is equipped with a valve that opens and closes the passage, and this valve is closed when the switch is turned off.
JP59135931A 1984-06-30 1984-06-30 Superconductive switch Granted JPS6115381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135931A JPS6115381A (en) 1984-06-30 1984-06-30 Superconductive switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135931A JPS6115381A (en) 1984-06-30 1984-06-30 Superconductive switch

Publications (2)

Publication Number Publication Date
JPS6115381A true JPS6115381A (en) 1986-01-23
JPH0231511B2 JPH0231511B2 (en) 1990-07-13

Family

ID=15163191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135931A Granted JPS6115381A (en) 1984-06-30 1984-06-30 Superconductive switch

Country Status (1)

Country Link
JP (1) JPS6115381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283700U (en) * 1988-12-14 1990-06-28

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933592A (en) * 1972-07-26 1974-03-28
JPS5721881A (en) * 1980-07-16 1982-02-04 Toshiba Corp Thermal permanent current switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933592A (en) * 1972-07-26 1974-03-28
JPS5721881A (en) * 1980-07-16 1982-02-04 Toshiba Corp Thermal permanent current switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283700U (en) * 1988-12-14 1990-06-28

Also Published As

Publication number Publication date
JPH0231511B2 (en) 1990-07-13

Similar Documents

Publication Publication Date Title
US4692560A (en) Forced flow cooling-type superconducting coil apparatus
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
JPS6115381A (en) Superconductive switch
JPS59224187A (en) Exciting leading conductor unit for superconductive unit andparticularly magnet
JPH0511647B2 (en)
JPS61265880A (en) Superconductive switch
JP2515813B2 (en) Current lead for superconducting equipment
JPS6161715B2 (en)
JPS61125002A (en) Forcibly cooled superconductive coil device
JPH051048Y2 (en)
JP3316986B2 (en) Current leads for superconducting devices
JPH08195309A (en) Superconducting current lead
JP2818261B2 (en) Cryostat
JPS5898992A (en) Superconductive device
JPS61214588A (en) Superconducting apparatus
JPH04332105A (en) Superconducting magnet device
JPS62283604A (en) Superconducting magnet
JPH04137571A (en) Permanent current switch
JPH05291036A (en) Quick disconnectable current lead
JPS624382A (en) Superconductive switch
JPS6260280A (en) Permanent current switching apparatus
JPH10326915A (en) Connection structure of superconductive wire
JP3339118B2 (en) Superconducting device current leads
JPS6014409A (en) Forced cooling superconductive coil apparatus
JPH04239703A (en) Superconductive coil device