JP2515813B2 - Current lead for superconducting equipment - Google Patents

Current lead for superconducting equipment

Info

Publication number
JP2515813B2
JP2515813B2 JP62201714A JP20171487A JP2515813B2 JP 2515813 B2 JP2515813 B2 JP 2515813B2 JP 62201714 A JP62201714 A JP 62201714A JP 20171487 A JP20171487 A JP 20171487A JP 2515813 B2 JP2515813 B2 JP 2515813B2
Authority
JP
Japan
Prior art keywords
current lead
superconducting
superconducting device
current
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62201714A
Other languages
Japanese (ja)
Other versions
JPS6445106A (en
Inventor
善則 白楽
久直 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62201714A priority Critical patent/JP2515813B2/en
Publication of JPS6445106A publication Critical patent/JPS6445106A/en
Application granted granted Critical
Publication of JP2515813B2 publication Critical patent/JP2515813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導機器用電流リードに係り、特に熱損
失のきわめて少ない超電導機器用電流リードに関する。
Description: TECHNICAL FIELD The present invention relates to a current lead for superconducting equipment, and more particularly to a current lead for superconducting equipment with extremely low heat loss.

〔従来の技術〕[Conventional technology]

従来、クライオスタツトに収納された超電導マグネツ
ト等の超電導機器に電流を供給する電流リードについて
は、特開昭56−134785号,特公昭61−61713号各公報に
記載のように低温側の超電導部にクライオスタツト内の
冷媒を液体あるいは蒸発ガスを前記超電導部を納めた外
管内に流通させ、前記超電導部を超電導臨界温度まで冷
却するようになつていた。
Conventionally, regarding the current lead for supplying a current to a superconducting device such as a superconducting magnet housed in a cryostat, the superconducting portion on the low temperature side is described in JP-A-56-134785 and JP-B-61-61713. In addition, the refrigerant in the cryostat is made to flow a liquid or an evaporative gas into the outer tube containing the superconducting portion to cool the superconducting portion to the superconducting critical temperature.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、電流リードへ通電する場合におい
て、クライオスタツト内槽内の冷媒あるいは、冷媒内に
設けたヒータで蒸発させた冷媒の蒸発ガスを、電流リー
ドを収納する外陽気あるいは外管内に強制的に導入ある
いは流通させて、前記流通リードの超電導部を超電導臨
界温度まで冷却しなければならなく、通電時の熱損失が
非常に大きいという問題があつた。
In the above prior art, when the current lead is energized, the refrigerant in the cryostat inner tank or the evaporated gas of the refrigerant evaporated by the heater provided in the refrigerant is forced into the outer positive air or the outer tube accommodating the current lead. Therefore, the superconducting portion of the distribution lead must be cooled to the superconducting critical temperature by introducing or circulating it, and there is a problem that the heat loss during energization is very large.

本発明の目的は、上記欠点を除去し、非通電時及び通
電時においても熱損失のきわめて少ない超電導機器用の
電流リードを提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a current lead for superconducting equipment which has extremely little heat loss even when de-energized and energized.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、極低温冷媒を貯蔵する内容器と、該内容
器を囲うとともに、内容器との間の空間に真空部を形成
する外容器と、前記極低温冷媒中に超電導機器を収め、
この超電導機器に電流を供給する電流リードの液体窒素
温度以下の低温側を酸化物超電導部材で、常温側を常伝
導部材で構成した電流リードであって、前記常伝導部材
部に冷却流路を設けたことにより達成される。
The above-mentioned object, an inner container for storing a cryogenic refrigerant, an outer container that surrounds the inner container and forms a vacuum portion in a space between the inner container, and a superconducting device in the cryogenic refrigerant,
A current lead for supplying current to this superconducting device is a current lead composed of an oxide superconducting member on the low temperature side below the liquid nitrogen temperature, and a normal conducting member on the room temperature side, and a cooling flow path in the normal conducting member section. It is achieved by providing.

ペロブスカイト関連結晶構造を有する酸化物系の超電
導材料及びその製法については、ツアイト シユリフト
フユーアフイジーク B64 (1987年)第189頁から第
193頁(Zeitschift fur Physik B64(1987)pp189−19
3)、サイエンス235(1987年)第567頁から第569頁(Sc
ience,235(1987)pp567−569)、及びフイジカル レ
ヴユー リターズ 58(1987年)第908頁から第910頁
(Physical Review Letters 58(1987)pp(908−910)
などにおいて論じられている。
For the oxide-based superconducting material having perovskite-related crystal structure and its manufacturing method, see Tsaito Syulift Fuhua Fizik B64 (1987) p.
193 pages (Zeitschift fur Physik B64 (1987) pp189-19
3), Science 235 (1987), pages 567 to 569 (Sc
ience, 235 (1987) pp 567-569) and Physical Rev You Reters 58 (1987) 908-910 (Physical Review Letters 58 (1987) pp (908-910).
Etc.

〔作用〕[Action]

酸化物超電導体のうち、ペロブスカイト関連結晶構造
で、特に酸素欠損型三層構造を有するものなどは、その
超電導臨界温度が液体窒素温度(約78K)を越え、90K以
上の臨界温度を有しており、非常にすぐれた超電導材料
である。それによつて、超電導機器用電流リードの低温
側の超電導部に前記酸化物超電導体を使用することによ
り、通電時にジユール発熱がないので、通電時に前記超
電導部を冷却する必要がなくなり、非通電時と同様に、
前記超電導を液体窒素温度レベルに保持するだけで良
く、通電時に特別な冷却がいらない。また、前記酸化物
超電導材料は、磁場中にあると、その超電導特性(臨界
温度、臨界電流密度など)が著しく劣化するので、超電
導危機が超電導マグネツトで、電流リードを配置した部
分にもかなり大きな漏れ磁場が存在する場合には、高透
磁率の材料で磁気シールドする必要がある。
Among oxide superconductors, those with perovskite-related crystal structures, especially those with an oxygen-deficient three-layer structure, have a superconducting critical temperature above the liquid nitrogen temperature (about 78K) and above 90K. It is an excellent superconducting material. Thereby, by using the oxide superconductor in the superconducting part on the low temperature side of the current lead for superconducting equipment, there is no need to heat the jule at the time of energization, so there is no need to cool the superconducting part at the time of energization, and when not energized. alike,
All that is required is to maintain the superconductivity at the liquid nitrogen temperature level and no special cooling is required when energized. In addition, since the oxide superconducting material is significantly deteriorated in its superconducting characteristics (critical temperature, critical current density, etc.) in a magnetic field, the superconducting crisis is a superconducting magnet, and the portion where the current leads are arranged is considerably large. In the presence of a stray magnetic field, it is necessary to magnetically shield it with a material of high magnetic permeability.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。図
は、本発明に係る超電導機器用電流リード1を超電導マ
グネツト2を収納するクライオスタツト3に組込んだ様
子を示す。前記超電導マグネツト2は、従来のNbTi合金
やNb3Sn及びV3Ga化合物系の超電導材料で構成されてい
る場合には、極低温容器4に収納された液体ヘリウム5
中に浸漬される。前記極低温容器4は、液体ヘリウム5
中へ侵入する熱を低減するために、中間輻射シール壁6
により包囲されている。前記中間輻射シール壁6は、弁
7より注入される液体窒素を冷却管8に流通させて、冷
却され、蒸発した窒素ガスは弁9より大気へ放出され
る。さらに、前記極低温容器4及び中間輻射シール壁
は、常温容器10に収納され、内部は断熱のため真空層1
1,12となつている。弁13は、真空ポンプへ接続される真
空弁である。断熱荷重支持体14,15は、極低温容器4及
び中間輻射シールド壁6を支持固定するためのものであ
る。極低温容器4内への液体ヘリウム5の注液は、弁16
を介し、注入管17より行なわれる。蒸発したヘリウムガ
スは、ヘリウムガス放出管18より、弁19を介して大気へ
放出される。また、蒸発したヘリウムガスの一部は、電
流リード1の常温部20へ流通させて、リン脱酸銅などの
電気伝導部材を冷却しながら弁21より大気へ放出され
る。この冷却により、電流リードの常温部(常電導部)
20と超電導部22の接続部を液体窒素温度レベルに保持す
る。
An embodiment of the present invention will be described below with reference to FIG. The figure shows a state in which a current lead 1 for superconducting equipment according to the present invention is incorporated in a cryostat 3 for accommodating a superconducting magnet 2. When the superconducting magnet 2 is made of a conventional NbTi alloy or Nb 3 Sn and V 3 Ga compound superconducting material, liquid helium 5 stored in a cryogenic container 4 is used.
Immersed in. The cryogenic container 4 is a liquid helium 5
In order to reduce the heat entering the inside, the intermediate radiation seal wall 6
It is surrounded by. The intermediate radiation seal wall 6 allows the liquid nitrogen injected from the valve 7 to flow through the cooling pipe 8 and is cooled, and the vaporized nitrogen gas is discharged from the valve 9 to the atmosphere. Further, the cryogenic container 4 and the intermediate radiation seal wall are housed in a room temperature container 10, and the inside is a vacuum layer 1 for heat insulation.
It is 1,12. The valve 13 is a vacuum valve connected to a vacuum pump. The heat insulating load supports 14 and 15 are for supporting and fixing the cryogenic container 4 and the intermediate radiation shield wall 6. The liquid helium 5 is poured into the cryogenic container 4 by the valve 16
Through the injection pipe 17. The evaporated helium gas is discharged from the helium gas discharge pipe 18 to the atmosphere via the valve 19. Further, a part of the evaporated helium gas is circulated to the room temperature portion 20 of the current lead 1 and is discharged to the atmosphere from the valve 21 while cooling the electrically conductive member such as phosphorus deoxidized copper. By this cooling, the room temperature part of the current lead (normal conducting part)
The connection between 20 and superconducting part 22 is maintained at the liquid nitrogen temperature level.

次に、超電導マグネツト2を励磁する場合の動作につ
いて説明する。超電導マグネツト2から常温部にある電
気端子23までの様子を詳細に説明する。超電導マグネツ
ト2より永久電流スイツチ24を介し、電流リード1の低
温側の超電導部22から常電導部20へ、そして、電気端子
23に接続されている。超電導部は、酸化物超電導部材よ
りなる超電導線25が低熱伝導材料よりなる外管26により
電気的に絶縁した状態で包囲されている。前記外管26の
途中には、サーマルアンカ27が設けられている。電流リ
ード1の超電導部22と常電導部20の接続部28を介して、
常電導部20の電気伝導部材であるリン脱酸銅などで構成
された電気電導管29につながる。前記電気伝導管29の周
囲には、冷却ガスの通路を形成するための電気絶縁性材
料よりなるガイド30が設けられている。超電導マグネツ
トに通電し、励磁する場合には、蒸発ヘリウムガスを電
流リード1の常電導部へ導き、冷却すればよい。これ
は、超電導マグネツトを消磁する場合も同様である。電
流リードの超電導部は常に超電導状態にあり、通電時に
おいて全く発熱しないことは言うまでもない。そして、
常電導部を上記のように冷却することにより、電気伝導
管29で発生するジユール熱を除去でき、安定に通電でき
る。こうして、通電終了後、永久電流スイツチ24をONと
して、超電導マグネツトを永久電流モードとする。この
ように永久電流モード時には、電流リードには通電の必
要はない。このような励消磁時及び永久電流モード時の
液体ヘリウム5は侵入する熱のうち、電流リードを介し
て入るものはその構成材料の熱伝導によるものである。
酸化物超電導の熱伝導率が小さいこと、臨界電流密度が
104A/cm2以上あることからその断面積を小さくできるこ
となどの主な理由により、かなり小さくできる。即ち、
超電導マグネツトの励消磁時と永久電流モード時の電流
リードを介して液体ヘリウムに侵入する熱量は同じであ
る。
Next, the operation of exciting the superconducting magnet 2 will be described. The state from the superconducting magnet 2 to the electric terminal 23 at room temperature will be described in detail. From the superconducting magnet 2 through the permanent current switch 24, the superconducting part 22 on the low temperature side of the current lead 1 to the normal conducting part 20, and the electric terminal.
Connected to 23. The superconducting portion is surrounded by a superconducting wire 25 made of an oxide superconducting member and electrically insulated by an outer tube 26 made of a low heat conductive material. A thermal anchor 27 is provided in the middle of the outer tube 26. Via the connecting portion 28 between the superconducting portion 22 of the current lead 1 and the normal conducting portion 20,
It is connected to the electric conduit 29 made of phosphorus deoxidized copper or the like, which is an electric conductive member of the normal conducting section 20. Around the electric conduction tube 29, a guide 30 made of an electrically insulating material for forming a passage for the cooling gas is provided. When the superconducting magnet is energized and excited, the vaporized helium gas may be guided to the normal conducting portion of the current lead 1 and cooled. This is the same when demagnetizing the superconducting magnet. It goes without saying that the superconducting portion of the current lead is always in the superconducting state and does not generate any heat when energized. And
By cooling the normal conducting part as described above, it is possible to remove the Juule heat generated in the electric conduction tube 29 and to stably supply electricity. Thus, after the energization is completed, the permanent current switch 24 is turned on to put the superconducting magnet in the permanent current mode. Thus, in the permanent current mode, it is not necessary to energize the current lead. Of the heat that enters the liquid helium 5 during the excitation / demagnetization and the permanent current mode, the heat that enters through the current leads is due to the heat conduction of the constituent materials.
The thermal conductivity of oxide superconductivity is small, and the critical current density is
Since it is 10 4 A / cm 2 or more, its cross-sectional area can be made small, mainly for the reason that it can be made small. That is,
The amount of heat that enters the liquid helium through the current leads during excitation and demagnetization of the superconducting magnet and during the persistent current mode is the same.

次に、電流リードの常温部を蒸発ヘリウムガスではな
く、液体窒素あるいは液体窒素温度レベルの窒素ガスを
利用して冷却するものについて第2図で説明する。電流
リード1の低温側の超伝導部22は、ヘリウムガス放出管
18に熱的に全領域で接続されている。弁7より導入され
た液体窒素は中間輻射シールド6を冷却管8により冷却
し、その後前記電流リードの常電導部と超電導部の接続
部28の近くに設けた入口管31より、常電導部へ流通さ
せ、電気伝導管29を冷却しながら、弁21より大気へ放出
する。こうすることにより、前記接続部を液体窒素温度
レベル以下に常に保持することができる。この結果、電
流リード1の超電導部22の酸化物超電導線25は常に臨界
温度以下の温度に維持できる。以上の説明では、電流リ
ード1の常電導部20の冷却は、中間輻射シールド6を冷
却する冷媒をそのまま利用していた。中間輻射シールド
6を冷却するラインと電流リードを冷却するラインを分
離し、入口管31へ常温部より直接配管し、この配管に液
体窒素あるいは液体窒素温度レベルの極低温ガスを導
き、電流リード1の電気伝導管29を冷却するように流通
させることもできる。
Next, a description will be given with reference to FIG. 2 of what cools the room temperature portion of the current lead by using liquid nitrogen or nitrogen gas at the liquid nitrogen temperature level instead of the evaporated helium gas. The superconducting part 22 on the low temperature side of the current lead 1 is a helium gas discharge tube.
Thermally connected to 18 in all areas. The liquid nitrogen introduced from the valve 7 cools the intermediate radiation shield 6 with the cooling pipe 8, and then from the inlet pipe 31 provided near the connecting portion 28 of the normal conducting portion and the superconducting portion of the current lead to the normal conducting portion. While circulating and cooling the electric conduction pipe 29, the electric conduction pipe 29 is discharged to the atmosphere through the valve 21. By doing so, the connection can always be kept at the liquid nitrogen temperature level or lower. As a result, the oxide superconducting wire 25 of the superconducting portion 22 of the current lead 1 can always be maintained at a temperature below the critical temperature. In the above description, for cooling the normal conducting portion 20 of the current lead 1, the coolant for cooling the intermediate radiation shield 6 is used as it is. The line for cooling the intermediate radiation shield 6 and the line for cooling the current lead are separated and directly connected to the inlet pipe 31 from the room temperature part, and liquid nitrogen or a cryogenic gas at the liquid nitrogen temperature level is introduced into this pipe to make the current lead 1 It is also possible to circulate the electric conduction tube 29 so as to cool it.

最後に、電流リードの低温側の超電導部22の詳細な構
造について第3図,第4図により説明する。先ず、第3
図について説明する。酸化物超電導体32は、電気絶縁体
33で包囲され、さらに低熱伝導の材料よりなる保護外管
34によつて包まれる。これにより、前記酸化物超電導体
の電気絶縁及び水などに対する保護を行うことができ
る。次に、第4図について説明する。酸化内超電導体32
は電気絶縁体33に包囲され、さらに高透磁率をもち、低
熱伝導率の材料で、磁気シールド部材35により、磁気シ
ールドされる。前記酸化物超電導体32は、常温側の常電
導部へは、ハーメチツクシール36により接続される。接
続部はインジウムなどで接続抵抗をできるだけ低減する
ように工夫される。37は、AlO3セラミツクスなどの電気
絶縁体である。37は、常温側の電流リードの外管であ
る。磁気シールド部材35は箱状片を巻きつけてもよく、
第3図の保護管34として磁気シールド性の材料を用いて
もよい。こうすれば、酸化物超電導体32に加わる臨界強
度が小さくなり、流せる超電導電流を大きくとることが
できる。ただし、磁気シールド部材35に、大きな磁気力
が作用するので、電流リードは周辺に対し十分な強度で
固定しなければならない。
Finally, the detailed structure of the superconducting portion 22 on the low temperature side of the current lead will be described with reference to FIGS. 3 and 4. First, the third
The figure will be described. The oxide superconductor 32 is an electrical insulator.
A protective outer tube surrounded by 33 and made of a material with low thermal conductivity
Wrapped by 34. As a result, the oxide superconductor can be electrically insulated and protected against water and the like. Next, FIG. 4 will be described. Oxide inner superconductor 32
Is surrounded by an electric insulator 33, has a high magnetic permeability, and has a low thermal conductivity, and is magnetically shielded by a magnetic shield member 35. The oxide superconductor 32 is connected to the normal conducting portion on the room temperature side by a hermetic seal 36. The connection part is made of indium or the like so as to reduce the connection resistance as much as possible. 37 is an electrical insulator such as AlO 3 ceramics. 37 is the outer tube of the current lead on the room temperature side. The magnetic shield member 35 may be wrapped with a box-shaped piece,
A material having a magnetic shield property may be used as the protective tube 34 in FIG. In this way, the critical strength applied to the oxide superconductor 32 is reduced, and the superconducting current that can be flowed can be increased. However, since a large magnetic force acts on the magnetic shield member 35, the current lead must be fixed to the surroundings with sufficient strength.

〔発明の効果〕〔The invention's effect〕

本発明によれば、超電導機器用電流リードを介して、
極低温側へ侵入する熱量、即ち熱損失量が、通電時及び
非通電時のどちらにおいても、同量で、かつ著しく低減
できる効果がある。
According to the present invention, via the current lead for superconducting equipment,
The amount of heat penetrating into the cryogenic temperature side, that is, the amount of heat loss is the same amount both when energized and not energized, and there is an effect that it can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の極低温機器用電流リードを
組込んだクライオスタツトの縦断面図、第2図は本発明
の他の実施例の極低温機器用電流リードを組込んだクラ
イオスタツトの縦断面図、第3図,第4図は、夫々極低
温機器用電流リードの極低温側の超電導部の縦断面図で
ある。 1……超電導機器用電流リード、2……超電導マグネツ
ト、3……クライオスタツト、4……極低温容器、5…
…液体ヘリウム、6……中間輻射シール壁、7,9,13,16,
19,21……弁、8……冷却管、10……常温容器、11,12…
…真空層、14,15……断熱荷重支持体、17……注入管、1
8……ヘリウムガス放出管、20……常温部、22……超電
導部、23……電気端子、24……永久電流スイツチ、25…
…超電導線、26……外管、27……サーマルアンカ、28…
…接続部、29……電気伝導管、30……ガイド、31……入
口管、32……酸化物超電導体、33,37……電気絶縁体、3
5……磁気シールド部材、36……ハーメチツクシール。
FIG. 1 is a vertical cross-sectional view of a cryostat incorporating the current lead for cryogenic equipment according to one embodiment of the present invention, and FIG. 2 incorporates the current lead for cryogenic equipment according to another embodiment of the present invention. FIG. 3 is a vertical sectional view of the cryostat, and FIGS. 3 and 4 are vertical sectional views of the superconducting portion on the cryogenic side of the current lead for the cryogenic device. 1 ... Current lead for superconducting equipment, 2 ... Superconducting magnet, 3 ... Cryostat, 4 ... Cryogenic container, 5 ...
… Liquid helium, 6 …… Intermediate radiation seal wall, 7,9,13,16,
19,21 …… Valve, 8 …… Cooling pipe, 10 …… Room temperature container, 11,12…
… Vacuum layer, 14,15 …… Adiabatic load support, 17 …… Injection tube, 1
8 …… Helium gas discharge tube, 20 …… Room temperature part, 22 …… Superconducting part, 23 …… Electrical terminal, 24 …… Permanent current switch, 25…
… Superconducting wire, 26… Outer tube, 27… Thermal anchor, 28…
… Connection part, 29 …… Electric conduction tube, 30 …… Guide, 31 …… Inlet tube, 32 …… Oxide superconductor, 33,37 …… Electrical insulator, 3
5: Magnetic shield member, 36: Hermetic seal.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】極低温冷媒を貯蔵する内容器と、該内容器
を囲うとともに、内容器との間の空間に真空部を形成す
る外容器と、前記極低温冷媒中に超電導機器を収め、こ
の超電導機器に電流を供給する電流リードの液体窒素温
度以下の低温側を酸化物超電導部材で、常温側を常伝導
部材で構成した電流リードであって、前記常伝導部材部
に冷却流路を設けたことを特徴とする超伝導機器用電流
リード。
1. An inner container for storing a cryogenic refrigerant, an outer container surrounding the inner container and forming a vacuum portion in a space between the inner container, and a superconducting device in the cryogenic refrigerant, A current lead for supplying current to this superconducting device is a current lead composed of an oxide superconducting member on the low temperature side below the liquid nitrogen temperature, and a normal conducting member on the room temperature side, and a cooling flow path in the normal conducting member section. A current lead for a superconducting device, which is provided.
【請求項2】前記超電導機器の励消磁時において、超電
導機器を冷却する冷媒の蒸発ガスを前記電流リードの低
温側と常温側の継ぎ部分へ直接導いて前記継ぎ部分を液
体窒素温度以下に冷却し、その後、前記冷却流路に流通
させることを特徴とする特許請求の範囲第1項記載の超
電導機器用電流リード。
2. When the superconducting device is demagnetized, the vaporized gas of the refrigerant for cooling the superconducting device is directly guided to the joint portion on the low temperature side and the room temperature side of the current lead to cool the joint portion to a liquid nitrogen temperature or lower. The current lead for a superconducting device according to claim 1, wherein the current lead is circulated in the cooling channel.
【請求項3】前記超電導機器用電流リードの冷却流路に
液体窒素あるいは液体窒素温度レベルの極低温窒素ガス
を流通させることを特徴とする特許請求の範囲第1項記
載の超電導機器用電流リード。
3. A current lead for a superconducting device according to claim 1, wherein liquid nitrogen or cryogenic nitrogen gas at a liquid nitrogen temperature level is passed through a cooling channel of the current lead for a superconducting device. .
【請求項4】前記電流リードの低温側の超電導部を磁気
シールドしたことを特徴とする特許請求の範囲第1項記
載の超電導機器用電流リード。
4. The current lead for superconducting equipment according to claim 1, wherein the superconducting portion on the low temperature side of the current lead is magnetically shielded.
JP62201714A 1987-08-14 1987-08-14 Current lead for superconducting equipment Expired - Fee Related JP2515813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62201714A JP2515813B2 (en) 1987-08-14 1987-08-14 Current lead for superconducting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62201714A JP2515813B2 (en) 1987-08-14 1987-08-14 Current lead for superconducting equipment

Publications (2)

Publication Number Publication Date
JPS6445106A JPS6445106A (en) 1989-02-17
JP2515813B2 true JP2515813B2 (en) 1996-07-10

Family

ID=16445710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62201714A Expired - Fee Related JP2515813B2 (en) 1987-08-14 1987-08-14 Current lead for superconducting equipment

Country Status (1)

Country Link
JP (1) JP2515813B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185882A (en) * 1989-12-15 1991-08-13 Hitachi Cable Ltd Cryostat for measurement of very low temperature using superconductor wire
JPH04100281A (en) * 1990-08-20 1992-04-02 Fuji Electric Co Ltd Current lead for superconducting equipment
FR2701157B1 (en) * 1993-02-04 1995-03-31 Alsthom Cge Alcatel Supply link for superconductive coil.

Also Published As

Publication number Publication date
JPS6445106A (en) 1989-02-17

Similar Documents

Publication Publication Date Title
US5884485A (en) Power lead for electrically connecting a superconducting coil to a power supply
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
EP0561552B1 (en) A magnetic field generator, a persistent current switch assembly for such a magnetic field generator, and the method of controlling such a magnetic field generator
US5757257A (en) Permanent current switch and superconducting magnet system
US5298679A (en) Current lead for cryostat using composite high temperature superconductors
JPH10335137A (en) Cooling method and conducting method for superconductor
JP2515813B2 (en) Current lead for superconducting equipment
JPH10275719A (en) Method for cooling superconductor
JP3377350B2 (en) Thermoelectric cooling type power lead
JP3450318B2 (en) Thermoelectric cooling type power lead
JP3120557B2 (en) High magnetic field generator and permanent current switch
JPH10247753A (en) Superconducting device and control method thereof
JP2581283B2 (en) Current lead for superconducting coil
JPH07131079A (en) High-temperature superconductor current lead
JP3316986B2 (en) Current leads for superconducting devices
JPH0955545A (en) Current lead for superconductive apparatus
US5057645A (en) Low heat loss lead interface for cryogenic devices
JPS6161713B2 (en)
JPH05267054A (en) High magnetic field generator and permanent electric current switch
JPH08195309A (en) Superconducting current lead
JPH09116200A (en) Current lead for superconductive device
JPH03283678A (en) Current lead of superconducting magnet apparatus
JPS6032374A (en) Superconductive electromagnet device
JPH04332105A (en) Superconducting magnet device
JPH0794319A (en) Current lead device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees