JPH08195309A - Superconducting current lead - Google Patents
Superconducting current leadInfo
- Publication number
- JPH08195309A JPH08195309A JP7004556A JP455695A JPH08195309A JP H08195309 A JPH08195309 A JP H08195309A JP 7004556 A JP7004556 A JP 7004556A JP 455695 A JP455695 A JP 455695A JP H08195309 A JPH08195309 A JP H08195309A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- lead
- current lead
- superconducting current
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000007788 liquid Substances 0.000 claims abstract description 58
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000001307 helium Substances 0.000 claims abstract description 34
- 229910052734 helium Inorganic materials 0.000 claims abstract description 34
- 238000001816 cooling Methods 0.000 claims abstract description 29
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 29
- 239000007789 gas Substances 0.000 claims abstract description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052802 copper Inorganic materials 0.000 claims abstract description 20
- 239000010949 copper Substances 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims description 6
- 239000003507 refrigerant Substances 0.000 claims description 4
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 abstract description 2
- 230000008020 evaporation Effects 0.000 abstract description 2
- 229910000679 solder Inorganic materials 0.000 abstract description 2
- SWQJXJOGLNCZEY-BJUDXGSMSA-N helium-3 atom Chemical compound [3He] SWQJXJOGLNCZEY-BJUDXGSMSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は液体ヘリウム容器内に収
容した液体ヘリウム中に浸漬された超電導コイルへ、常
温環境下におかれた励磁用電源から電流を供給するため
の超電導電流リードに係り、特に電流容量増大化に対応
可能な超電導電流リードに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting current lead for supplying an electric current from an exciting power source placed in a room temperature environment to a superconducting coil immersed in liquid helium contained in a liquid helium container. In particular, the present invention relates to a superconducting current lead that can cope with an increase in current capacity.
【0002】[0002]
【従来の技術】一般に、液体ヘリウム容器内に浸漬冷却
された超電導コイルへ、常温環境下におかれた励磁用電
源から電流を供給するための手段として超電導電流リー
ドが使用されている。2. Description of the Related Art Generally, a superconducting current lead is used as a means for supplying an electric current to a superconducting coil that is immersed and cooled in a liquid helium container from an exciting power source placed in a room temperature environment.
【0003】以下、図4を参照して超電導電流リードの
従来例について説明する。超電導コイル1は液体ヘリウ
ム容器2内に収容された液体ヘリウム3に浸漬されてい
る。また、この液体ヘリウム容器2はステンレス等から
なる断熱真空容器4内に収納されている。さらに、液体
ヘリウム容器2にはガス管5bが接続され、このガス管
5bからは、断熱真空容器4の外部に液体ヘリウム容器
2内の液体ヘリウム3が気化して発生するヘリウムガス
9を放出するための分岐管18が設けられている。ガス
管5bはまた液体窒素容器12に接続され、この液体窒
素容器12にはさらに断熱真空容器4の外部に連通する
ガス管5aが設けられている。A conventional example of a superconducting current flow lead will be described below with reference to FIG. Superconducting coil 1 is immersed in liquid helium 3 contained in liquid helium container 2. The liquid helium container 2 is housed in an adiabatic vacuum container 4 made of stainless steel or the like. Further, a gas pipe 5b is connected to the liquid helium container 2, and the helium gas 9 generated by the liquid helium 3 in the liquid helium container 2 being vaporized is released from the gas pipe 5b to the outside of the adiabatic vacuum container 4. A branch pipe 18 is provided for this purpose. The gas pipe 5b is also connected to the liquid nitrogen container 12, and the liquid nitrogen container 12 is further provided with a gas pipe 5a communicating with the outside of the heat insulating vacuum container 4.
【0004】超電導電流リード本体11は、超電導コイ
ル側端子8に接続された高温超電導リード素子11bと
常温側環境端子7に接続される銅リード素子11aとを
有している。この高温超電導リード素子11bは、液体
窒素温度以上で超電導状態を示す高温超電導材から成っ
ており、一方、銅リード素子11aは銅または銅合金材
から成っている。The superconducting current lead body 11 has a high temperature superconducting lead element 11b connected to the superconducting coil side terminal 8 and a copper lead element 11a connected to the room temperature side environmental terminal 7. The high temperature superconducting lead element 11b is made of a high temperature superconducting material which exhibits a superconducting state at a liquid nitrogen temperature or higher, while the copper lead element 11a is made of copper or a copper alloy material.
【0005】超電導コイル側端子8に接続された高温超
電導リード素子11bは、ガス管5bの中で蒸発するヘ
リウムガス9によって冷却された後、液体窒素容器12
の中で銅リード素子11aと接続部13にて接続され
る。一方、銅リード素子11aはガス管5aに収納され
て液体窒素容器12から供給される窒素ガス14によっ
て冷却されながら常温側環境端子7まで導かれ電源ケー
ブル(図示せず)に接続される。The high temperature superconducting lead element 11b connected to the superconducting coil side terminal 8 is cooled by the helium gas 9 which evaporates in the gas pipe 5b, and then the liquid nitrogen container 12
Among them, it is connected to the copper lead element 11a at the connecting portion 13. On the other hand, the copper lead element 11a is housed in the gas pipe 5a, guided to the ambient temperature side environmental terminal 7 while being cooled by the nitrogen gas 14 supplied from the liquid nitrogen container 12, and connected to a power cable (not shown).
【0006】この場合、高温超電導リード素子11bは
超電導状態を保ち、ジュール発熱せず、また高温超電導
材であるセラミック材料を用いているため、常温側環境
端子7側からの熱伝導による熱侵入量も少ない。従っ
て、この高温超電導リード素子11bを用いた超電導電
流リード本体は全体が銅リード素子11aで構成される
ものに比べ、超電導コイルへの熱侵入量が大巾に低減さ
れている。このような高温超電導リード素子11bを用
いた超電導電流リードについては、既に特公平5−11
647号公報にも開示されている。In this case, the high temperature superconducting lead element 11b maintains the superconducting state, does not generate Joule heat and uses the ceramic material which is the high temperature superconducting material. Also few. Therefore, the amount of heat entering the superconducting coil is greatly reduced in the superconducting current lead body using the high-temperature superconducting lead element 11b, as compared with the whole body composed of the copper lead element 11a. A superconducting current lead using such a high temperature superconducting lead element 11b has already been disclosed in Japanese Patent Publication No. 5-11.
It is also disclosed in Japanese Patent No. 647.
【0007】[0007]
【発明が解決しようとする課題】上述の従来の超電導電
流リードにおいては、液体窒素10内に中間接続部13
を設けて常温側環境端子7側からの熱の侵入を防止でき
るものの、運転温度を液体窒素温度である77Kまでと
する限り、磁場を印加する場合には、高温超電導リード
素子のもつ臨界電流密度が小さ過ぎる。この臨界電流密
度とは、ある運転温度と運転磁場の下でその超電導材に
流し得る最大の電流密度をいう。この臨界電流密度が小
さくなると、必要な超電導磁場を発生させるための電流
を流すには太いリード素子が必要となり、熱伝導による
熱の侵入が増大してしまう。In the conventional superconducting current lead described above, the intermediate connecting portion 13 is placed in the liquid nitrogen 10.
Although it is possible to prevent heat from entering from the room temperature side environment terminal 7 side by setting the critical temperature density of the high temperature superconducting lead element when a magnetic field is applied as long as the operating temperature is up to 77K which is the liquid nitrogen temperature. Is too small. The critical current density is the maximum current density that can flow in the superconducting material under a certain operating temperature and operating magnetic field. When this critical current density becomes small, a thick read element is required to pass a current for generating a necessary superconducting magnetic field, which increases heat penetration due to heat conduction.
【0008】図5に運転磁場をパラメータにした時の高
温超電導リード素子の臨界電流密度jcの温度特性の一
例を示す。図5によれば、77Kでは運転磁場が0テス
ラの時jcは約10000A/cm2 あるが、0.5テ
スラでは大幅に低下し、500A/cm2 を下回ってい
る。すなわち、運転磁場の強度の増大に伴って臨界電流
密度jcは低下することがわかる。従って、高温超電導
リード素子の臨界電流密度jcにつき、その運転温度を
77Kに固定する限り、例えば超電導コイルからの漏洩
磁場の強度が0.5テスラを超えると臨界電流密度が小
さくなり、実際上の超電導電流リードの設計が困難とな
る。FIG. 5 shows an example of temperature characteristics of the critical current density jc of the high temperature superconducting lead element when the operating magnetic field is used as a parameter. According to FIG. 5, jc is about 10000 A / cm 2 when the operating magnetic field is 0 Tesla at 77 K, but is significantly reduced at 0.5 Tesla, and is below 500 A / cm 2 . That is, it can be seen that the critical current density jc decreases as the strength of the operating magnetic field increases. Therefore, for the critical current density jc of the high-temperature superconducting lead element, as long as the operating temperature is fixed at 77K, for example, when the strength of the leakage magnetic field from the superconducting coil exceeds 0.5 tesla, the critical current density becomes small, and in practice Designing superconducting current lead becomes difficult.
【0009】一方、これまでに製作された超電導コイル
によって発生する漏洩磁場値は、0.5テスラを超える
ものが多数で、むしろ一般的であると言える。そのた
め、現在高温超電導リード素子11bを応用した超電導
電流リードは、その漏洩磁場が小さな、すなわち磁気エ
ネルギーの小さい特殊なコイルにしか応用できないとい
う難点があった。On the other hand, the leakage magnetic field value generated by the superconducting coils manufactured up to now is more than 0.5 tesla in many cases, and it can be said that it is rather general. Therefore, the superconducting current flow lead to which the high temperature superconducting lead element 11b is currently applied has a drawback that it can be applied only to a special coil having a small leakage magnetic field, that is, a small magnetic energy.
【0010】本発明は係る従来の事情に対処してなされ
たものであり、その目的は、超電導コイルの漏洩磁場値
が大きくても超電導電流リード本体の臨界電流密度を大
きく保つことを可能とし、超電導コイルの磁場特性を向
上させることができる超電導電流リードを提供すること
にある。The present invention has been made in view of the above conventional circumstances, and an object thereof is to make it possible to keep the critical current density of the superconducting current lead body large even if the leakage magnetic field value of the superconducting coil is large. An object of the present invention is to provide a superconducting current lead capable of improving the magnetic field characteristics of the superconducting coil.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するた
め、本発明の超電導電流リードは、請求項1記載の発明
では液体ヘリウム容器内に収容した液体ヘリウム中に浸
漬された超電導コイルへ常温環境下におかれた励磁用電
源から電流を供給するため、前記常温環境側端子に接続
され銅あるいは銅合金材から成る銅リード素子と前記液
体ヘリウム容器内に設けられた超電導コイル側端子に接
続され液体窒素温度以上で超電導状態を示す高温超電導
材から成る高温超電導リード素子とを有する超電導電流
リードにおいて、超電導電流リード本体の常温環境側端
子から超電導コイル側端子に至る途中に配設され超電導
電流リード本体を液体窒素を用いて冷却する冷却手段
と、この冷却手段と前記液体ヘリウム容器を接続し超電
導電流リード本体を収容するとともに途中に分岐管を有
しこの分岐管に前記液体ヘリウム容器から液体ヘリウム
を流通させて前記超電導電流リード本体を冷却するガス
管と、前記液体ヘリウム容器前記銅リード素子と高温超
電導リード素子の接続部を前記冷却手段と前記超電導コ
イル側端子の間の超電導電流リード本体に設けた超電導
電流リードである。In order to achieve the above-mentioned object, the superconducting current lead of the present invention is a room temperature environment for a superconducting coil immersed in liquid helium contained in a liquid helium container. In order to supply a current from the excitation power source placed below, a copper lead element made of copper or a copper alloy material connected to the room temperature environment side terminal and a superconducting coil side terminal provided in the liquid helium container are connected. A superconducting current lead having a high-temperature superconducting lead element made of a high-temperature superconducting material that exhibits a superconducting state at a liquid nitrogen temperature or higher. Cooling means for cooling the main body using liquid nitrogen, and connecting this cooling means and the liquid helium container to store the superconducting current lead body. And a gas pipe for cooling the superconducting current flow lead body by flowing liquid helium from the liquid helium container to the branch pipe along the way, and the liquid helium container copper lead element and high temperature superconducting lead element The superconducting current lead is provided with a connecting portion on the superconducting current lead body between the cooling means and the terminal on the superconducting coil side.
【0012】請求項2記載の発明は、請求項1記載の冷
却手段が、液体窒素を収容する液体窒素容器である超電
導電流リードである。請求項3記載の発明は、請求項1
記載の冷却手段が、冷凍機で生成した液体窒素冷媒を流
通・循環させて冷却する冷却パイプである超電導電流リ
ードである。請求項4記載の発明は、接続部には冷却フ
ィンが設けられている請求項1乃至請求項3記載の超電
導電流リードである。According to a second aspect of the present invention, the cooling means according to the first aspect is a superconducting current lead which is a liquid nitrogen container for containing liquid nitrogen. The invention described in claim 3 is claim 1
The described cooling means is a superconducting current lead which is a cooling pipe for circulating and circulating the liquid nitrogen refrigerant generated in the refrigerator. The invention according to claim 4 is the superconducting current lead according to any one of claims 1 to 3, wherein a cooling fin is provided in the connecting portion.
【0013】[0013]
【作用】上記構成の超電導電流リードにおいては、銅リ
ード素子と高温超電導リード素子の接続部が冷却手段の
配設位置よりも超電導コイル側端子側に設けられいるの
で、ガス管内に供給される液体ヘリウム容器からのヘリ
ウムガスによって、高温超電導リード素子が液体窒素容
器内に収容されている液体窒素の温度以下に冷却され
る。In the superconducting current lead of the above construction, since the connecting portion between the copper lead element and the high temperature superconducting lead element is provided closer to the superconducting coil side terminal than the cooling means is arranged, the liquid supplied into the gas pipe is The helium gas from the helium container cools the high temperature superconducting lead element to a temperature equal to or lower than the temperature of the liquid nitrogen contained in the liquid nitrogen container.
【0014】[0014]
【実施例】以下に本発明に係る超電導電流リードの第1
の実施例を図1に基づき説明する。図1は本発明に係る
超電導電流リードの第1の実施例を示す断面図であり、
図4と同一部分については同一符号を付してその説明は
省略する。ガス管5bの内部に収納される超電導電流リ
ード本体11は、銅リード素子11aと高温超電導リー
ド素子11bの接続部13が液体窒素容器12の底部よ
りも下方に設けられている。この接続部13は例えば半
田によって接続され、液体ヘリウム容器2内に収容され
た液体ヘリウム3が蒸発して発生するヘリウムガス9に
よって冷却されることになる。ヘリウムガス9はガス管
5b内を流通し、分岐管18から断熱真空容器4の外部
に放出される。従って、高温超電導リード素子11bの
高温端、すなわち接続部13の運転時の温度は液体窒素
容器12中の温度である77Kよりも低い温度となる。
詳細な接続部13の位置については、使用する高温超電
導リード素子11bの臨界電流密度特性と漏洩磁場値に
基づき、超電導電流リード本体全体の設計により決定さ
れる。The first embodiment of the superconducting current lead according to the present invention will be described below.
The embodiment will be described with reference to FIG. FIG. 1 is a sectional view showing a first embodiment of a superconducting current lead according to the present invention,
The same parts as those in FIG. 4 are designated by the same reference numerals and the description thereof will be omitted. In the superconducting current lead body 11 housed inside the gas pipe 5b, the connecting portion 13 between the copper lead element 11a and the high temperature superconducting lead element 11b is provided below the bottom of the liquid nitrogen container 12. The connection portion 13 is connected by, for example, solder, and is cooled by the helium gas 9 generated by evaporation of the liquid helium 3 contained in the liquid helium container 2. The helium gas 9 circulates in the gas pipe 5b and is discharged from the branch pipe 18 to the outside of the adiabatic vacuum container 4. Therefore, the high temperature end of the high temperature superconducting lead element 11b, that is, the operating temperature of the connecting portion 13 is lower than the temperature in the liquid nitrogen container 12, which is 77K.
The detailed position of the connection portion 13 is determined by the design of the entire superconducting current lead body based on the critical current density characteristics and the leakage magnetic field value of the high temperature superconducting lead element 11b to be used.
【0015】このように構成された超電導電流リードに
おいては、接続部13の運転温度を従来より低くするこ
とができ、従って大規模なコイルが発生する漏洩磁場中
においてもおおきな臨界電流密度Jc値を得ることが可
能である。In the superconducting current flow lead thus constructed, the operating temperature of the connecting portion 13 can be made lower than before, and therefore, a large critical current density Jc value can be obtained even in a leakage magnetic field generated by a large-scale coil. It is possible to obtain.
【0016】この場合、従来のように図4に示されるよ
うに接続部13、すなわち高温超電導リード素子11b
の高温端を液体窒素温度77Kに保つ場合よりも、多く
の冷却用のヘリウムガス4を必要とする。従って、その
分、電流リードとしての冷却コストが増える。しかしな
がら図5に示すように一般に高温超電導材は77Kよ
り、わずか運転温度を下げるだけで著しく臨界電流密度
Jcを増加させることができるので上記冷却コストの増
分を考慮しても有効な超電導電流リードを実現すること
が可能となる。さらに、臨界電流密度が増加することに
よって超電導コイルの磁場特性の向上を図ることが可能
である。In this case, as in the prior art, as shown in FIG. 4, the connecting portion 13, that is, the high temperature superconducting lead element 11b is used.
A larger amount of helium gas 4 for cooling is required than in the case where the high temperature end of is maintained at the liquid nitrogen temperature of 77K. Therefore, the cooling cost as a current lead increases accordingly. However, as shown in FIG. 5, in general, the high temperature superconducting material can significantly increase the critical current density Jc by slightly lowering the operating temperature from 77K. Therefore, even if the above cooling cost increase is taken into consideration, an effective superconducting current lead can be obtained. It can be realized. Furthermore, it is possible to improve the magnetic field characteristics of the superconducting coil by increasing the critical current density.
【0017】次に本発明に係る超電導電流リードの第2
の実施例について図2を用いて説明する。図2は本発明
に係る超電導電流リードの第2の実施例を示す断面図で
あり、図4と同一部分については同一符号を付してその
説明は省略する。本実施例はガス管5b内部に収納され
た銅リード素子11aに冷却フィン15を設け、この部
分で発熱するジュール熱及び熱伝導による侵入熱に対す
るヘリウムガス9の冷却効果を高めることによって超電
導電流リード本体11の冷却効率を向上させたものであ
る。超電導電流リード本体11の冷却効率が向上するこ
とによって、第1の実施例と同様に高温超電導リード素
子11bの臨界電流密度の増加が可能となり、超電導コ
イル1の磁場特性の向上の効果を奏することができる。Next, the second superconducting current lead according to the present invention will be described.
The embodiment will be described with reference to FIG. FIG. 2 is a sectional view showing a second embodiment of the superconducting current flow lead according to the present invention. The same parts as those in FIG. 4 are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, a cooling fin 15 is provided in the copper lead element 11a housed inside the gas pipe 5b, and the cooling effect of the helium gas 9 against the Joule heat generated in this portion and the invasion heat due to heat conduction is enhanced to thereby improve the superconducting current flow lead. The cooling efficiency of the main body 11 is improved. Since the cooling efficiency of the superconducting current lead body 11 is improved, the critical current density of the high temperature superconducting lead element 11b can be increased as in the first embodiment, and the magnetic field characteristics of the superconducting coil 1 can be improved. You can
【0018】次に本発明に係る超電導電流リードの第3
の実施例について図3を用いて説明する。図3は本発明
に係る超電導電流リードの第3の実施例を示す断面図で
あり、図4と同一部分については同一符号を付してその
説明は省略する。本実施例は液体窒素容器12に替えて
冷却パイプ17を銅リード素子11aの廻りに巻回し、
これに外部の冷凍機で生成された液体窒素冷媒16を循
環させて冷却する方法である。この場合、液体窒素容器
12を用いないため構造が簡単になると同時に液体窒素
10を補充する必要がないという利点がある。本実施例
においても、第1及び第2の実施例と同様に高温超電導
リード素子11bの臨界電流密度の増加に伴い超電導コ
イル1の磁場特性の向上を図ることができる。Next, the third superconducting current lead according to the present invention will be described.
The embodiment will be described with reference to FIG. FIG. 3 is a sectional view showing a third embodiment of the superconducting current flow lead according to the present invention. The same parts as those in FIG. 4 are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, instead of the liquid nitrogen container 12, a cooling pipe 17 is wound around the copper lead element 11a,
In this method, the liquid nitrogen refrigerant 16 generated by an external refrigerator is circulated and cooled. In this case, since the liquid nitrogen container 12 is not used, the structure is simplified, and at the same time, it is not necessary to supplement the liquid nitrogen 10. Also in this embodiment, as in the first and second embodiments, it is possible to improve the magnetic field characteristics of the superconducting coil 1 as the critical current density of the high temperature superconducting lead element 11b increases.
【0019】[0019]
【発明の効果】以上説明したように本発明の超電導電流
リードにおいては、超電導コイルから漏洩する磁場によ
る超電導電流リード本体の臨界電流密度の低下を抑制
し、超電導電流リード本体の臨界電流密度を増加させる
ことによって超電導コイルの磁場特性を向上させること
ができる。As described above, in the superconducting current lead of the present invention, the decrease of the critical current density of the superconducting current lead body due to the magnetic field leaking from the superconducting coil is suppressed, and the critical current density of the superconducting current lead body is increased. By doing so, the magnetic field characteristics of the superconducting coil can be improved.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明に係る超電導電流リードの第1の実施例
を示す模式的縦断面図。FIG. 1 is a schematic vertical cross-sectional view showing a first embodiment of a superconducting current lead according to the present invention.
【図2】本発明に係る超電導電流リードの第2の実施例
を示す模式的縦断面図。FIG. 2 is a schematic vertical sectional view showing a second embodiment of a superconducting current lead according to the present invention.
【図3】本発明に係る超電導電流リードの第3の実施例
を示す模式的縦断面図。FIG. 3 is a schematic vertical sectional view showing a third embodiment of a superconducting current lead according to the present invention.
【図4】超電導電流リードの従来例を示す構成図。FIG. 4 is a configuration diagram showing a conventional example of a superconducting current lead.
【図5】運転磁場をパラメータとした高温超電導リード
素子の臨界電流密度の温度特性図。FIG. 5 is a temperature characteristic diagram of the critical current density of the high temperature superconducting lead element using the operating magnetic field as a parameter.
1…超電導コイル 2…液体ヘリウム容器 3…液体ヘリウム 4…断熱真空容器 5a,5b…ガス管 7…常温側環境端子 8…超電導コイル側端子 9…ヘリウムガス 10…液体窒素 11…超電導電流リー
ド本体 11a…銅リード素子 11b…高温超電導リ
ード素子 12…液体窒素容器 13…接続部 14…窒素ガス 15…冷却フィン 16…冷媒 17…冷却パイプ 18…分岐管1 ... Superconducting coil 2 ... Liquid helium container 3 ... Liquid helium 4 ... Adiabatic vacuum container 5a, 5b ... Gas pipe 7 ... Room temperature side environment terminal 8 ... Superconducting coil side terminal 9 ... Helium gas 10 ... Liquid nitrogen 11 ... Superconducting current lead body 11a ... Copper lead element 11b ... High temperature superconducting lead element 12 ... Liquid nitrogen container 13 ... Connection part 14 ... Nitrogen gas 15 ... Cooling fin 16 ... Refrigerant 17 ... Cooling pipe 18 ... Branch pipe
Claims (4)
ウム中に浸漬された超電導コイルへ常温環境下におかれ
た励磁用電源から電流を供給するため、超電導電流リー
ド本体として前記常温環境側端子に接続され銅あるいは
銅合金材から成る銅リード素子と前記液体ヘリウム容器
内に設けられた超電導コイル側端子に接続され液体窒素
温度以上で超電導状態を示す高温超電導材から成る高温
超電導リード素子とを有する超電導電流リードにおい
て、前記超電導電流リード本体の常温環境側端子から超
電導コイル側端子に至る途中に配設され前記銅リード素
子を液体窒素を用いて冷却する冷却手段と、この冷却手
段と前記液体ヘリウム容器を接続し前記高温超電導リー
ド素子を収容するとともに途中に分岐管を有しこの分岐
管に前記液体ヘリウム容器から液体ヘリウムを流通させ
て高温超電導リード素子を冷却するガス管とを有し、前
記銅リード素子と高温超電導リード素子の接続部を前記
冷却手段と前記超電導コイル側端子の間の超電導電流リ
ード本体に設けたことを特徴とする超電導電流リード。1. A superconducting current lead body is connected to the room temperature environment side terminal as a superconducting current lead body in order to supply a current from an exciting power supply placed in a room temperature environment to a superconducting coil immersed in liquid helium contained in a liquid helium container. A copper lead element made of copper or a copper alloy material and a high temperature superconducting lead element made of a high temperature superconducting material connected to the superconducting coil side terminal provided in the liquid helium container and exhibiting a superconducting state at a liquid nitrogen temperature or higher. In the superconducting current lead, cooling means is provided on the way from the room temperature environment side terminal of the superconducting current lead body to the superconducting coil side terminal to cool the copper lead element using liquid nitrogen, and the cooling means and the liquid helium. The container is connected to accommodate the high temperature superconducting lead element, and a branch pipe is provided in the middle thereof, and the liquid helium is placed in the branch pipe. A gas tube for cooling the high temperature superconducting lead element by circulating liquid helium from the container, and connecting the copper lead element and the high temperature superconducting lead element to the superconducting current lead between the cooling means and the superconducting coil side terminal. A superconducting current lead that is provided on the main body.
体窒素容器であることを特徴とする請求項1記載の超電
導電流リード。2. The superconducting current lead according to claim 1, wherein the cooling means is a liquid nitrogen container containing liquid nitrogen.
を流通・循環させて冷却する冷却パイプであることを特
徴とする請求項1記載の超電導電流リード。3. The superconducting current lead according to claim 1, wherein the cooling means is a cooling pipe for circulating and circulating a refrigerant generated in a refrigerator.
いることを特徴とする請求項1乃至請求項3記載の超電
導電流リード。4. The superconducting current lead according to claim 1, wherein the connecting portion is provided with a cooling fin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7004556A JPH08195309A (en) | 1995-01-17 | 1995-01-17 | Superconducting current lead |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7004556A JPH08195309A (en) | 1995-01-17 | 1995-01-17 | Superconducting current lead |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08195309A true JPH08195309A (en) | 1996-07-30 |
Family
ID=11587328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7004556A Pending JPH08195309A (en) | 1995-01-17 | 1995-01-17 | Superconducting current lead |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08195309A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006324325A (en) * | 2005-05-17 | 2006-11-30 | Mitsubishi Electric Corp | Super-conducting magnet apparatus |
JP5959062B2 (en) * | 2010-10-14 | 2016-08-02 | 学校法人中部大学 | Current lead device |
-
1995
- 1995-01-17 JP JP7004556A patent/JPH08195309A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006324325A (en) * | 2005-05-17 | 2006-11-30 | Mitsubishi Electric Corp | Super-conducting magnet apparatus |
JP5959062B2 (en) * | 2010-10-14 | 2016-08-02 | 学校法人中部大学 | Current lead device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6220303A (en) | Forced-cooling superconducting coil apparatus | |
JP2006324325A (en) | Super-conducting magnet apparatus | |
CA2210540A1 (en) | Cooling method and energizing method of superconductor | |
JPH10335137A (en) | Cooling method and conducting method for superconductor | |
JPH08195309A (en) | Superconducting current lead | |
JPH10275719A (en) | Method for cooling superconductor | |
JP3100083B2 (en) | Cooling method of power supply line for cryogenic electric device and apparatus for implementing the method | |
JP2004111581A (en) | Superconducting magnet unit | |
JP3377350B2 (en) | Thermoelectric cooling type power lead | |
JP2001126916A (en) | High-temperature superconducting coil and high- temperature superconducting magnet using the same | |
JP2515813B2 (en) | Current lead for superconducting equipment | |
JPS63292610A (en) | Current supply lead for superconducting device | |
JPH11329526A (en) | Connecting device of superconducting wire for low temperature equipment | |
JP3120557B2 (en) | High magnetic field generator and permanent current switch | |
JPH10116725A (en) | Superconducting magnet device | |
JP3860070B2 (en) | Thermoelectric cooling power lead | |
JP2000150224A (en) | Excitation control method of superconducting coil | |
JPS61125002A (en) | Forcibly cooled superconductive coil device | |
JP2943032B2 (en) | High temperature superconductor current lead | |
JPH05267054A (en) | High magnetic field generator and permanent electric current switch | |
JP3127705B2 (en) | Current lead using oxide superconductor | |
JPH1074621A (en) | Magnetizing method for superconductor and superconducting magnetic device | |
JPH03283678A (en) | Current lead of superconducting magnet apparatus | |
JP4562947B2 (en) | Superconducting magnet | |
JPH06314612A (en) | Oxide superconducting current lead |