JP3120557B2 - High magnetic field generator and permanent current switch - Google Patents

High magnetic field generator and permanent current switch

Info

Publication number
JP3120557B2
JP3120557B2 JP04109535A JP10953592A JP3120557B2 JP 3120557 B2 JP3120557 B2 JP 3120557B2 JP 04109535 A JP04109535 A JP 04109535A JP 10953592 A JP10953592 A JP 10953592A JP 3120557 B2 JP3120557 B2 JP 3120557B2
Authority
JP
Japan
Prior art keywords
magnetic field
current switch
permanent current
field generator
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04109535A
Other languages
Japanese (ja)
Other versions
JPH05304025A (en
Inventor
勝蔵 相原
臣平 松田
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04109535A priority Critical patent/JP3120557B2/en
Priority to EP93301804A priority patent/EP0561552B1/en
Priority to DE69314522T priority patent/DE69314522T2/en
Publication of JPH05304025A publication Critical patent/JPH05304025A/en
Priority to US08/462,762 priority patent/US5680085A/en
Application granted granted Critical
Publication of JP3120557B2 publication Critical patent/JP3120557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高磁場発生装置及び永
久電流スイッチに係り、特に液体窒素を冷媒として作動
する高磁場発生装置及び永久電流スイッチに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high magnetic field generator and a permanent current switch, and more particularly to a high magnetic field generator and a permanent current switch that operate using liquid nitrogen as a refrigerant.

【0002】[0002]

【従来の技術】従来、物質の磁気特性の測定,核磁気共
鳴を利用した物資の分析、あるいはMRI(Magnetic R
esonance Imaging)などでは高磁場発生装置が必要であ
る。この場合、該高磁場発生装置を超電導状態にした
り、常電導状態にしたりすることが必要であり、そのた
めに永久電流スイッチが使用される。従来、永久電流ス
イッチは、特開平1−117004 号のように該永久電流スイ
ッチと冷却材とが直接接触する構造であった。
2. Description of the Related Art Conventionally, measurement of magnetic properties of materials, analysis of materials using nuclear magnetic resonance, or MRI (Magnetic R)
esonance Imaging) requires a high magnetic field generator. In this case, it is necessary to bring the high magnetic field generator into a superconducting state or a normal conducting state, and a permanent current switch is used for that purpose. Conventionally, the permanent current switch has a structure in which the permanent current switch and the coolant are in direct contact as disclosed in Japanese Patent Application Laid-Open No. 1-117004.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術の永久電
流スイッチでは、高磁場発生装置を超電導状態から常電
導状態に切り替える際にヒータによって加熱するが、該
永久電流スイッチと冷却材とが直接接触しているために
は、ヒータによって加熱しても熱が冷却材に奪われるの
で、超電導状態から常電導状態に切り替えるために大電
流が必要であり、かつ加熱に長時間を要していた。更
に、常電導状態を維持するのにヒータによって加熱して
も熱が冷却材に奪われるので、大きなヒータ電力を必要
とするという問題があった。
In the above-described permanent current switch of the prior art, when the high magnetic field generator is switched from the superconducting state to the normal conducting state, the heater is heated by the heater. In this case, heat is taken away by the coolant even when heated by the heater, so a large current is required to switch from the superconducting state to the normal conducting state, and the heating takes a long time. Furthermore, even if the heater is used to maintain the normal conduction state, heat is taken away by the coolant, so that a large heater power is required.

【0004】本発明の目的は、電力消費が少ない磁場発
生装置を提供することにある。
It is an object of the present invention to provide a magnetic field generator that consumes less power.

【0005】[0005]

【課題を解決するための手段】上記目的は、永久電流ス
イッチを断熱的にケースに納めることにより達成され
る。
The above object is achieved by adiabatically enclosing a permanent current switch in a case.

【0006】本発明は、冷却材を収容する冷却容器と、
該冷却材中に浸漬された超電導コイル及び該超電導コイ
ルに接続された永久電流スイッチと、該超電導コイル及
び該永久電流スイッチに接続された励磁用電源を有する
高磁場発生装置において、該永久電流スイッチが断熱的
にケースに納められた高磁場発生装置を提供するもので
ある。本発明において用いられる冷却材としては例えば
液体ヘリウム,液体窒素をあげることができる。本発明
の構成を図1を用いて説明する。超電導コイル1は、磁
場を発生するためのものであり、超電導体を絶縁材とと
もに巻いてコイルとする。永久電流スイッチ2は、コイ
ル1の外側でコイル1の発生する磁場が最も弱い場所を
選んで配置してある。コイル1の巻き線端部と永久電流
スイッチ2とは超電導接続がなされている。保護抵抗3
として本実施例では1Ωの抵抗体を使用した。冷却容器
4にはステンレス製の断熱容器を用いた。励磁用電源5
には、定電流制御の直流電源を用いた。
[0006] The present invention provides a cooling container for containing a coolant,
In a high magnetic field generator having a superconducting coil immersed in the coolant, a permanent current switch connected to the superconducting coil, and an exciting power supply connected to the superconducting coil and the permanent current switch, the permanent current switch Is to provide a high magnetic field generating device housed in a case adiabatically. Examples of the coolant used in the present invention include liquid helium and liquid nitrogen. The configuration of the present invention will be described with reference to FIG. The superconducting coil 1 is for generating a magnetic field, and is formed by winding a superconductor together with an insulating material. The permanent current switch 2 is disposed outside the coil 1 at a position where the magnetic field generated by the coil 1 is weakest. A superconducting connection is made between the winding end of the coil 1 and the permanent current switch 2. Protection resistance 3
In this embodiment, a 1Ω resistor is used. As the cooling container 4, a heat insulating container made of stainless steel was used. Power supply for excitation 5
, A DC power supply of constant current control was used.

【0007】また、本発明は、冷却材を収容する冷却容
器と、該冷却材で強制循環冷却される超電導コイル及び
該超電導コイルに接続された永久電流スイッチと、該超
電導コイル及び該永久電流スイッチに接続された励磁用
電源を有する高磁場発生装置において、該永久電流スイ
ッチが断熱的にケースに納められた高磁場発生装置を提
供するものである。本発明における強制循環冷却は、冷
却材をポンプ等によって加圧して強制的に循環させる方
法である。本発明の構成を図7を用いて説明する。超電
導コイル1は、磁場を発生するためのものであり、超電
導体を絶縁材とともに巻いてコイルとする。永久電流ス
イッチ2は、コイル1の外側でコイル1の発生する磁場
が最も弱い場所を選んで配置してある。コイル1の巻き
線端部と永久電流スイッチ2とは超電導接続がなされて
いる。保護抵抗3として本実施例では1Ωの抵抗体を使
用した。冷却容器4には強制循環冷却方式を用いた。励
磁用電源5には、定電流制御の直流電源を用いた。
Further, the present invention provides a cooling container for containing a coolant, a superconducting coil forcibly circulated by the coolant, a permanent current switch connected to the superconducting coil, the superconducting coil and the permanent current switch. And a permanent current switch provided in an adiabatic case in a high magnetic field generator having an excitation power supply connected to the power supply. The forced circulation cooling in the present invention is a method of forcibly circulating the coolant by pressurizing the coolant with a pump or the like. The configuration of the present invention will be described with reference to FIG. The superconducting coil 1 is for generating a magnetic field, and is formed by winding a superconductor together with an insulating material. The permanent current switch 2 is disposed outside the coil 1 at a position where the magnetic field generated by the coil 1 is weakest. A superconducting connection is made between the winding end of the coil 1 and the permanent current switch 2. In this embodiment, a 1Ω resistor is used as the protection resistor 3. A forced circulation cooling system was used for the cooling container 4. As the excitation power supply 5, a DC power supply of constant current control was used.

【0008】さらに、本発明は、絶縁性基板に形成した
電流路と、該電流路に接続されたヒータを有する永久電
流スイッチにおいて、該電流路と該ヒータを取り囲むケ
ースを有する永久電流スイッチを提供するものである。
基板の材質はAl23,TiSrO3,MgO 等からな
る。電流路とは電気の流れる線又は膜であり、材質とし
ては高温超電導体であることが好ましい。ケースは断熱
性の高いことが好ましい。
Further, the present invention provides a permanent current switch having a current path formed on an insulating substrate and a heater connected to the current path, the permanent current switch having a case surrounding the current path and the heater. Is what you do.
The material of the substrate is made of Al 2 O 3 , TiSrO 3 , MgO or the like. The current path is a line or a film through which electricity flows, and the material is preferably a high-temperature superconductor. It is preferable that the case has high heat insulation.

【0009】本発明による永久電流スイッチを図2及び
3を用いて説明する。永久電流スイッチ2は、基板11
の上面に電流路12としてTl−(1223)系酸化物超
電導体の膜をレーザアブレーション法で形成し、ヒータ
13としてマンガニンの薄膜ヒータを基板の下面に接着
した。用いた基板は厚さ0.5mm ,幅20mm,長さ30
mmのMgO単結晶で、電流路は幅4mm,厚さ2μm,長
さが80mmである。ケース15はポリイミドの絶縁シー
トとエポキシ樹脂とで形成した。直径約1mmの穴16を
2箇所に設けてある。該電流路と該ヒータを電気絶縁性
物質を介して接続しても良い。
A permanent current switch according to the present invention will be described with reference to FIGS. The permanent current switch 2 is connected to the substrate 11
A Tl- (1223) oxide superconductor film was formed as a current path 12 on the upper surface of the substrate by laser ablation, and a manganin thin film heater as a heater 13 was adhered to the lower surface of the substrate. The substrate used was 0.5 mm thick, 20 mm wide and 30 long.
The current path is 4 mm in width, 2 μm in thickness, and 80 mm in length. The case 15 was formed of a polyimide insulating sheet and an epoxy resin. Two holes 16 having a diameter of about 1 mm are provided. The current path and the heater may be connected via an electrically insulating material.

【0010】[0010]

【作用】本発明の高磁場発生装置における永久電流スイ
ッチのヒータに通電すると電流路は、温度が上がり臨界
温度以上になると、超電導状態が破れ、抵抗が急激に上
昇する。このとき空間14内に蒸発した冷却材はガス状
であり断熱性が高いので、少ないヒータ電力でスイッチ
を動作させることができる。常電導状態を維持するため
に、臨界温度よりもわずかに高い温度となるようにヒー
タを調節する。この時、空間内15の蒸発した冷却材の
圧力は液体冷却材の圧力と平衡になるため液体冷却材は
空間内15に侵入しない。空間14が無い場合には、ヒ
ータによって加熱しても熱が冷却材に奪われるので、常
電導状態を維持するのに大きなヒータ電力を必要とす
る。
When the heater of the permanent current switch in the high magnetic field generator of the present invention is energized, the temperature of the current path rises and when the temperature exceeds the critical temperature, the superconducting state is broken and the resistance rises sharply. At this time, the coolant evaporated in the space 14 is in a gaseous state and has high heat insulation, so that the switch can be operated with a small heater power. In order to maintain the normal conduction state, the heater is adjusted so that the temperature is slightly higher than the critical temperature. At this time, since the pressure of the evaporated coolant in the space 15 is balanced with the pressure of the liquid coolant, the liquid coolant does not enter the space 15. If there is no space 14, even if heated by the heater, heat is taken away by the coolant, so that a large heater power is required to maintain the normal conduction state.

【0011】ヒータをOFFすると空間内15の圧力が
減少するため、穴16から空間内15に再び液体冷却材
が流入し、電流路は速やかに冷却され、超電導状態に復
帰する。すなわち、本発明の永久電流スイッチは少ない
ヒータ電力で常電導状態を保持できるとともにスイッチ
速度が早いという特徴を有する。
When the heater is turned off, the pressure in the space 15 decreases, so that the liquid coolant flows into the space 15 again from the hole 16, and the current path is quickly cooled and returns to the superconducting state. That is, the permanent current switch of the present invention has a feature that the normal conduction state can be maintained with a small heater power and the switch speed is high.

【0012】本発明において、「永久電流スイッチが断
熱的にケースに納められる」とはケースが断熱性の高い
材質で構成するか、永久電流スイッチとケースとの間に
空間を形成して断熱性を高めるかあるいは両者の組合せ
を意味している。
In the present invention, "the permanent current switch is housed in the case adiabatically" means that the case is made of a material having a high heat insulating property, or a space is formed between the permanent current switch and the case to form the heat insulating property. Or a combination of the two.

【0013】本発明として用いられる冷却材としては、
たとえば液体ヘリウム,液体窒素等をあげることができ
るが、液体窒素がより好ましい。超電導電磁石にNb−
Ti合金やNb−Sn金属間化合物などの金属系超電導
体を使用する場合は液体ヘリウムを用いる。液体ヘリウ
ムは沸点が絶対温度4.2K と極低温のため真空断熱構
造を有する冷媒容器が必要であった。超電導電磁石のコ
イル線材及び永久電流スイッチの電流線輪として酸化物
超電導体を使用する場合は液体窒素を用いることができ
る。液体窒素は沸点が絶対温度77.3K であり、冷却
構造が大幅に簡略化できる。しかも、液体窒素は液体ヘ
リウムに比べて1/10以下と安価である。
The coolant used in the present invention includes:
For example, liquid helium, liquid nitrogen and the like can be mentioned, but liquid nitrogen is more preferable. Nb-
When a metal-based superconductor such as a Ti alloy or an Nb-Sn intermetallic compound is used, liquid helium is used. Since liquid helium has an extremely low boiling point of 4.2 K in absolute temperature, a refrigerant container having a vacuum insulation structure was required. When an oxide superconductor is used as the coil wire of the superconducting electromagnet and the current loop of the permanent current switch, liquid nitrogen can be used. Liquid nitrogen has a boiling point of 77.3K absolute, and the cooling structure can be greatly simplified. Moreover, liquid nitrogen is less expensive than liquid helium, at 1/10 or less.

【0014】液体窒素は大気圧下では、沸点が77.3
K であるが、減圧にするとその沸点は下る。例えば1
0Torrの圧力下では沸点が54Kになるので、この条件
下で本発明の高磁場発生装置を使用することも好まし
い。一般に、超電導物質の臨界電流密度,臨界磁場は、
低温ほど向上する。臨界温度が80Kを超える高温超電
導体、例えばタリウム系Tl−(1223),Tl−(1
212),Tl−(2223),Tl−(2212),Y−
(123),Bi−(2212),Bi−(2223)では、
77K近辺で温度を下げてゆくと図9に示すように臨界
電流密度は急激に向上する。したがって、高温超電導体
を用いたマグネットでは、77Kから54Kの間で使用
するのも好ましいものである。減圧して温度を下げるに
は、ポンプで吸引するなどで達成できる。
Liquid nitrogen has a boiling point of 77.3 at atmospheric pressure.
The boiling point is lowered when the pressure is reduced. For example, 1
Since the boiling point is 54K under a pressure of 0 Torr, it is preferable to use the high magnetic field generator of the present invention under these conditions. In general, the critical current density and critical magnetic field of a superconducting material are
It improves at lower temperatures. High-temperature superconductors whose critical temperature exceeds 80K, such as thallium-based Tl- (1223), Tl- (1
212), Tl- (2223), Tl- (2212), Y-
(123), Bi- (2212) and Bi- (2223)
As the temperature is lowered near 77K, the critical current density sharply increases as shown in FIG. Therefore, a magnet using a high-temperature superconductor is preferably used between 77K and 54K. Decreasing the temperature by reducing the pressure can be achieved by suction with a pump or the like.

【0015】本発明における永久電流スイッチ及び超電
導コイルには酸化物超電導体を用いるのが好ましい。
It is preferable to use an oxide superconductor for the permanent current switch and the superconducting coil in the present invention.

【0016】本発明の高磁場発生装置では、超電導コイ
ルおよび永久電流スイッチに従来の金属超電導体、又は
化合物超電導体を使用しても良いが、LnBa2Cu3
7-δ(ここでLnはY,Ho,Erなどの希土類元素),
Bi2Sr2CaCu28-δ,Bi2Sr2Ca2Cu39-δ
Tl2Ba2CaCu28-δ,Tl2Ba2Ca2Cu39-δ,Tl
Br2CaCu28-δ,TlSr2Ca2Cu39-δ
基本式で示される酸化物超電導物質、あるいはその誘導
体が使用できる。
In the high magnetic field generator of the present invention, a conventional metal superconductor or a compound superconductor may be used for the superconducting coil and the permanent current switch, but LnBa 2 Cu 3 O
7-δ (where Ln is a rare earth element such as Y, Ho, Er),
Bi 2 Sr 2 CaCu 2 O 8-δ , Bi 2 Sr 2 Ca 2 Cu 3 O 9-δ ,
Tl 2 Ba 2 CaCu 2 O 8-δ , Tl 2 Ba 2 Ca 2 Cu 3 O 9-δ , Tl
An oxide superconducting substance represented by a basic formula of Br 2 CaCu 2 O 8-δ or TlSr 2 Ca 2 Cu 3 O 9-δ or a derivative thereof can be used.

【0017】これらの酸化物超電導体の臨界温度はいず
れも冷却材温度以上である。これらの中で好ましくは、
タリウム,アルカリ土類金属,銅の酸化物を含み、層状
ペロブスカイト構造を有し、その結晶構造中にTl−O
面が一面である酸化物超電導物質が臨界温度および磁場
中での超電導特性に優れているので望ましい。
The critical temperature of any of these oxide superconductors is higher than the coolant temperature. Of these, preferably
It contains thallium, alkaline earth metal and copper oxides, has a layered perovskite structure, and has Tl-O in its crystal structure.
An oxide superconducting material having one surface is desirable because of its excellent superconducting properties in a critical temperature and a magnetic field.

【0018】その一般式は、 (Tl1-xx)i(Sr1-yBay)jCakCu1−O ここに A=Pb,Biから選ばれた少なくとも1種以
上であり、各添字は次の値を示す。
[0018] The general formula is a (Tl 1-x A x) i (Sr 1-y Ba y) j Ca k Cu 1 -O here A = Pb, at least one or more selected from Bi, Each subscript indicates the following value.

【0019】x=0.01〜0.7 y=0.01〜0.7 i=0.7〜1.3 j=1.5〜2.5 k=0.8〜4.0 l=1.5〜5.0X = 0.01-0.7 y = 0.01-0.7 i = 0.7-1.3 j = 1.5-2.5 k = 0.8-4.0 l = 1.5-5.0

【0020】[0020]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】(実施例1)本発明による永久電流スイッ
チの一実施例を図2及び図3に示す。
(Embodiment 1) FIGS. 2 and 3 show an embodiment of a permanent current switch according to the present invention.

【0022】永久電流スイッチ2は、基板11の上面に
電流路12としてTl−(1223)系酸化物超電導体の
膜をレーザアブレーション法で形成し、ヒータ13とし
てマンガニンの薄膜ヒータを基板の下面に接着した。用
いた基板は厚さ0.5mm ,幅20mm,長さ30mmのMg
O単結晶で、電流路は幅4mm,厚さ2μm,長さが80
mmである。ケース15はポリイミドの絶縁シートとエポ
キシ樹脂とで形成した。ケースには直径約1mmの穴16
を2箇所に設けてある。
The permanent current switch 2 has a Tl- (1223) oxide superconductor film formed on the upper surface of a substrate 11 as a current path 12 by a laser ablation method, and a manganin thin film heater as a heater 13 on the lower surface of the substrate. Glued. The substrate used was Mg 0.5 mm thick, 20 mm wide and 30 mm long.
O single crystal, current path 4 mm wide, 2 μm thick, 80 long
mm. The case 15 was formed of a polyimide insulating sheet and an epoxy resin. Hole 16 with a diameter of about 1 mm
Are provided at two places.

【0023】この永久電流スイッチを液体窒素中に浸漬
し試験したところ、臨界電流は25Aで、ヒータをON
して超電導状態を破ったときの常電導状態での抵抗値は
60Ωであった。ヒータ電力を1W投入としたとき20
秒後に超電導状態から常電導状態に転移し、その後0.
1W にヒータ電力を下げても常電導状態は持続した。
また、ヒータ電力をOFFしたとき5秒後に超電導状態
に復帰した。
When this permanent current switch was immersed in liquid nitrogen and tested, the critical current was 25 A, and the heater was turned on.
Then, when the superconducting state was broken, the resistance value in the normal conducting state was 60Ω. 20 when heater power is 1W input
After a second, the state changes from the superconducting state to the normal conducting state, and then the state changes to 0.
Even when the heater power was reduced to 1 W, the normal conduction state was maintained.
When the heater power was turned off, the superconducting state was restored after 5 seconds.

【0024】一方、空間14を形成させないスイッチの
場合には、超電導状態を常電導状態に転移させるのに必
要な最低ヒータ電力は0.5W であったが、ヒータ電力
をそれより低下させると常電導状態を維持することがで
きなかった。即ち、本実施例の永久電流スイッチでは空
間14を形成させないスイッチにくらべ1/5のヒータ
電力で常電導状態が維持できることが示された。
On the other hand, in the case of a switch in which the space 14 is not formed, the minimum heater power required to change the superconducting state to the normal conducting state is 0.5 W. The conductive state could not be maintained. That is, it was shown that the permanent current switch of the present embodiment can maintain the normal conduction state with 1/5 of the heater power as compared with the switch that does not form the space 14.

【0025】前記永久電流スイッチを組み込んだ高磁場
発生装置を図1に示す。
FIG. 1 shows a high magnetic field generator incorporating the permanent current switch.

【0026】超電導コイル1は、磁場を発生するための
ものである。Tcが122KのTl−(1223)酸化物
超電導体を用いて幅3mm,厚み0.1mm の銀シーステー
プ状線材を作り、アルミナ不織布とともに巻いてパンケ
ーキコイルとし、これを12段積層してコイルとした。
コイル1の巻き線寸法は巻き線内径が20mm,巻き線外
径が60mm,軸長が40mmである。永久電流スイッチ2
は図1及び図2で示したものを、コイル1の外側でコイ
ル1の発生する磁場が最も弱い場所を選んで配置してあ
る。コイル1の巻き線端部と永久電流スイッチ2とは超
電導接続がなされている。
The superconducting coil 1 is for generating a magnetic field. Using a Tl- (1223) oxide superconductor having a Tc of 122K, a silver sheath tape-shaped wire having a width of 3 mm and a thickness of 0.1 mm was formed, wound with an alumina nonwoven fabric into a pancake coil, and laminated in 12 layers to form a coil. And
The winding dimensions of the coil 1 are such that the inner diameter of the winding is 20 mm, the outer diameter of the winding is 60 mm, and the shaft length is 40 mm. Permanent current switch 2
1 is the one shown in FIGS. 1 and 2 and is selected and arranged outside the coil 1 at a place where the magnetic field generated by the coil 1 is weakest. A superconducting connection is made between the winding end of the coil 1 and the permanent current switch 2.

【0027】保護抵抗3として本実施例では1Ωの抵抗
体を使用した。冷却容器4にはステンレス製の断熱容器
を用いた。励磁用電源5には、定電流制御の直流電源を
用いた。
In this embodiment, a 1Ω resistor is used as the protection resistor 3. As the cooling container 4, a heat insulating container made of stainless steel was used. As the excitation power supply 5, a DC power supply of constant current control was used.

【0028】液体窒素を冷却容器4に充填し超電導コイ
ル1を冷却し、次いで、永久電流スイッチ2のヒータに
1Wの電力を加えてスイッチをOFF状態にし、励磁用
電源5により超電導コイルを励磁して磁場を発生させ
た。20A通電したときコイル中心に1Tの磁場を発生
した。その後にヒータをOFFし永久電流スイッチをO
N状態すなわち永久電流モードにした。電源を切り離し
て、コイルの発生磁場の減衰状態を調べたところ1時間
後の減衰量は5%と実用上は差しつかえない結果が得ら
れた。
The cooling vessel 4 is filled with liquid nitrogen to cool the superconducting coil 1, and then the heater of the permanent current switch 2 is turned off by applying 1 W of electric power to the heater, and the superconducting coil is excited by the exciting power supply 5. To generate a magnetic field. When a current of 20 A was applied, a magnetic field of 1 T was generated at the center of the coil. After that, turn off the heater and turn on the permanent current switch.
The N state, that is, the permanent current mode was set. When the power supply was cut off and the attenuation state of the generated magnetic field of the coil was examined, the attenuation amount after one hour was 5%, which was a practically acceptable result.

【0029】また、従来の鉄芯電磁石,液体ヘリウム冷
却超電導電磁石,本実施例の電磁石の場合における,1
テスラ,単位重量当りの電力はそれぞれ4.7W/kg・
T,3.3W/kg・T,1W/kg・Tであった。
Further, in the case of the conventional iron core electromagnet, liquid helium cooled superconducting electromagnet, and the electromagnet of the present embodiment, 1
The power per unit weight of Tesla and 4.7W / kg
T, 3.3 W / kg · T and 1 W / kg · T.

【0030】また、電源を含めない全重量は約5kgで容
易に持ち運びできた。
The total weight without the power supply was about 5 kg, and it was easy to carry.

【0031】さらに、実施例1の高磁場発生装置に磁気
シールドを設けて漏れ磁場を低減することも可能であ
る。
Furthermore, it is also possible to provide a magnetic shield in the high magnetic field generator of the first embodiment to reduce the leakage magnetic field.

【0032】(実施例2)本発明による高磁場発生装置
を図4に示す。
(Embodiment 2) FIG. 4 shows a high magnetic field generator according to the present invention.

【0033】実施例1と同様、高磁場発生装置は超電導
コイル1,永久電流スイッチ2,保護抵抗3,冷却容器
4,励磁用電源5から構成されているが、本実施例の高
磁場発生装置では、磁場発生空間6が大気開放された構
造となっている。
As in the first embodiment, the high magnetic field generator comprises a superconducting coil 1, a permanent current switch 2, a protective resistor 3, a cooling vessel 4, and an excitation power supply 5. Has a structure in which the magnetic field generation space 6 is open to the atmosphere.

【0034】実施例2の超電導コイルを90°回転させ
た高磁場発生装置とすることも可能である。
It is also possible to provide a high magnetic field generator in which the superconducting coil of the second embodiment is rotated by 90 °.

【0035】(実施例3)実施例1の高磁場発生装置に
直流電源を設けた例を図5に示す。
Embodiment 3 FIG. 5 shows an example in which a DC power supply is provided in the high magnetic field generator of Embodiment 1.

【0036】実施例1と同様、高磁場発生装置は超電導
コイル1,永久電流スイッチ2,保護抵抗3,冷却容器
4及び励磁用電源5から構成されているが、本実施例の
高磁場発生装置では、励磁用電源5として直流電源を用
いる構成とした。可変抵抗器52を直流電源51と直列
に接続し、励磁電流の制御をした。所定の磁場を発生し
たら、永久電流モードにし励磁回路を遮断した。直流電
源として、乾電池,蓄電池,自動車などの電源を用いれ
ば、携帯用の高磁場発生装置として利用できる。
As in the first embodiment, the high magnetic field generator comprises a superconducting coil 1, a permanent current switch 2, a protective resistor 3, a cooling vessel 4 and an exciting power supply 5, but the high magnetic field generator of this embodiment In this embodiment, a DC power supply is used as the excitation power supply 5. A variable resistor 52 was connected in series with the DC power supply 51 to control the exciting current. When a predetermined magnetic field was generated, a permanent current mode was set and the excitation circuit was shut off. If a power source such as a dry cell, a storage battery, or an automobile is used as the DC power source, it can be used as a portable high magnetic field generator.

【0037】(実施例4)実施例4の高磁場発生装置を
対向させる例を図6に示す。
(Embodiment 4) FIG. 6 shows an example in which the high magnetic field generators of Embodiment 4 are opposed to each other.

【0038】実施例1と同様、高磁場発生装置は超電導
コイル1,永久電流スイッチ2,保護抵抗3,冷却容器
4,励磁用電源5から構成されているが、本実施例では
2対の高磁場発生装置を対向させる構成とした。この場
合、コイル中心軸に対して直交する空間が大きく取れる
利点がある。
As in the first embodiment, the high magnetic field generator comprises a superconducting coil 1, a permanent current switch 2, a protective resistor 3, a cooling vessel 4, and an exciting power supply 5, but in this embodiment, two pairs of high magnetic fields are used. The configuration was such that the magnetic field generator was opposed. In this case, there is an advantage that a large space perpendicular to the coil center axis can be taken.

【0039】(実施例5)実施例3の高磁場発生装置を
強制循環冷却型とした例を図7に示す。
(Embodiment 5) FIG. 7 shows an example in which the high magnetic field generator of Embodiment 3 is of a forced circulation cooling type.

【0040】実施例1と同様、高磁場発生装置は超電導
コイル1,永久電流スイッチ2,保護抵抗3,冷却容器
4及び励磁用電源5から構成されているが、本実施例で
は冷却材を強制循環して超電導コイルを冷却する構造と
なっている。すなわち、冷却材を供給口91から導入
し、排出口92から戻す構造となっている。強制循環冷
却方式では冷却容器4を小型化できる。
As in the first embodiment, the high magnetic field generator comprises a superconducting coil 1, a permanent current switch 2, a protective resistor 3, a cooling vessel 4 and an exciting power supply 5, but in this embodiment, the coolant is forced. It has a structure that circulates and cools the superconducting coil. That is, the coolant is introduced from the supply port 91 and returned from the discharge port 92. In the forced circulation cooling system, the size of the cooling container 4 can be reduced.

【0041】(実施例6)実施例4の高磁場発生装置に
鉄芯を用いた例を図8に示す。
(Embodiment 6) FIG. 8 shows an example in which an iron core is used in the high magnetic field generator of the fourth embodiment.

【0042】実施例1と同様、高磁場発生装置は超電導
コイル1,永久電流スイッチ2,保護抵抗3,冷却容器
4及び励磁用電源5から構成されているが、本実施例で
は磁場発生空間中に鉄芯を設けて磁気回路を構成してい
る。すなわち、超電導コイル1の中心空間を貫通しコイ
ル外部で磁気的に閉じるに鉄芯31を設けて、ポールギ
ャップ32を有する磁気回路を構成する。磁場発生空間
としてポールギャップ32を利用する。本構造にする
と、利用できる磁場発生空間を超電導コイルから離れた
場所に設定できる利点がある。本発明では鉄芯を用いた
が、磁性体であれば他のものでも良い。
As in the first embodiment, the high magnetic field generator comprises a superconducting coil 1, a permanent current switch 2, a protective resistor 3, a cooling vessel 4, and an excitation power supply 5, but in this embodiment, the high magnetic field generator is provided in a magnetic field generating space. A magnetic circuit is configured by providing an iron core. That is, the iron core 31 is provided so as to penetrate the central space of the superconducting coil 1 and to be magnetically closed outside the coil, thereby forming a magnetic circuit having the pole gap 32. The pole gap 32 is used as a magnetic field generation space. With this structure, there is an advantage that the usable magnetic field generation space can be set at a place away from the superconducting coil. Although an iron core is used in the present invention, other magnetic materials may be used.

【0043】本発明による高磁場発生装置は、物質の磁
気特性の測定に用いられる振動試料型の磁気特性測定装
置やSQUIDを用いた磁場特性測定装置,核磁気や電
子スピンの共鳴を利用した物質の分析に用いられるNM
RやESR分析装置,質量分析計,電子顕微鏡などの理
化学機器、あるいは医療診断用のMRI(MagneticReso
nance Imaging)などに利用できる。将来的には磁気分離
装置,超電導電磁推進船,SQUIDを用いた原子炉配
管の検査装置,単結晶製造装置,MHD発電装置,超電
導発電機,核融合装置,高エネルギー粒子の加速器など
への応用が可能である。
The high magnetic field generating apparatus according to the present invention is a vibrating sample type magnetic property measuring apparatus used for measuring magnetic properties of a substance, a magnetic field property measuring apparatus using a SQUID, and a substance utilizing nuclear magnetism or electron spin resonance. NM used for analysis of
R and ESR analyzers, mass spectrometers, physical microscopes such as electron microscopes, and MRI (MagneticReso
nance Imaging). Future applications to magnetic separators, superconducting magnetic propulsion vessels, inspection equipment for reactor piping using SQUIDs, single crystal manufacturing equipment, MHD power generators, superconducting generators, nuclear fusion devices, accelerators for high energy particles, etc. Is possible.

【0044】[0044]

【発明の効果】本発明によれば、少ないヒータ電力で永
久電流スイッチを制御できるので運転コストを安くでき
る。
According to the present invention, since the permanent current switch can be controlled with a small amount of heater power, the operating cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における高磁場発生装置の断
面図。
FIG. 1 is a sectional view of a high magnetic field generator according to a first embodiment of the present invention.

【図2】本発明の実施例1における永久電流スイッチの
断面図。
FIG. 2 is a sectional view of a permanent current switch according to the first embodiment of the present invention.

【図3】本発明の実施例1における永久電流スイッチの
概略図。
FIG. 3 is a schematic diagram of a permanent current switch according to the first embodiment of the present invention.

【図4】本発明の実施例2における高磁場発生装置の断
面図。
FIG. 4 is a sectional view of a high magnetic field generator according to a second embodiment of the present invention.

【図5】本発明の実施例3における高磁場発生装置の断
面図。
FIG. 5 is a sectional view of a high magnetic field generator according to a third embodiment of the present invention.

【図6】本発明の実施例4における高磁場発生装置の断
面図。
FIG. 6 is a sectional view of a high magnetic field generator according to a fourth embodiment of the present invention.

【図7】本発明の実施例5における高磁場発生装置の断
面図。
FIG. 7 is a sectional view of a high magnetic field generation device according to a fifth embodiment of the present invention.

【図8】本発明の実施例6における高磁場発生装置の断
面図。
FIG. 8 is a sectional view of a high magnetic field generator according to a sixth embodiment of the present invention.

【図9】本発明で使用した高温超電導体Tl−(122
3)の特性図。
FIG. 9 shows a high-temperature superconductor Tl- (122) used in the present invention.
The characteristic diagram of 3).

【符号の説明】[Explanation of symbols]

1…超電導コイル、2…永久電流スイッチ、3…保護抵
抗、4…冷却容器、5…励磁用電源、6…磁場発生空
間、8…サービスポート、9…冷却供給排出口、11…
基板、12…電流路、13…ヒータ、14…空間、15
…ケース、16…穴、17…コイル口出し線、18…ヒ
ータ口出し線、31…鉄芯、32…ポールギャップ、5
1…直流電源、52…可変抵抗器、91…冷媒供給口、
92…冷媒排出口。
DESCRIPTION OF SYMBOLS 1 ... Superconducting coil, 2 ... Permanent current switch, 3 ... Protection resistance, 4 ... Cooling container, 5 ... Excitation power supply, 6 ... Magnetic field generation space, 8 ... Service port, 9 ... Cooling supply / discharge port, 11 ...
Substrate, 12 current path, 13 heater, 14 space, 15
... Case, 16 ... Hole, 17 ... Coil lead wire, 18 ... Heater lead wire, 31 ... Iron core, 32 ... Pole gap, 5
1: DC power supply, 52: Variable resistor, 91: Refrigerant supply port,
92 ... refrigerant outlet.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 6/00 ZAA ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 6/00 ZAA

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷却材を収容する冷却容器と、該冷却材中
に浸漬された超電導コイル及び該超電導コイルに接続さ
れた永久電流スイッチと、該超電導コイル及び該永久電
流スイッチに接続された励磁用電源を有する高磁場発生
装置において、該永久電流スイッチが断熱的にケースに
納められたことを特徴とする高磁場発生装置。
1. A cooling container containing a coolant, a superconducting coil immersed in the coolant, a permanent current switch connected to the superconducting coil, and an excitation connected to the superconducting coil and the permanent current switch. A high magnetic field generator having a power supply for use, wherein the permanent current switch is adiabatically housed in a case.
【請求項2】冷却材を収容する冷却容器と、該冷却材で
強制循環冷却される超電導コイル及び該超電導コイルに
接続された永久電流スイッチと、該超電導コイル及び該
永久電流スイッチに接続された励磁用電源を有する高磁
場発生装置において、該永久電流スイッチが断熱的にケ
ースに納められたことを特徴とする高磁場発生装置。
2. A cooling container for containing a coolant, a superconducting coil forcibly circulated and cooled by the coolant, a permanent current switch connected to the superconducting coil, and connected to the superconducting coil and the permanent current switch. A high magnetic field generator having an excitation power supply, wherein the permanent current switch is adiabatically housed in a case.
【請求項3】絶縁性基板に形成した電流路と、該電流路
に接続されたヒータを有する永久電流スイッチにおい
て、該電流路と該ヒータを取り囲むケースを有すること
を特徴とする永久電流スイッチ。
3. A permanent current switch having a current path formed on an insulating substrate and a heater connected to the current path, the permanent current switch having a case surrounding the current path and the heater.
JP04109535A 1992-03-17 1992-04-28 High magnetic field generator and permanent current switch Expired - Fee Related JP3120557B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04109535A JP3120557B2 (en) 1992-04-28 1992-04-28 High magnetic field generator and permanent current switch
EP93301804A EP0561552B1 (en) 1992-03-17 1993-03-10 A magnetic field generator, a persistent current switch assembly for such a magnetic field generator, and the method of controlling such a magnetic field generator
DE69314522T DE69314522T2 (en) 1992-03-17 1993-03-10 Magnetic field generator, continuous current switch for such a magnetic field generator and method for controlling such a magnetic field generator
US08/462,762 US5680085A (en) 1992-03-17 1995-06-05 Magnetic field generator, a persistent current switch assembly for such a magnetic field generator, and the method of controlling such magnetic field generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04109535A JP3120557B2 (en) 1992-04-28 1992-04-28 High magnetic field generator and permanent current switch

Publications (2)

Publication Number Publication Date
JPH05304025A JPH05304025A (en) 1993-11-16
JP3120557B2 true JP3120557B2 (en) 2000-12-25

Family

ID=14512717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04109535A Expired - Fee Related JP3120557B2 (en) 1992-03-17 1992-04-28 High magnetic field generator and permanent current switch

Country Status (1)

Country Link
JP (1) JP3120557B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277322A (en) * 1999-03-26 2000-10-06 Toshiba Corp High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system
JP4592498B2 (en) * 2005-05-30 2010-12-01 株式会社東芝 Permanent current superconducting magnet and permanent current switch used for this magnet
JP2006313924A (en) * 2006-06-26 2006-11-16 Toshiba Corp High temperature superconducting coil, and high temperature superconducting magnet and high temperature superconducting magnet system employing it

Also Published As

Publication number Publication date
JPH05304025A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
EP0561552B1 (en) A magnetic field generator, a persistent current switch assembly for such a magnetic field generator, and the method of controlling such a magnetic field generator
JP6718437B2 (en) Superconducting current pump
JP3019683B2 (en) Permanent current switch and superconducting magnet system
JP2009522815A (en) Superconducting high-speed switch
JPH0793211B2 (en) Magnet coil device for nuclear magnetic resonance tomography equipment
Nakamura et al. Flux pumping effect of HTS films in a traveling magnetic field
Tixador et al. First tests of a 800 kJ HTS SMES
Ainslie Transport AC loss in high temperature superconducting coils
Tosaka et al. Persistent current HTS magnet cooled by cryocooler (4)-persistent current switch characteristics
WO2009074920A1 (en) Superconducting magnet system with cooling system
JP3120557B2 (en) High magnetic field generator and permanent current switch
Symko Nuclear cooling using copper and indium
Yazawa et al. Development of 66 kV/750 A High-T/sub c/superconducting fault current limiter magnet
Kozak et al. Performance of SMES system with HTS magnet
Hatanaka et al. A HTS scanning magnet and AC operation
Sinanna et al. Field stabilization of the Iseult/Inumac magnet operating in driven mode
JPH05267054A (en) High magnetic field generator and permanent electric current switch
Tixador et al. Design and construction of a 41 kVA Bi/Y transformer
Gupta et al. Design, construction and test results of a warm iron HTS quadrupole for the facility for rare isotope beams
Browning A compact 2.0 T superconducting magnet
US6094333A (en) Operation control method for superconducting coil
Xu et al. A cryogen-free superconducting magnet with 95 cm warm bore for whole body MRI
JP2515813B2 (en) Current lead for superconducting equipment
JP3677166B2 (en) Permanent current magnet device for high magnetic field generation
Bray Superconducting applications: present and future

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees